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Abstract: This study presents an adaptive proportional-integral (PI) and radial basis function neu-
ral network proportional-integral-derivative (PID) current control solution for permanent magnet
synchronous motor (PMSM) drives. The proposed controller includes four controls: a decoupling
term, a PI term, a supervision term, and a radial basis neural network-PID (RBFNN-PID) term. The
first control term makes up the nonlinear factors, the second automatically adjusts the control gains,
the third guarantees the system stability, and the fourth optimizes the PID parameters to achieve
optimal system performance. Unlike off-line tuned PID controllers, the adaptive controller includes
an adaptive tuning method for the on-line adjustment of control gain based on the gradient descent
strategy. Therefore, it can be adjusted and handle the uncertainty of any system parameters. The
program is not only simple and easy to be implemented but also ensures the accuracy and rapidity of
the tracking speed. The control system has proven to be asymptotically stable. To verify the theory
and application of the algorithm, a comparative experiment between the adaptive PI + RBFNN-PID
controller and traditional PI + PID controller was conducted, demonstrating good robustness, which
can effectively improve the PMSM. The results confirm that the proposed design achieves excellent
control stability (i.e., quicker transient responding and smaller steady state error) in the presence of
parametric uncertainty compared to conventional PID methods.

Keywords: adaptive control; parameter uncertainties; proportional-integral (PI) control; PID control;
RBFNN-PID term; PMSM

1. Introduction

Currently, AC motors are widely used in household appliances and industrial fields,
with examples including power cars, wind power systems, industrial robotics, air condi-
tioning (ac), and washing machines. There are two main types of AC motors: asynchronous
motor (IM) and PMSM. About 70% of industrial motors are IM because of its simplicity,
durability, and low production cost [1–5]. However, the permanent magnet synchronous
motor (PMSM) is gradually replaced by people because of its high efficiency, low mainte-
nance cost and high power density. However, the permanent magnet synchronous motor
(PMSM) system is a nonlinear multivariable system whose performance is not easy to
control due to changes in operating parameters [6–9]. Therefore, it is necessary to develop
a high-performance controller with a simple algorithm, quick response time, extremely
high precision and strong robustness. The motor parameters and load torque variations of
a proportional-integral-differential (PID) controller are used to operate permanent magnet
synchronous motor (PMSM) system in industry because of its simplicity, definitude of
function and high efficiency [10]. However, one of the main problems with conventional
PID controllers is sensitivity to the uncertainties of the system. Therefore, the control
performance of traditional PID methods is severely degraded due to parameter changes.
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Some researchers surmount this shortcoming by designing mixed PID controllers or new
adjusting rules [11–13]. As shown in [11], a mixed control system consisting of a transient
fuzzy controller and a steady-state PI controller is proposed. Additionally [12] adjusted PI
gain with fuzzy rules. However, these two methods both use off-line adjustment rules and
lack adaptability to the uncertainty of time-varying systems in contrast to the adaptive PI
controller with on-line regulation shown in [13]. Although the controller did not require
any precise knowledge of motor parameters, there were no tested uncertain parameters.
Recently, several researchers have proposed many advanced control strategies including
fuzzy logic control (FLC) with nonlinear optimal control for the effective control of PMSM
systems, nonlinear optimal control (NOC) with sliding mode control (SMC), neural net-
work control, and adaptive control FLC [14]. Because of its fuzzy reasoning ability [15]
has become a research hotspot. However, as the number of fuzzy rules adds, the control
precision becomes greater, but the control algorithm becomes increasingly complex. NOC
has been successfully introduced and applied to PMSM controllers [16,17]. Unfortunately,
these controllers need sufficient knowledge and accuracy of motor parameters and has not
yet been tested with drastic changes in mechanical parameters. Because of its robustness
to external load disturbance and fast dynamic response, SMC is widely used in the speed
control of permanent magnet synchronous motors [18–21]. Yet, the system dynamics are
still susceptible to parameter changes and flutter problems. At the same time, another
design method of speed control using NNC for permanent magnet synchronous motor
system has been proposed [22–24]. One of the most important features of this technique
is its advantage to approach linear or non-linear mappings by learning. Though its high
complexity results in the control algorithm limits its implementation in practical appli-
cations. Adaptive control is another interesting approach because it can handle variable
motor parameters and load torque for permanent magnet synchronous motor drives as
shown in [25,26]. However, these two studies only considered changes in stator inductance
and load torque. Other motor parameters present uncertainty such as stator resistance,
moment of inertia, and viscous friction coefficient. In addition, convergence conditions for
system dynamic errors are not guaranteed for the adaptive control algorithm [26].

