Adaptive PI and RBFNN PID Current Decoupling Controller for Permanent Magnet Synchronous Motor Drives: Hardware-Validated Results
Abstract
:1. Introduction
2. System Dynamic Error and Model Description
2.1. The Model Description from the System
2.2. The Dynamic Error System
3. Design of the Adaptive PI and PID Controller
3.1. Traditional PI and PID Compound Control with Decoupling Technology
3.2. The Proposed Adaptive PI Controller
4. RBFNN-PID Controller Design
4.1. The Proposed Adaptive RBFNN-PID Controller
4.2. NN Compensator in RBFNN-PID
4.3. Stability and Analysis
5. Experimental Validation
5.1. Drive System Settings
5.2. Research Program
5.3. Experimental Results
6. Conclusions
- A new adaptive PI + RBFNN-PID control strategy was proposed, and detailed design steps were given.
- The Lyapunov method provided mathematical proof of control system stability, zero convergence and the pertinent lemmas.
- We verified the adaptive PI + RBFNN-PID control method and showed that we tested the adaptive PI + RBFNN-PID control scheme and the SPMSM driver can accurately track the speed under the change of motor parameters and external load disturbance.
- The results were given and the traditional PI + PID controller results were compared. Currently, many researchers are developing new PI + PID gain analysis and tuning methods, and the proposed adaptive PI + RBFNN-PID control method contributes to reducing the difficulty of these tasks.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Zhan, H.; Zhang, G.; Gui, X.; Xu, D. Adaptive Compensation Method of Position Estimation Harmonic Error for EMF-Based Observer in Sensorless IPMSM Drives. IEEE Trans. Power Electron. 2013, 29, 3055–3064. [Google Scholar] [CrossRef]
- Kovacs, P.K. Transient Phenomena in Electrical Machines; Elsevier: New York, NY, USA, 1984. [Google Scholar]
- Sim, H.-W.; Lee, J.-S.; Lee, K.-B. On-line Parameter Estimation of Interior Permanent Magnet Synchronous Motor using an Extended Kalman Filter. J. Electr. Eng. Technol. 2014, 9, 600–608. [Google Scholar] [CrossRef]
- Bolognani, S.; Calligaro, S.; Petrella, R. Adaptive Flux-Weakening Controller for IPMSM Drives. In Proceedings of the IEEE Energy Conversion Congress and Exposition, ECCE, Phoenix, AZ, USA, 17–22 September 2011; pp. 2437–2444. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, I.; Lee, K.; Nam, K. Fluctuating Current Control Method for a PMSM Along Constant Torque Contours. IEEE Trans. Power Electron. 2014, 29, 6064–6073. [Google Scholar] [CrossRef]
- Sekour, M.; Hartani, K.; Draou, A.; Allali, A. Sensorless Fuzzy Direct Torque Control for High Performance Electric Vehicle with Four In-Wheel Motors. J. Electr. Eng. Technol. 2013, 8, 530–543. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, L.; Zhao, K.; Sun, L. Nonlinear Speed Control for PMSM System Using Sliding-Mode Control and Disturbance Compensation Techniques. IEEE Trans. Power Electron. 2013, 28, 1358–1365. [Google Scholar] [CrossRef]
- Lin, H.; Hwang, K.-Y.; Kwon, B.-I. An Improved Flux Observer for Sensorless Permanent Magnet Synchronous Motor Drives with Parameter Identification. J. Electr. Eng. Technol. 2013, 8, 516–523. [Google Scholar] [CrossRef]
- Dang, D.Q.; Vu, N.T.T.; Choi, H.H.; Jung, J.W. Neural-fuzzy control of interior permanent magnet synchronous motor: Stability analysis and implementation. J. Electr. Eng. Technol. 2013, 8, 1439–1450. [Google Scholar] [CrossRef]
