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Abstract: The unconvertible portion of incident radiation on solar panels causes an increase in their
temperature and a decrease in efficiency due to the negative temperature coefficient of the maximum
power. This problem is dealt with through the use of cooling systems to lower the temperature of
photovoltaic (PV) panels. However, the developments are focused on the loss of efficiency or extract
the heat out of the solar panel, rather than optimizing the solution to produce a net gain in the electric
power output. Therefore, this study proposes the analytical model for the cell temperature, irradiance
and design of absorbers. Furthermore, the cooling systems for the hybrid solar panels were developed
through analytical modeling of the solar cell temperature behavior and heat exchange between the
fluid and back surface of the PV module in MATLAB. The design parameters such as mass flow
rate, input power, solar cell temperature, velocity, height, number of passes and maximum power
output were optimized through a multi-objective, multivariable optimization algorithm to produce a
net gain in the electrical power. Three layouts of heat absorbers were considered—i.e., single-pass
ducts, multi-pass ducts, and tube-type heat absorbers. Water was selected as a cooling medium in
the three layouts. The optimized results were achieved for the multi-pass duct with 31 passes that
delivered a maximum power output of 186.713 W at a mass flow rate of 0.14 kg/s. The maximum cell
temperature achieved for this configuration was 38.810 ◦C at a velocity of 0.092 m/s. The results from
the analytical modeling were validated through two-way fluid-solid interaction simulations using
ANSYS fluent and thermal modules. Analyses revealed that the multi-pass heat absorber reduces the
cell temperature with the least input power and lowest fluid mass flow rate to produce the highest
power output in the hybrid PV system.

Keywords: sustainable energy; negative temperature power coefficient; analytical and numerical
modeling; efficiency; multi-pass duct cooling

1. Introduction

Fossil fuels supply most of the energy needs across the globe. Even though this source
of energy is relatively easy to use, global warming and limited supply raise questions
about its reliability. Solar panels converting solar energy to the electrical power are one
of the most popular solutions to this problem. However, their efficiency decreases when
their surface temperature increases, i.e., by 0.45% per degree increase from 25 ◦C [1]. Most
solar panels are designed to work at 25–65 ◦C during normal operation. Hybrid solar
panels have been developed that utilize a cooling system to control the temperature of solar
panels and extract useful thermal energy [2]. A few studies have predicted the temperature
behavior of solar panels [3] and efficiency loss due to heating [4,5], but the design of a
suitable cooling system is mostly neglected. Cooling techniques are applied to reduce
the efficiency loss. Numerous studies have divulged the development of hybrid solar
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panels in the 21st century. Arif et al. [6] researched back-surface air and water cooling
techniques in 2010. Sargunanathan et al. [7] explained the front-surface passive and liquid
emersion cooling techniques, and Waelia et al. [8] compared the efficiency output of differ-
ent cooling methods. These authors investigated the optimization of the input power of
photovoltaic/thermal (PV/T) systems as the major shortcoming in this field [7,8]. Garcı’a
et.al analyzed the nominal operating conditions of the solar panels, and the results were
validated with the experimental data [9]. Kurnik et al. [10] evaluated the performance of so-
lar panels under different mounting conditions. Roof-mounted panels showed an elevated
temperature difference of 55 ◦C in comparison to the ground-mounted systems. Later, the
theoretical model was proposed to assess the electrical and the thermal characteristics of
the solar panels [11]. The influences of various cooling systems (e.g., TEM and PCM) were
experimentally investigated by Fatih et al. [12]. They reported that these cooling systems
have a positive impact on PV panels.