This study combines the simple and effective traditional PI + PID controller with
the self-tuning capabilities of adaptive control to designed a better adaptive PI + RBFNN-
PID controller for permanent magnet synchronous motor drives. The controller contains
an adaptive tuning law designed to tune the control gain on-line using the method of
gradient descent. Thus, when the parameters are changed, the PI + PID-RBFNN gain
will be auto-adjusted to the optimal value. Therefore, good dynamic response can be
obtained even when the system parameters are uncertain. The Lyapunov stability theory
describes the stability analysis of the proposed control strategy in detail. The experimental
results for the current fluctuation and current response time show that the proposed
adaptive PI + RBFNN-PID control scheme is effective and feasible when compared with
the traditional PI + PID control scheme under the condition of uncertain parameters. In
Section 2, the model is defined. In Section 3, the adaptive PI and PID controllers are defined,
and the performance is analyzed. In Section 4, the RBFNN-PID controller is defined, and
the performance and advantage of the NN compensator from RBFNN-PID is verified. In
Section 5, a comparison between the conventional PI + PID method and the proposed
adaptive PI +RBFNN-PID method for the current fluctuation and current response time
is completed.

2. System Dynamic Error and Model Description
2.1. The Model Description from the System

The torque balance equation of a PMSM [27] is:

τem = Jeqdωm/dt + Baωm + TL, (1)
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where Jeq is the inertia of the motor; ωm is the motor rotational speed; Ba is the friction
coefficient; TL is the load torque; and τem is the electromagnetic drive torque, which depends
on the type of PMSM. For a PM motor, τem can be expressed as follows:

τem = P(ψ f isq)PM motor (2)

where P represents the number of motor pole pairs. Finally, the relationship between
ωm and ωe is given by:

ωe = ωm · P. (3)

A mathematical model of a SMT permanent rotating reference frame motor driver can
be described by the following equations in the d, q rotating reference frame

.
id = − Rs

Ld
id +

1
Ld

Vd + ωeiq
.
iq = − Rs

Lq
iq −

ψ f
Lq

ωe +
1
Lq

Vq −ωeid
, (4)

where ωe is the rotor speed of PMSM; id and iq are the d and q stator current, respectively; Vq
and Vd are the d and q voltage input, respectively; Ld and Lq is the d and q stator inductance,
respectively; Rs is the stator resistance; and ψ f is the flux linkage.

2.2. The Dynamic Error System

To improve the stability of a PMSM, the errors and integral of errors are joined. The
dynamic errors between id and its reference value, i∗d , and between iq and its reference
value, i∗q , are defined as: {

ed = i∗d − id
eq = i∗q − iq

. (5)

The integrals of eq and ed are defined as:{
δd =

∫ t
0 eddt

δq =
∫ t

0 eqdt
. (6)

A positive definite Lyapunov function is constructed as:

V =
1
2

e2
d +

1
2

e2
q +

1
2

kidδ2
d +

1
2

kiqδ2
q . (7)

The derivative of V to t gives the following result:

.
V = ed[

.
i
∗
d − 1

Ld
(ud − Rsid + ωeLqiq) + kidδd]

+eq[
.
i
∗
q − 1

Lq
(uq − Rsiq −ωeLdid −ωeψ f ) + kiqδq],

(8)