- Ang, K.H.; Chong, G.; Li, Y. PID Control System Analysis, Design, and Technology. IEEE Trans. Control Syst. Technol. 2005, 13, 559–576. [Google Scholar]
- Sant, A.V.; Rajagopal, K.R. PM Synchronous Motor Speed Control Using Hybrid Fuzzy-PI with Novel Switching Functions. IEEE Trans. Magn. 2009, 45, 4672–4675. [Google Scholar] [CrossRef]
- Jung, J.-W.; Choi, Y.-S.; Leu, V.; Choi, H. Fuzzy PI-type current controllers for permanent magnet synchronous motors. IET Electr. Power Appl. 2011, 5, 143–152. [Google Scholar] [CrossRef]
- Hernandez-Guzman, V.M.; Silva-Ortigoza, R. PI Control Plus Electric Current Loops for PM Synchronous Motors. IEEE Trans. Control Syst. Technol. 2010, 19, 868–873. [Google Scholar] [CrossRef]
- Lian, K.-Y.; Chiang, C.-H.; Tu, H.-W. LMI-Based Sensorless Control of Permanent-Magnet Synchronous Motors. IEEE Trans. Ind. Electron. 2007, 54, 2769–2778. [Google Scholar] [CrossRef]
- Cheng, K.-Y.; Tzou, Y.-Y. Fuzzy Optimization Techniques Applied to the Design of a Digital PMSM Servo Drive. IEEE Trans. Power Electron. 2004, 19, 1085–1099. [Google Scholar] [CrossRef]
- Do, T.D.; Kwak, S.; Choi, H.H.; Jung, J.-W. Suboptimal Control Scheme Design for Interior Permanent-Magnet Synchronous Motors: An SDRE-Based Approach. IEEE Trans. Power Electron. 2013, 29, 3020–3031. [Google Scholar] [CrossRef]
- Do, T.D.; Choi, H.H.; Jung, J.-W. SDRE-Based Near Optimal Control System Design for PM Synchronous Motor. IEEE Trans. Ind. Electron. 2011, 59, 4063–4074. [Google Scholar] [CrossRef]
- Leu, V.Q.; Choi, H.H.; Jung, J.-W. Fuzzy Sliding Mode Speed Controller for PM Synchronous Motors with a Load Torque Observer. IEEE Trans. Power Electron. 2011, 27, 1530–1539. [Google Scholar] [CrossRef]
- Baik, I.-C.; Kim, K.-H.; Youn, M.-J. Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique. IEEE Trans. Control Syst. Technol. 2000, 8, 47–54. [Google Scholar] [CrossRef]
- Xu, Z.; Rahman, M. Direct torque and flux regulation of an IPM synchronous motor drive using variable structure control approach. IEEE Trans. Power Electron. 2007, 22, 2487–2498. [Google Scholar] [CrossRef]
- Jezernik, K.; Korelic, J.; Horvat, R. PMSM sliding mode FPGA-based control for torque ripple reduction. IEEE Trans. Power Electron. 2012, 28, 3549–3556. [Google Scholar] [CrossRef]
- Chen, D.-F.; Liu, T.-H. Optimal controller design for a matrix converter based surface mounted PMSM drive system. IEEE Trans. Power Electron. 2003, 18, 1034–1046. [Google Scholar] [CrossRef]
- Lin, F.J.; Chou, P.H.; Chen, C.S.; Lin, Y.S. DSP-based cross-coupled synchronous control for dual linear motors via intelligent complementary sliding mode control. IEEE Trans. Ind. Electron. 2012, 59, 1061–1073. [Google Scholar] [CrossRef]
- Lin, F.-J.; Hung, Y.-C.; Hwang, J.-C.; Tsai, M.-T. Fault-Tolerant Control of a Six-Phase Motor Drive System Using a Takagi–Sugeno–Kang Type Fuzzy Neural Network With Asymmetric Membership Function. IEEE Trans. Power Electron. 2012, 28, 3557–3572. [Google Scholar] [CrossRef]
- Vilathgamuwa, D.M.; Rahman, M.; Tseng, K. Nonlinear control of interior permanent magnet synchronous motor. IEEE Trans. Ind. Appl. 2003, 39, 408–416. [Google Scholar] [CrossRef]