Numerous researchers selected air as a cooling medium because it is a relatively
cheaper technique that uses airflow to cool solar panels [13,14]. Tonui et al. [15] used
airflow to improve the heat transfer process inside the thermal collector. The results for the
glazed and unglazed single-pass collectors and a single pass collector with a suspended
metal sheet/fins showed a high airflow rate and lower heat extraction due to a reduced
convection coefficient. Some experimental investigations revealed that the cell temperature
could be limited to 60 ◦C under enhanced natural air convection [13]. Arvind et al. [16]
reduced the temperature of PV panels by duct air cooling. Cooling by one fan was more
efficient than two fans, as the increased flow rate had very little influence on energy
production. Some researchers used analytical 1D steady heat transfer energy balance
modeling and experimental results [17,18]. Sarhaddi et al. [19] numerically modeled the
glass-to-glass PV/T module and compared it with the experimental results of Joshi [17] to
increase the performance. Hasan et al. [20] experimentally studied the PV/T solar panel
with air intake from the center and achieved thermal and electrical efficiency of 48% and 6%,
respectively, at 3 cm channel depth. However, the electrical and thermal efficiencies using
integrated fin thermal collectors were increased to 13.75% and 56.19%, respectively [21]. A
few researchers used water as a cooling medium [22–24], but [25–27] particularly used a
water channel on the back surfaces of the solar panels. An experimental study was carried
out for amorphous and polycrystalline solar panels with air and water collectors. The
pc-PV panel achieved higher electrical efficiency with water cooling, but the amorphous
panel showed more thermal efficiency [28]. In 2013, a numerical and experimental study
was performed on water-cooled monocrystalline solar panels that delivered a 3% increase
in electrical efficiency in comparison to ordinary solar panels [25]. Fudholi et al. [29] used
multiple cooling layouts for water heat absorbers. The results revealed that the spiral tube
system, with a mass flow rate of 0.01 kg/s, was the most efficient layout. In 2016, MATLAB
simulations of glazed and unglazed PV/T panels were performed under the laminar and
turbulent regimes. The unglazed solar panel with a turbulent flow regime showed higher
thermal energy efficiency [30]. Other cooling techniques include liquid immersion [31–33]
and spray/water film cooling [22] from the front surface of the solar panel. Abdolzadeh
and Ameri [34] and Tabaei and Ameri [35] used a water pump to spray water on the
front surface of the solar panel. Odeh and Behnia [36] experimentally investigated the
performance of trickling down water on a panel’s front surface. The temperature was
reduced to 32 ◦C, and the output was also increased. Rafal and Maciej [37] worked on a
hybrid solar system with various configurations for climatic conditions. Their research
shows that the efficiency of the solar system is enhanced by the right configurations.
Another study by Rafal and Maciej [38] used experimental and numerical techniques
to analyze a hybrid heating and cooling system under different climatic conditions to
increase the system’s performance. A solar-driven hybrid adsorption–compression cooling
system was theoretically investigated in three configurations by Mohamed et al. [39]. They
concluded that the hybridization of new solar-powered adsorption vapor compression
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cooling systems is proficient and economically advantageous for the advancement and
commercialization of cooling applications.

A background study revealed that the methods developed to cool solar panels include
air and water cooling systems, liquid immersion techniques, and passive cooling systems.
The shortcomings are in the design of the cooling system. Researchers have used cooling
techniques to validate their models or prove an increase in efficiency by pure experimen-
tal studies. The solar to electrical conversion efficiency of solar panels decreases with
temperature, and in months where most of the solar energy is available, it starts to lose
potential. This research was focused on finding a solution to this problem and working on
the development of hybrid solar panels to increase the efficiency of this renewable energy
source. Therefore, this work applied mathematical modeling and simulation techniques to
design and analyze a suitable cooling system for PV panels. The layout of this paper is as
follows. Section 2 discusses the description of the problem and provides a brief overview of
the methodology. Section 3 provides the mathematical modeling for single, multi-pass, and
tube-type absorbers. Section 4 optimizes the solution using the multivariable genetic algo-
rithm available as a MATLAB function. Section 5 validates the results through ANSYS CAE
simulations, followed by a discussion on results, conclusions, and future recommendations.

2. Problem Description and Methodology

The efficiency of solar panels decreases as the temperature increases. Therefore, the
goal is to minimize the effect of increases in temperature due to absorbed solar radiation
and the ambient temperature (based on the climatic conditions of Islamabad, Pakistan).
The specifications of the PV module used for analysis are given in Table 1. A cooling system
for PV panels was designed using a mathematical and simulation approach. The factors
such as cooling medium, heat transfer area, mass flow rates, and heat exchanger layouts
were analyzed to develop a better configuration for thermal collectors that delivers a net
gain. The problem with hybrid solar panels is the input required for cooling or extraction
of solar energy. Therefore, cooling techniques have been optimized to ascertain a better
energy production per unit area.

Table 1. Specifications of PV module.

Length (m) Width (m) Efficiency at STC Max Power (W) Temp Coefficient of Pmax

1.956 0.992 16.5 320 0.45%/◦C

3. Mathematical Modeling

The analytical modeling of the solar panel consisted of energy balancing its compo-
nents. It was carried out with the assumption [40] that there was only 1D heat input to
the system; all the processes involved were in a quasi-steady state; and the densities, heat
transfer coefficients, heat capacities, and viscosities were treated as constants. Heat transfer
occurs in two modes, i.e., (1) due to solar radiation absorbed by solar panels; (2) convective
heat transfer between the solar panel and ambient air. Initially, the solar radiation falls
on highly transparent glass that allows the light radiation to pass to the solar panel. The
radiation transferred to the panel is τgI (t), where I is the incident radiation and τg is the
transmissivity of the glass cover. The incident radiation is converted to electrical power
with an efficiency of ï, and the rest is absorbed by solar panels with absorptivity, αc. The
remaining fraction of the radiation, 1 − β, is absorbed by packing material. Tedlar is used
as packing material: β is the packing factor and absorptivity is αt. The thermal circuit of
the PV module is shown in Figure 1.
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3.1. Analytical Model of a PV Panel

Energy balancing was carried out using the mathematical function from ziapour
et al. [41]. Energy absorbed and lost by convection and conduction was equated to form a
relationship for cell temperature Tc in terms of irradiance and ambient temperature.