Vd = Ld

.
i
∗
d + Rsid + k1Lded + kidLdδd

−ωeLqiq

Vq = Lq
.
i
∗
q + Rsiq + k2Lqeq + kiqLqδq

+ωeLdid + ωeψ f

, (9)


Vd = Ld

.
id + Rsid + Ld

.
ed + k1Lded + kidLdδd −ωeLqiq

Vq = Lq
.
iq + Rsiq + Lq

.
eq + k2Lqeq + kiqLqδq

+ωeLdid + ωeψ f

. (10)
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3. Design of the Adaptive PI and PID Controller
3.1. Traditional PI and PID Compound Control with Decoupling Technology

The equation for Vdq and the conventional adaptive PI design are as follows:

Vdq = u1 + u2 + unn, (11)

The voltage equation of the mathematical model of SPMSM is as follows:{
u1d = Ld

.
id + Rsid −ωeLqiq

u1q = Lq
.
iq + Rsiq + ωeLdid + ωeψ f

, (12)

Depending on Rs, Ld, Lq, and ψ f , the system parameters β1 − β5 can be expressed as:

β1 =
Rs

Ld
, β2 =

1
Ld

, β3 =
Rs

Lq
, β4 =

1
Lq

, β5 =
ψ f

Lq
(13)

The mathematical model of the current equation obtained by combining Equations
(12) and (13) is: { .

id = −β1id + β2u1d + ωeiq
iq = −β3iq + β4u1q − β5ωe −ωeid

, (14)

where u1, as shown in Equation (11), is as follows:

u1 = u0 + uPI + us (15)

From Equations (12) and (13), the models of the error system are as follows:{
u1d = (β1id −ωeiq)/β2
u1q = (β3iq + β5ωe + ωeid)/β4

, (16)

From Equations (12), (14), and (16), Equation (14) is expressed as:{ .
id = β2(u1d − u0d)
iq = β4(u1q − u0q)

, (17)

u1dq can be rewritten in vector form as:

u1dq =

[
β2u1d
β4u1q

]
= A

[
u1d
u1q

]
= u0 + uPI , (18)

The value of the coefficient A is as follows:

A =

[
β2 0
0 β4

]
, (19)

The value of the coefficient uPI is as follows:

uPI =

[
u1PI
u2PI

]
=

[
−K1Pid − K1I

∫ t
0 iddt

−K2Piq − K2I
∫ t

0 iqdt

]
,

= EK
(20)

where K1P, K1I , K2P, K2I are the proportional gain, integral gain and differential gain of the
PI controller, respectively. The equation of state and gain matrices are expressed as:

E =

[∫ t
0 iddt id 0 0

0 0
∫ t

0 iqdt iq

]
, (21)
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K =
[
−K1I −K1P −K2I −K2P

]T , (22)

It is important to note that the derivative of the current model is usually convoluted
and, therefore, was excluded in Equation (22).

Adaptive PI relies on on-line parameter tuning, which solves the problem of matching
the motor’s internal parameters and enables a rapid response system. The proposed
adaptive PI controller can be expressed as:

u1dq = u0 + uPI − uPI0 + us. (23)

3.2. The Proposed Adaptive PI Controller

The latest trajectory error vectors under the reduced-order dynamics of SMC are used
to obtain an adaptive tracking error rule.

s(t) =
[

s1(t)
s2(t)

]
=

[
id
iq

]
. (24)

From the viewpoint of sliding mode control, the conditions for the existence of sliding
mode and collision mode are derived according to Lyapunov. In general, the Lyapunov
candidate function for the SMC is expressed by V1 = 1/2sTs. Then, the slip can be derived
from the Lyapunov theory that can verify the slip of the system, which is given by:

.
V1(t) = sT .

s < 0. (25)

The SMC condition requires that s→ 0 as t→ ∞ . To obtain the adaptive regulation
of the PI gain, the supervised gradient method is used to decrease the SMC condition.
The method of the gradient descent algorithm is computed in the opposite direction of
the power flows and yields the stable characteristics of the PID gains. Therefore, the four
adaptive laws governing the gain, K1P, K1I , K2P, and K2I , are easily obtained under the
supervisory gradient method, that is as follows:

.
K1P = −γ1P

∂V1
∂K1P

= −γ1P
∂V1

∂u1PI

∂u1PI
∂K1P

= −γ1Ps1id,
.
K1I = −γ1I

∂V1
∂K1I

= −γ1I
∂V1

∂u1PI

∂u1PI
∂K1I

= −γ1Is1
∫ t

0 iddt,
.
K2P = −γ2P

∂V1
∂K2P

= −γ2P
∂V1

∂u2PI

∂u2PI
∂K2P

= −γ2Ps2iq,
.
K2I = −γ2I

∂V1
∂K2I

= −γ2I
∂V1

∂u2PI

∂u2PI
∂K2I

= −γ2Is2
∫ t

0 iqdt,

(26)

where γ1P, γ1I , γ2P, γ2I are the learning rates that are positive.
The adaptive adjusting method can be expressed in the following vector form:

.
K = φETs, (27)

where φ = diag(γ1I , γ1P, γ2I , γ2P).

Remark 1. Using on-line adjustment, the control gain can be adjusted automatically with the
change of system parameters. Thus, the designed adaptive PID controller can overcome the drawbacks
of all off-line adjustment methods and provide good performance without being affected by the
uncertainty of the system parameters.

Next, a monitor is required to pull the dynamic error back to a predetermined bounded
area and guarantee the stability of the system. Suppose there is an optimized PI control
(u∗PI) such that:

u∗PI = uPI0 + ε, (28)

where K∗ =
[
−K∗1I −K∗1p −K∗2I −K∗2P

]T
is the optimal gain matrix and ε =

[
ε1 ε2

]T ,
where ε1 and ε2 are the approximation inaccuracies, and they are assumed to be bounded
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by 0 ≤ |ε1| ≤ α1 and 0 ≤ |ε2| ≤ α2, in which α1, α2 are the positive constants. Then, the
projection for the regulatory controls is as follows:

us =

[
−α1 ∗ sgn(s1)
−α2 ∗ sgn(s2)

]
. (29)

Through integrating the decoupling control terms, the PID control terms with
adaptive laws, and the supervisory control terms, the desired controller is obtained as
u1dq = u0dq + uPI + us.

4. RBFNN-PID Controller Design
4.1. The Proposed Adaptive RBFNN-PID Controller

RBFNN incremental PID trajectory tracking is superior to traditional PID control
in terms of adaptability, robustness and real-time performance. Unlike the conventional
PID controller, it has a highly adaptive learning ability and meets the requirements for a
nonlinear controller.

The expression of u2 is:
u2 = uPID + u2s, (30)

.
e = σ, (31){

u2d = Ldσd + k1Lded + kidLdδd
u2q = Lqσq + k2Lqeq + kiqLqδq

. (32)

M =

[
δd ed σd 0 0 0
0 0 0 δq eq σq

]
. (33)

Z =
[
Z3I Z3P Z3D Z4I Z4P Z4D

]T . (34)

The latest error tracking vector based on PID with the dynamics of SMC is given as:

Ω(t) =
[

Ω1(t)
Ω2(t)

]
=

[ 1
s ed + ed + sed
1
s eq + eq + seq

]
. (35)

Then, the transfer function from s3 is obtained by strictly positive real functions:

G(p) =
ed
s3

=
1

1
s + s + 1

, (36)

where s is regarded as the Laplace variable. Therefore, it is to be stated that ed be astringent
to zero when the condition of s→ 0 is satisfied.

.
Z1P = −η1P

∂V2
∂K3P

= −η1PΩ1ed,
.
Z1I = −η1I

∂V2
∂K3I

= −η1IΩ1δd,
.
Z1D = −η1D

∂V2
∂K3D

= −η1DΩ1σd,
.
Z2P = −η2P

∂V2
∂K4P

= −η2PΩ2eq,
.
Z2I = −η2I

∂V2
∂K4I

= −η2IΩ2δq,
.
Z2D = −η2D

∂V2
∂K4D

= −η2DΩ2σq,

(37)

where η1p, η1I , η1D, η2p, η2I , η2D are the positive learning rates.