- Uddin, M.N.; Chy, M.I. Online Parameter-Estimation-Based Speed Control of PM AC Motor Drive in Flux-Weakening Region. IEEE Trans. Ind. Appl. 2008, 44, 1486–1494. [Google Scholar] [CrossRef]
- Mohan, N. Advanced Electric Drives—Analysis, Modeling and Control Using Simulink; Minnesota Power Electronics Research & Education (MNPERE): Minneapolis, MN, USA, 2001. [Google Scholar]
- Ortombina, L.; Tinazzi, F.; Zigliotto, M. Adaptive Maximum Torque per Ampere Control of Synchronous Reluctance Motors by Radial Basis Function Networks. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 7, 2531–2539. [Google Scholar] [CrossRef]
- Ortombina, L.; Tinazzi, F.; Zigliotto, M. Magnetic Modeling of Synchronous Reluctance and Internal Permanent Magnet Motors Using Radial Basis Function Networks. IEEE Trans. Ind. Electron. 2017, 65, 1140–1148. [Google Scholar] [CrossRef]
- Gong, J.; Yao, B. Neural network adaptive robust control of nonlinear systems in semistrict feedback form. Automatica 2001, 37, 1149–1160. [Google Scholar] [CrossRef]
- Gong, J.; Yao, B. Neural network adaptive robust control of SISO onlinear systems in a normal form. Asian J. Control 2001, 3, 96–110. [Google Scholar] [CrossRef]
- Gongand, J.; Yao, B. Neural network adaptive robust control with application to precision motion control of linear motors. Int. J. Adapt. Control. Signal Process. 2001, 15, 837–864. [Google Scholar]
- Van, C.; Wang, Y. Adaptive trajectory tracking neural network control with robust compensator for robot manipulators. Neural Comput. Appl. 2016, 27, 525–536. [Google Scholar]
- Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice-Hall: Englewood Cliffs, NJ, USA, 1991. [Google Scholar]
- Argoun, M.B. On the stability of low-order perturbed polynomials. IEEE Trans. Autom. Control 1990, 35, 180–182. [Google Scholar] [CrossRef]
- Jung, J.-W.; Choi, H.-H.; Kim, T.-H. Fuzzy PD Speed Controller for Permanent Magnet Synchronous Motors. J. Power Electron. 2011, 11, 819–823. [Google Scholar] [CrossRef] [Green Version]
Parameter | Symbol | Value |
---|---|---|
Rated power | Pe | 400 W |
Rated phase-to-phase voltage | Vr | 220 V |
Rated phase current | Ir | 2.8 A |
Rated torque | Tr | 2.7 N.M |
Number of poles | P | 8 |
Stator resistance | Rs | 2.875 Ω |
Stator inductance | Ld, Lq | 0.22 mH, 0.61 mH |
Magnet flux | ψf | 0.085 V·s/rad |
Equivalent inertia | J | 0.0018 kg·m2 |
Viscous friction coefficient | B | 0.0002 N·m·s/rad |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Wang, W.; Wang, H. Adaptive PI and RBFNN PID Current Decoupling Controller for Permanent Magnet Synchronous Motor Drives: Hardware-Validated Results. Energies 2022, 15, 6353. https://doi.org/10.3390/en15176353
Zeng X, Wang W, Wang H. Adaptive PI and RBFNN PID Current Decoupling Controller for Permanent Magnet Synchronous Motor Drives: Hardware-Validated Results. Energies. 2022; 15(17):6353. https://doi.org/10.3390/en15176353
Chicago/Turabian StyleZeng, Xiaoli, Weiqing Wang, and Haiyun Wang. 2022. "Adaptive PI and RBFNN PID Current Decoupling Controller for Permanent Magnet Synchronous Motor Drives: Hardware-Validated Results" Energies 15, no. 17: 6353. https://doi.org/10.3390/en15176353
APA StyleZeng, X., Wang, W., & Wang, H. (2022). Adaptive PI and RBFNN PID Current Decoupling Controller for Permanent Magnet Synchronous Motor Drives: Hardware-Validated Results. Energies, 15(17), 6353. https://doi.org/10.3390/en15176353