Tc = I(t)× τg(αc β − ïαc β − αt + αt β) + (Ut + UT)Ta/Ut + UT (1)

The values for ambient temperature and irradiance on solar panels change with time
during the whole day. The mathematical procedure for analysis is discussed below.

3.1.1. Temperature Modeling

The sin linking days model [42] is used to find the hourly values of ambient temperature.

T(t) =
(Temp(next) + Temp(prev)

2

)
−
[(Temp(next) − Temp(prev)

2

)
× cos

(
π(t − t(prev))

t(next) − t(prev)

)]
(2)

where Temp(next) and Temp(prev) are known values of temperatures and t(next) and t(prev) is the
time at which these temperatures occur. “t” is the time at which temperature is desired.

3.1.2. Irradiance Modeling

The hourly extraterrestrial radiation (I0) [43] to find the irradiance near the horizon is
given by

I0 =
12 × 3.6

π
IscE0 ×

(
(sin ϕ cos δ)× (sin ω2 − sin ω1) +

π(ω2 − ω1)

180
(sinϕ− sin δ)

)
(3)

δ =

(
0.006918 − 0.399912 cos Γ + 0.070257 sin Γ − 0.006758 cos 2Γ+

0.000907 sin 2Γ − 0.002697 cos 3Γ + 0.00148 sin 3Γ

)(
180
π

)
(4)

Eo = 1.000110 + 0.034221 cos Γ + 0.001280 sin Γ + 0.000719 cos 2Γ + 0.000077 sin 2Γ (5)

The day angle Γ is calculated as

Γ = 2π
(

n − 1
365

)
(6)

where n in Equation (6) is the day number.
The hour angle ω and the local solar time ST are given in Equations (7) and (8),

respectively.
ω = 15(12 − ST) (7)

ST = LT +
ET
60

+
4
60

[Ls − LL] (8)

where LT is the local standard time, Ls is the standard meridian, LL is the longitude of the
location under study, and EoT, the equation of time, is found by the following equation.

EoT = 9.87 sin 2B − 7.53 cos B − 1.5 sin B (9)

B =
360(n − 81)

365
(10)
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Considering the experimental values of irradiance from the metrological stations in
specified locations, the hourly irradiance on the horizontal surface can be calculated [44].
The Erbs model [45] was developed by the US stations for 32◦ to 42◦ in latitude. Islamabad
has a latitude of 33◦. This model is suitable for a subtropical climate which is the same as
that of Islamabad. The model is discussed below.

For 0 < Mt ≤ 0.22, Id = (1 − 0.09Mt)IH (11)

For 0.22 < Mt ≤ 0.8 ,

Id =
(
0.9511 − 0.1604Mt + 3.388Mt

2 − 16.638Mt
3 + 12.336Mt

4)IH
(12)

For 0.8 < Mt ≤ 1, Id = 0.165IH (13)

Mt =
IH
I0

(14)

where Mt is clearness index. For this case, Mt is considered constant during the whole day.

IH = Ib + Id (15)

where IH, Ib, and Id are in turn the horizontal surface, and direct and diffused beam
irradiance on the horizontal surface. Solar panels are placed at an angle to the horizontal
axis. The Liu and Jordan isentropic model [46] gives satisfactory values of irradiance for
the tilted surface in Pakistan.

Idβ =

(
1 + cos β

2

)
× Id (16)

Idβ = rb Ib (17)

rb =
I0β

I0
≈ cos θ

cos θ2
(18)

θz = cos−1(sin δ sin ϕ + cos δ cos ϕ cos ω) (19)

Iββ = Idβ + Ibβ (20)

where β is the tilt angle. The equations are solved for β = 23. To get smooth curves, the step
size for the equation is 0.25 h instead of a whole hour.

3.2. Design of Absorber: Hybrid PV Panel

An absorber in the solar panel removes heat through the temperature difference and
heat capacity of the fluid. The generalized layouts and the thermal circuit of PV/T for this
study are depicted in Figures 2 and 3, respectively. Figure 2a shows a single-pass duct in
which fluid enters from one side and leaves without recirculating in the absorber. Figure 2b
shows a multi-pass duct in which fluid circulates in the absorber many times before leaving.
Figure 2c shows a tube-type absorber with multiple tubes.
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3.2.1. Single-Pass Duct

In a single pass duct, fluid enters from one side and leaves without recirculating in
the absorber. The energy balances across the solar cell, back surface, and absorber [41] are
given in Equations (21)–(23), respectively.