.
Z = ξMTΩ, (38)

where ξ = diag(η3I , η3P, η3D, η4I , η4P, η4D).
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Remark 2. With on-line regulation, the control gain can be auto-adjustment as the system pa-
rameters change. Hence, the proposed RBFNN-PID controller can overcome the drawbacks of
all off-line regulation methods and show good performance while ignoring the uncertainty of the
system parameters.

u2s =

[
−α3 × sgn(s3)
−α4 × sgn(s4)

]
(39)

4.2. NN Compensator in RBFNN-PID

RBFNN is an efficient feedforward neural network, which has the characteristics of
good approximation and generalization performance, a simple structure and fast learning
speeds [28,29]. RBF neural network is used in the compensator, but it is not suitable
for the multilayer neural network proposed in references [30–32]. The main structure
of the RBFNN shown in the orange frames of Figure 1 consists of three layers [33]: an
input layer with five variables, an output layer, u∗, and a hidden layer governed by a
Gaussian function.

V∗ = Vqds + u∗. (40)
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Layer one is the input layer. In this layer, inputs x are to be used in the next layer.

x =
[∫ t

0 id id δd ed
.
ed
∫ t

0 iq iq δq eq
.
eq

]
,

x =
[∫ t

0 id id δd ed
.
ed
∫ t

0 iq iq δq eq
.
eq

]
,

(41)

Layer two is the hidden layer—this layer consists of a series of computational cells
of hidden neurons. Each neuron is activated by an RBF. The output of the hidden layer is
computed by:

hj(x, c, d) = exp(−
‖x− cj‖2

2d2
j

), j = 1 . . . m, (42)

where m is the number of neurons; cj =
[
cj1 cjn

]
is the center vector of neuron j; dj is

the standard deviation of the jth RBF, d =
[
d1 dm

]T ; and hj is the Gaussian function for
neuron j.

Layer three is the export layer. The output indicator at this level is a linear weighted
portfolio:

f (x) =
m

∑
j=1

Wjihj(x, c, d), i = 1 . . . n, (43)
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where Wji refers to the weight, which connects the jth hidden node to the ith output, and n
is the number of inputs.

In the designed neural network compensator, the input signal from layer one is the
referred track vector, and the output from layer three is used for modeling difference,
external disturbance and no modeling part. The NN compensator is used to create the non-
linear projections between the referred track and the non-modeled dynamics, but it cannot
achieve the whole optimal approximation. The center vector c and the standard deviation
d are unchanged within the reference trajectory and the number of neurons. Because the
radial basis function has the ability of nonlinear approximation, the best approximation u∗

can be described by:
u∗ = f ∗(x)− ε2 = W∗h(x)− ε2, (44)

where f ∗(x) is the output vector from the hidden layer; W∗ is the optimal weight value
vector; and ε2 is a minimum approximating error. Due to the characteristics of the RBFNN,
the following practical assumptions hold.

Assumption 1. The approximation error ε2 is a small real constant. If the hidden layer has enough
neurons, that is, the absolute value of ε2 can be any small number, i.e.,

f̂ (x) = Ŵh(x), (45)

u∗ = f̂ (x) + W̃h(x)− ε2. (46)

There is an optimal value unn that satisfies the following conditions u∗:
u∗ + fd ≤ ε1
u∗(e + δ + σ) ≤ 0
(e + δ + σ)(u∗ + fd) ≤ ε

, (47)

f̂ (x) + W̃h(x) + f ≤ ε1 + ε2 = ε, (48)

where W̃ = W∗ − Ŵ refers to the estimation error of the weight vector.
unn from Equation (11) satisfies the condition as:

unn = f̂ (x)− vtanh
[

v
σ+e+δ

]
v > 0,

.
Ŵi = −Θihi p, i− 1, 2, . . . m,

p = δ + e + σ,

(49)

where Θi = diag[Θ1, Θ2 . . . Θm] is a positive symmetry theorem.