I(t)τg
(
αcβ) + I(t)τgαt(1 − β

)
= (Tc − Ta)Ut + UT(TcTbs) + I(t)τgïαcβ (21)

UT(Tc − Tbs)bdx = h f

(
Tbs − Tf−avg

)
bdx (22)

h f

(
Tbs − Tf−avg

)
= mCp

dTf

dx
dx + Ub

(
Tf − Ta

)
bdx (23)

Equation (24) provides the mathematical relation for back surface temperature.

Tbs = hp1 × I(t)× τg(αc β − nαc β − αt + αt β) + UtT Ta + h f Tf−avg/UtT + h f (24)

Fluid outlet and average temperature are calculated using Equations (25) and (26),
respectively.

Tf−out =

(
hp2 × hp1 × I(t)× τg(αc β − nαcβ − αt + αtβ)

UL
+ Ta

)
×
(

1 − e
−ULbL

mCp

)
+ Tf−in × e

−ULbL
mCp (25)

Tf−avg =

(
hp2 × hp1 × I(t)× τg(αc β − nαc β − αt + αt β)

UL
+ Ta

)
×

1 −

 1 − e
−UL bL

mCp

UL bL
mCp


+ Tf−in

 1 − e
−ULbL

mCp

ULbL
mCp

 (26)
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hp2 =
h f

UtT + h f
(27)

UL = Ut f + Ub (28)

hp1 =
UT

Ut + UT
(29)

3.2.2. Multi-Pass Duct

In multi-pass ducts, the fluid circulates in the absorber “n” times. The fluid is supposed
to enter in such a way that it does not have to face excessive elevation head losses during
circulation. In this case, the solar panel is considered to be tilted along its length, so fluid
enters from the long side and moves along the width. The final form of energy balance,
fluid outlet, and average temperature equations for this type of absorber are very similar
to those of the single-pass duct absorber, except for the flow cross-sectional area and total
fluid flow length, which becomes n × width of the solar panel. The cross-sectional area of
fluid flow is l × h and l = L/n. L is the total length, h is the height of the duct, and n is the
number of passes.

3.2.3. Tube-Type Absorber

A tube-type absorber consists of a fluid flow in a single tube with “n” turns. The tubes
considered in this case are rectangular, and these will have a large contact area with the
back surface. If an absorber has n tubes each having contact d with the back surface, then
n × d is the contact length of the solar panel and tubes and L − nd is the uncovered length.
Consider a small segment that is equal to z + d, where z = (L − nd)/(n − 1), and using
the same approach, the energy balance relations for the tube-type absorber are derived.
Energy balances across the back surface and absorber are given in Equations (30) and (31),
respectively.

UT(Tc − Tbs)d.dx +UT(Tc − Tbs)z.dx

= h f

(
Tbs − Tf−avg

)
d.dx + Ub(Tbs − Ta)z.dx

(30)

h f

(
Tbs − Tf−avg

)
d.dx = mCp

dTf

dx
dx + Ub

(
Tf − Ta

)
d.dx (31)

By solving these equations and integrating results over the whole length, one can get

Tc = I(t)× τg(αc β − nαc β − αt + αt β) + UtTa + UT Tbs/Ut + UT (32)

Tbs=
hp1 × I(t)× τg(αcβ − nαcβ − αt + αtβ)(d + z) + (UtT(d + z) + haz)Ta + h f Tf−avgd

UtT(d + z) + haz + h f d
(33)

Tf−out =

(
hp2 × hp1 × I(t)× τg(αcβ − nαcβ − αt + αtβ)

UL
+ Ta

)
×
(

1 − e
−ULnbd

mCp

)
+ Tf−in × e

−ULnbd
mCp

(34)

Tf−avg =
(

hp2×hp1×I(t)×τg(αc β−nαc β−αt+αt β)
UL

+ Ta

)
×
(

1 −
(

1−e
−ULnbd

mCp
ULnbd
mCp

))

+Tf−in

 1−e
−ULnbd

mCp

ULnbd
mCp


(35)

UL =
(UtT(d + z) + haz)h f

UtT(d + z) + haz + h f d
+ Ub (36)
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hp2 =
h f d

UtT(d + z) + haz + h f d
(37)

hp1 =
UT

Ut + UT
(38)

Table 2 shows the predefined constants and material dimensions for the PV module.
The fill factor (FF) in Table 2 corresponds to the measure of the work performance of a solar
PV module. EVA is ethylene vinyl acetate, a thermoplastic polymer material that is used in
solar modules as an encapsulating agent; i.e., after the application of heat it forms a sealing
and insulating film around the solar cells. Tedlar, on the other hand, is used as a backing
material for the photovoltaic panel.

Table 2. Predefined variables/parameters for analytical calculations [37].