4.3. Stability and Analysis

To analyze system stability, the tracking theorem is as follows:

Theorem 1. Regarding the dynamic error system represented by Equation (16). On the condition
of applying with an adaptive PI + RBFNN-PID current controller, Equation (23), which hav-
ing adaptive tuning method, Equation (26), the dynamic error system expresses asymptotically
being stability.

Proof. The next equation can be deduced from Equations (16), (23), and (28):

.
s = B(uPI + us − u∗

PI
+ u∗

PI
− uPI0)

= B(EK̃ + us− ε),
(50)

where K̃ = K− K∗.�
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The control gain error is defined as follows:

K̃1P = K1P − K∗1P, K̃1I = K1I − K∗1I
K̃2P = K2P − K∗2P, K̃2I = K2I − K∗2I .

(51)

On the basis of Equations (50) and (51), the following Lyapunov candidate functions
were selected:

V2(t) = 1
2 sT B−1s + 1

γ1P
K̃2

1P + 1
γ1I

K̃2
1I

+ 1
γ2P

K̃2
2P + 1

γ2I
K̃2

2I
(52)

The Lyapunov function, V2(t), derivative of time is given by:

.
V2(t) = 1

2 sT B−1 .
s + 1

γ1P
K̃1P

.
K1P + 1

γ1I
K̃1I

.
K1I

+ 1
γ2P

K̃2P
.
K2P + 1

γ2I
K̃2I

.
K2I

= sT B−1B(EK̃ + us − k) + K̃Tφ−1
.
K̃

= sT(EK̃−
[

α1sgn(s1)
α2sgn(s2)

]
− ε)− K̃Tφ−1φETs

= −α1|s1| − α2|s2| − ε1s1 − ε2s2
≤ −(α1 − |ε1|)|s1| − (α2 − |ε2|)|s2|
≤ 0.

(53)

Using the adaptive PI controller, Equation (23), with adaptive tuning laws, Equation (26),
for non-zero values, the relevant inequalities can be obtained for the tracking error vector

.
s,

satisfied that
.

V2(t) is a negative semi-infinite function [i.e., V2(t) ≤ V2(0)], and s and K̃
must be bounded. The Ω(t) can be expressed as Ω(t) ≡ (α1 − |γ1|)|s1|+ (α1 − |γ1|)|s2|,
and the following inequality can be obtained from Equation (23):∫ t

0
Ω(τ)dτ ≤ V2(0)−V2(t), (54)

Since V2(0) and V2(t) are bounded and non-increasing, the following inequalities are
deduced to be:

lim
t→∞

∫ t

0
Ω(τ)dτ ≤ ∞. (55)

Meanwhile, as long as s is bounded, Equation (25) indicates that V is also bounded.
Then, Ω(τ) is uniform and continuous. By applying Barbalat’s lemma [34], it can be
found that lim

t→∞
Ω(τ) = 0. Therefore, s→ 0 as t→ ∞ and the adaptive PI + RBFNN-PID

controller will keep asymptotic stability even if the parameters of the motor change and
external load disturbance occurs.

Remark 3. It should be noted that the adaptive PI control strategy proposed in this paper is suitable
for various electrical systems, and its mathematical form is shown in Equation (16). The general
design process of the designed control strategy can be overviewed as follows.