Variable/Parameter Value

Fill Factor of PV module 0.83

Coefficient of Convection of Air (W/m2K) 6.5

Thickness of Glass (m) 0.0032

Thickness of Tedlar (m) 0.0005

Thickness of EVA (m) 0.0005

Conductivity of Tedlar (W/(mK)) 0.033

Conductivity of EVA (W/(mK)) 0.23

Conductivity of Glass (W/(mK)) 1

Conductivity of Solar Cell (W/(mK)) 148

Thickness of Cell (m) 0.00035

Duct and tube material Aluminium

Aluminium Thickness for Duct Walls (m) 0.003

Aluminium Conductivity (W/(mK)) 205

Tube Dimensions 15 × 25 (sq.mm)

Absorptivity of Ted-lar 0.50

Absorptivity of Solar Cell 0.90

Transmissibility of Glass 0.95

Diameter of External Circuit pipe (mm) 0.0142

Fluid Inlet Temperature (◦C) 0.8 times the maximum Ambient
temperature of the Month

As shown in the table, Aluminum was chosen for the absorber’s structure due to its high
conductivity, availability, and light weight. All designing and optimization were carried out
according to the weather conditions for the month of June, the peak month for Islamabad.
The inlet water temperature was set to 25 ◦C in analyses, unless mentioned otherwise.

4. Optimization

Optimization is a technique that enables us to find the best possible solutions available.
The analytical equations can give infinite many solutions as the velocity and height of
the duct are changed, and in the case of a multi-pass duct, there is another factor, i.e., the
number of passes. The equations were solved at each value of velocity, and while keeping
the other variables constant, relationships were found between maximum cell temperature
and velocity and also between power and velocity. A similar procedure was followed for
height and number of passes.
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(i) Expressions for Duct-Type Absorber

The independent variables are velocity and height of the duct, and the output variables
are temperature and power input. The mathematical expressions, Equations (39)–(42), for
the vast number of data points are given below.

x (1) = Height, x(2) = Velocity;

Tcmax = −9.18 × 106x(1)5 + 2.685 × 106x(1)4 − 2.997 × 105x(1)3

+1.543 × 104x(1)2 − 160x(1) + 40.15
(39)

Power =
(
−2.9484 × 104x (1)2.7393 + 01.997

)
(40)

Tcmax = 0.1962x (2)(−0.6781) + 35.53 (41)

Power = 4438x (2)(2.832) + 2.467 (42)

(ii) Expressions for Multi-Pass Duct

The independent variables are velocity, passes, and height of duct; and the output
variables are temperature and power input. The expression generated from the data points
is shown in Equations (43)–(48).

x (1) = Height, x(2) = velocity, x(3) = Passes;

Tcmax = −9.18 × 106x(1)5 + 2.685 × 106x(1)4 − 2.997 × 105x(1)3

+1.543 × 104x(1)2 − 160x(1) + 40.15
(43)

Power =
(
−2.9484 × 104x (1)2.7393 + 01.997

)
(44)

Tcmax = 0.1962x (2)(−0.6781) + 35.53 (45)

Power = 4438x (2)(2.832) + 2.467 (46)

Tc(max) = −0.1936x(3)0.949 + 36.73 (47)

Power = 34.9x−2.285 + 0.2964 (48)

(iii) Expressions for Tube-Type Absorber

The independent variables are velocity and number of passes; and the output variables
are temperature and the power input. The expression generated from the vast amount of
data points is given in Equations (49)–(52).

x(1) = velocity, x(2) = Number o f Passes

Tc(max) = 1.763x(1)−0.7751 + 35.73 (49)

Power = 6.173x(1)2.522 + 0.7508 (50)

Power = 0.004039x(1) + 0.6969 (51)

Tc(max) = 45.47x(3)−1.151 + 37.65 (52)

4.1. Genetic Algorithm

The genetic algorithm is a type of evolutionary algorithm. It belongs to the category
of modern algorithms used commonly in the optimization of heat transfer problems, along
with other applications. The equations defined above for duct-type, tube-type, and multi-
pass duct absorbers are known as fitness functions. The analytical equations provide many
solutions by varying the parameters such as the velocity, duct height, and the number of
passes (multi-pass duct). The multi-objective, multivariable genetic optimization algorithm
that is available as a MATLAB function can be applied to obtain the best results. A genetic



Energies 2022, 15, 6278 10 of 22

algorithm chooses a vast population of input variables, and the population size is user-
defined [47]. This population is checked according to fitness functions and refined. The
constraints terminate the algorithm to get the data points that are the fittest according to the
criteria. For example, in the mentioned problem, the constraints Tcmax and power input
should be less than 40 ◦C and 10 W. The genetic algorithm chooses a random population
and checks its fitness by testing them in fitness functions and refining the individuals with
the fittest values, and repeating the process for the next generation of values until the
terminating criteria are met.

The analytical code was linked with the MATLAB function, and bounds were placed
on independent variables. Figure 4 shows the relationship between independent and
dependent variables that were controlled by velocity, absorber height, and the number
of passes. The analytical relations of Section 3 were used as objective functions for the
genetic algorithm. Variation in velocity varied the convection coefficient, mass flow rate,
and head losses. The problem was simplified by treating the temperature and net-power
output of the PV panel as dependent variables. Moreover, the system efficiency was directly
measured from the cell temperature, which reduced the optimization to three independent
and two dependent variables. The limits of the independent variables were set to cover
both the laminar and the turbulent flow. The design points obtained from the algorithm
were dependent on the initial population. The greater the initial population, the greater the
chances of obtaining many suitable points. The population was increased until there was a
repetition in the points.
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The data obtained from the optimization algorithm were rechecked through analytical
formulation and further refined using MATLAB code. A population of a few thousand
was used to get the results. The best-selected data points from the optimization of heat
absorbers are given in Tables 3 and 4. From the data points, it can be observed that slightly
changing each variable generates a unique solution. It can be observed that the mass flow
rate, required input power, and maximum power output are different for each design.
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Table 3. Designed parameters of tube-type heat absorbers. X—specify the optimized absorber
parameters for analysis.

Tube
Type

Passes Velocity
(m/s)

Tc Max
(◦C)

Mass Flow
Rate (kg/s)

Power
Input (W)

Max Power
Output (W)

X7.00 0.28 41.94 0.11 5.18 178.97

8.00 0.26 41.64 0.10 5.48 178.94

12.00 0.18 41.75 0.07 5.50 178.82

13.00 0.16 41.91 0.06 5.40 178.78

Single-
pass
duct

Height(m) Velocity
(m/s)

Tc Max
(◦C)

Mass Flow
Rate (kg/s)

Power
Input (W)

Max Power
Output (W)

X0.012 0.009 39.985 0.114 0.878 185.027

0.012 0.006 40.699 0.069 0.499 184.767

0.016 0.007 40.835 0.110 0.843 184.301

0.018 0.006 41.380 0.103 0.776 183.879

Table 4. Designed parameters of multi-pass duct type heat absorber. X—specify the optimized
absorber parameters for analysis.

Multi-
Pass
Duct

Height
(m)

Velocity
(m/s) Passes Tc Max

(◦C)
Mass Flow
Rate (kg/s)

Power
Input (W)

Max Power
Output (W)

0.016 0.100 32.000 38.169 0.095 0.723 186.810

0.029 0.107 38.000 37.638 0.149 1.241 186.768

X0.025 0.092 31.000 37.810 0.140 1.141 186.713

0.024 0.064 29.000 38.534 0.098 0.739 186.468
Note: The inlet water temperature in the above tables was considered to be 25 ◦C, and cell temperature was
determined accordingly for all the points in Tables 3 and 4.

4.2. Comparative Analysis for Different Types of Absorbers

Tables 3 and 4 provide a few best possible designs (marked tick) for each type of
absorber. For single-pass and tube-type absorbers, the design which produced the max-
imum output and lowest PV module temperature was selected. The power output and
the cell temperature for each set of design points are very close to those of the multi-pass
duct; therefore, the mass flow rate was also considered along with power output and
module temperature.

The hourly forecast for real and actual temperature, humidity, and pressure for 9th
of June is shown in Figure 5. The plot shows hourly variations in humidity and pressure
at different values of temperature. The sun rose at 4:58 am on the mentioned day, but the
analysis was conducted from 08:00 AM h to 06:00 PM. The morning temperature was 32 ◦C
and moved to 42 ◦C (felt like 44 ◦C) during the peak hours. The average humidity for
said duration was 30%. The average atmospheric pressure was calculated to be 707.5 mmHg,
and the average wind speed was 3.8 m/s (southerly). Figures 6–8 compare the PV module’s
temperature, power output, and efficiency for cooled and uncooled systems for the 9th of June.
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It can be observed in Figures 6–8 that the PV module with a multi-pass duct cooling
system produced the maximum efficiency via the maximum output and lowest cell tem-
perature over the whole day, followed by the single-pass duct system, tube-type absorber
system, and uncooled PV panel. The plots suggest that using a multi-pass duct system is
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the best option among all other systems. The total head loss of the system is about 2 m,
and the flow rate required for the system is about 8.4 LPM, which can be provided by
commercially available 10 W pumps with a 10 LPM flow rate.

4.3. Energy Produced by Hybrid Multi-Pass PV and Uncooled PV Module

Table 5 compares the energy production of PV and PV/T multi-pass absorber modules
between March and August. All the theoretical results were calculated using values of
irradiance and ambient temperature during these days. The empirical formula was used
for irradiance and temperature modeling. The flow inside the duct was in a transition
region with a mostly turbulent nature and a Reynolds number of 3684.

Table 5. Comparison of net energy production of PV and PV/T modules with a multi-pass duct system.

Month
Monthly Average

Temperate
(Hi/Low) (◦C)

Cooling Water
inlet Temperature

(◦C)

Power Input
Commercially

Available
Pump (W)

Net Energy Produced KWh

PV System
without Cooling

PV System with
Multi-Pass Duct Cooling

March 24/10 20 10 0.99 1.01
April 30/15 25 10 1.148 1.23
May 35/19 28 10 1.227 1.35
June 38/24 30 10 1.2306 1.38
July 34/24 28 10 1.234 1.369

August 33.4/23.5 28 10 1.193 1.30

5. Validation of Analytical Results through Virtual Experiments

To verify the analytical calculations and the theoretical trends, two types of CAE
simulations were run on the ANSYS workbench, i.e., temperature behavior of the PV and
the hybrid PV panel. The simulations were performed from 8 AM to 6 PM according
to ambient and insolation conditions for June in Pakistan. The total time of simulations
was 36,000 s.

5.1. Simulation Analysis of the PV Module without Cooling

An ANSYS transient module was used to simulate the PV panel without cooling
(parameters considered in Tables 1 and 2). The CAD model and meshed PV module using
the Hexahedral elements are shown in Figures 9 and 10, respectively. The total number of
mesh elements was 45,205 with 342,579 nodes. The average orthogonal element quality
was 0.99. The average skewness was 2.3625 × 10−4; maximum skewness was 0.74. Manual
contacts were defined between different layers. The layer with a lower conduction value
was placed on the contact side of the pair, and the layer with higher conduction was on the
target side. Convection boundary condition with convection coefficient of 6.5 W/(m.K) was
placed on glass and back surface. The ambient temperature was varied according to the
analytical calculations. The irradiance calculations and the heat flux boundary condition
on both Tedlar and solar cells were applied using Equations (53) and (54). The ambient
temperature was calculated using the mathematical function for temperature modeling.

Isolar cell = I(t)× τg(αcβ − ïαcβ) (53)

Itedlar = I(t)× τg(αt + αtβ) (54)
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The simulations show consistent temperature behavior of the PV module without
cooling; see Figure 11. The maximum temperature of the solar panel was 83.415 ◦C.
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The analytical and simulation-based comparison for uncooled solar cell temperature
behavior vs. time is shown in Figure 12. A good deal of conformity can be observed
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between the two trends. Initially, the solar cell showed a minimum temperature of 50 ◦C
that can be observed to peak at a value of 93 ◦C at 20,700 s. The final solar cell temperature
at t = 35,000 s was 70 ◦C. These high values of the solar cells were observed because
the system was uncooled. The general trends for the analyses are the same; however, a
slight difference between the results for maximum cell temperature over a given time
can be observed—i.e., the analytical values can be observed above the simulation trend.
The difference was due to some parameters and other initial and boundary conditions.
Analytical results give a general description of the system for any value of parameters.
Although the simulation results are easy to design, repeat, and statistically analyze, they
do not provide a representation that is as accurate as analytical models. Moreover, the
values of effective parameters were specified in the simulation analysis, and the responses
are true just for those values of the parameters, leading to the variations observed in the
figure below.
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5.2. Simulation Analysis of Hybrid PV Panel with a Multi-Pass Duct

To simulate the multi-pass hybrid solar panel, transient thermal and fluent modules
were coupled in ANSYS to produce a two-way FSI simulation. The input isolation and
ambient temperature conditions are similar to those in an uncooled PV system. Figure 13
shows the layered structure of a hybrid solar panel with a multi-pass absorber attached
to the back surface. The key mesh features of the system (Figure 14) include inflation
of thickness 0.0001 m applied on fluid volume. Total elements of the fluid domain were
321,640 and for solid structure, and the elements of the thermal domain numbered 128,538,
with element quality of 0.94 and 0.37, respectively. The inlet and outlet boundary conditions
in fluent analysis of hybrid PV module were velocity inlet and mass flow rate outlet,
according to the design of the absorber. A fluid–solid interface was created in the transient
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thermal simulation on the inner walls of the absorber. The wall boundary conditions were
set to system coupling in the fluent module.
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Figure 14. Mesh of a solid structure in the transient thermal simulation.

The simulation results show a trend similar to the analytical solution. The maximum
cell temperature was 42 ◦C; for analytical calculations the result was about 40 ◦C (inlet
cooling water temperature was 30 ◦C). The total head loss in the duct predicted in ANSYS
simulations was about 0.053; according to analytical calculations, the total head loss will
be 0.0476.

Figure 15 depicts the comparative analysis of solar cell temperature behavior under
multi-pass cooling.

The general analytical and simulation trends are similar to the one observed in Figure 11.
However, there is a pronounced difference in the cell temperatures of the cooled and
uncooled systems. The system subjected to multi-pass cooling showed a minimum temper-
ature of 35 ◦C; compare that to 50 ◦C for the uncooled system at the beginning of analysis.
The cooled system showed maximum analytical and simulation-based cell temperatures
of 42 and 41 ◦C respectively at t = 20,700 s. In comparison to the uncooled solar cells, the
temperature during the peak hours reduced by more than half for a cooled system—i.e.,
93 and 42 ◦C for uncooled and cooled systems, respectively. Towards the end of the anal-
ysis, the cooled solar cell showed a temperature of 36 ◦C. It is deduced that multi-pass
cooling effectively reduces the temperature of solar panels, which in turn improves their
performance and efficiency. The analytical and simulated contours at 20,700 s also show
similar trends and temperature variation (Figures 16 and 17). At this time point, the cell
temperature is maximal.
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Figure 16. Simulated contours of the hybrid solar panel system.

Analytical equations in the differential form were solved in MATLAB to get the
variation in temperature with the change in distance along the PV module. MATLAB
results for the time step are shown in Figure 17. The analytical temperature contour for the
hybrid panel system shows a clear decrease in the temperature of cells at a reduced distance.
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6. Conclusions

Numerical and simulation analyses of a hybrid water cooling system were studied
under climatic conditions for the month of June in Islamabad, Pakistan, to reduce the solar
panel temperature. Based on the results obtained, the following conclusions are drawn:

• PV and PV/T modules were analytically modeled using irradiance and ambient
air conditions of Islamabad in June. For climate modeling, Erbs, Liu, and Jordan’s
model and the sin linking day’s model were used. The optimum angle for solar panel
tilt is 23◦. Boundary conditions obtained by these models were incorporated in the
analytical model, which was then linked with the optimization algorithm. According
to analytical calculations, the hybrid system can produce about 0.15 kWh more energy
than the ordinary system in June. Results clarify that cooling enhances the net output
of the panel by reducing the effect of efficiency loss due to temperature.

• The analytical results were validated using fluent and thermal modules in ANSYS. The
fluid flow regime is considered in the transition domain close to turbulent flow. Good
agreement between analytical and numerical results for maximum cell temperature
of PV panel was observed. The efficiency of the solar panel was directly dependent
on the temperature of the cell; thus, the numerical results verified the efficiency of
temperature behavior for a multi-pass hybrid solar panel.

• A comparison of PV and hybrid PV panels was carried out considering the power
required by a commercial pump that provides the same head and flow rate of the
fluid. In a multi-pass absorber, the inlet width was also varied as the number of passes
was changed. Due to these facts, the multi-pass absorber can have relatively higher
velocities of fluid at lower head losses. The cell temperature is also reduced as higher
velocities increase the heat transfer coefficient.

• Absorbers of different types were modeled and compared. The hybrid solar panel
with a multi-pass duct system was compared with a PV system without cooling. In
March, the output of both the systems is almost equal, but the difference in output
increases as ambient temperature increases. The trends and temperature behavior of
the PV module and designed Hybrid PV module were verified by ANSYS simulations.
However, the optimized result was achieved for the multi-pass duct with 31 passes
that delivers a maximum power output of 186.713 W at a mass flow rate of 0.14 kg/s.
The maximum cell temperature achieved for this configuration was 37.810 ◦C at a
velocity of 0.092 m/s.

The research will enable engineers to design hybrid solar panels for domestic purposes
with minimum electrical energy usage that produce net gains in power and efficiency. The
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different layouts enable the selection of a system according to varying requirements for
domestic heating and cooling purposes.
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Nomenclature

I incident radiation
τg transmissivity of the glass cover
ï efficiency
αc absorptivity of solar panel
β packing factor
αt absorptivity of tedlar
STC standard test Conditions
PV photovoltaic
Ta ambient temperature
Tc cell temperature

Ut
Overall heat transfer coefficient from PV to ambient from the top of the panel
through glass

UT
overall heat transfer coefficient from PV to ambient from the bottom of panel
trough tedlar

Io hourly extraterrestrial radiation
Γ day angle
ω hour angle
ST local solar time
LT local standard time
Ls standard meridian
LL longitude of the location
Mt clearness index
β tilt angle
Iββ total Irradiance on the tilted surface
Tbs temperature back surface
b breath
dx element length
hf heat transfer coefficient of fluid
Tf-avg average temperature of fluid
Cp specific heat
Ub an overall heat transfer coefficient from bottom to ambient
hp1 penalty factor
hp2 penalty factor

UTt
Overall Heat transfer Coefficient from Tedlar to Ambient from the top of the panel
across glass

Dh hydraulic Diameter
k conduction coefficient
Ub overall heat transfer coefficient to ambient from the back side of absorber

UL
an overall heat transfer coefficient from solar cell to ambient through top and back
surface of insulation
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L length
m mass
Tf-out fluid outlet temperature
Tf-in fluid inlet temperature
P pressure

Utf
overall heat transfer coefficient from fluid to ambient from the top of the panel
through glass

Subscripts
A Ambient Air
f Fluid
t Tedlar
g Glass
bs Back surface
c Solar Cell
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