Step one: Use the pole placement method [35,36] to select the initial value of the PI gain.
Step two: Structure the decoupling control term u0d, and term u0q as Equation (14) and

the supervision and control term us as Equation (29).
Step three: Organize the PI control term uPI as Equation (20) with the self-adaptive

control as Equation (26).
Step four: The desired laws from Equation (23) are obtained by combining the three

controls in Equations (14), (20) and (29).
The stability analysis of RBFNN-PID is the same as the adaptive PI.
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5. Experimental Validation
5.1. Drive System Settings

An experimental platform was set up with the core controller (TMS320F28335) from
the TI company. The decoupling control of the PMSM was verified based on the current
deviation control effect of the sliding mode control strategy. The program of the designed
adaptive PI + RBFNN-PID control algorithm was followed as shown in Figure 2. The
general design process of the control scheme was followed as shown in Figure 3, as
proposed by F28335DSP, and the hardware was set up following the structure diagram
of the all-digital control system based on the DSP as shown in Figure 4. The PMSM was
a 400 W stepper motor drag model (YH57BYGH56). The PWM switching frequency of
the DSP processor was set to 10 kHz, and the DC bus voltage provided by the output
DC regulated power supply was set to 30V. The EPWM and RC filter circuit equivalent
for the analog-to-digital conversion chip (ADC) and current analog signal output to the
oscilloscope. The given parameters from the SPMSM controller are shown in Table 1.
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Table 1. Nominal SPMSM Parameters.

Parameter Symbol Value

Rated power Pe 400 W
Rated phase-to-phase voltage Vr 220 V

Rated phase current Ir 2.8 A
Rated torque Tr 2.7 N.M

Number of poles P 8
Stator resistance Rs 2.875 Ω

Stator inductance Ld, Lq 0.22 mH, 0.61 mH
Magnet flux ψf 0.085 V·s/rad

Equivalent inertia J 0.0018 kg·m2

Viscous friction coefficient B 0.0002 N·m·s/rad

5.2. Research Program

To evaluate the characteristics of the theory and application of the proposed control
strategy, it was tested under two research scenarios including susceptible load torque and
under inductance parameter variations. The adjusting performance of the designed control
strategy was evaluated by the current response time in response to stepwise changes in
load torque. In addition, the robust nature of the motor parameters to the control system
was verified by the magnitude of current fluctuation as the electrical parameters vary with
the temperature and stator current during system operation.

5.3. Experimental Results

Scenario One: In this scenario, the given speed (ωd) was set to 2000 r/min with
inductance parameters of Ld = 1.2L̂d, Lq = 0.8L̂q. At 0.3 s, the load torque (TL) was
suddenly changed from 3 N.m to 6 N·m. Figure 5 shows the experimental waveform of
the designed adaptive PI + RBFNN-PID controller is compared with the conventional PI
controller experimental waveform shown in Figure 6. Figures 5 and 6 show the changes
by the d-axis stator current (ids) and q-axis current (iqs). It was found from Figures 5 and 6
that after applying the adaptive whole law, the adjustment performance of the traditional
PI + PID control system was apparently improved. That is, the proposed control scheme
stabilized quickly with a fast dynamic time response (settling time: 123 ms) in the case of
sudden changes of load torque. Conversely, as can be seen from Figure 6, the conventional
PI + PID controller still performed poorly with the load torque step changes due to the
adjusting time of 417 ms and poor waveform. It is worth noting that the gain of the
conventional PI + PID controller can be adjusted to rated parameters through widely
simulation several times. As shown in Figure 6, the stability performance varies widely
because it lacks the NN tuning that enhances system stability under parameter uncertainty.
What is more, under the condition of the same variation of motor inductance parameters,
the fluctuation range of the current in Figure 5 is much smaller than the fluctuation range
of the current in Figure 6, which shows the robustness of the proposed control strategy
to parameter changes. Scenario Two: In this scenario, the value of the given speed (ωd)
was set to 2000 r/min with inductance parameters of Ld = 0.8L̂d, Lq = 1.2L̂q. At 0.6 s the
load torque (TL) suddenly changed from 6 N·m to 3 N·m under system motor inductance
parameter variations. From Figures 7 and 8, the experimental waveform of the designed
adaptive PI + RBFNN-PID controller is compared with that of the conventional PI controller.
In detail, Figures 7 and 8, each display the changes of the d-axis stator current and q-axis
stator current. In these data, the proposed adaptive PI + RBFNN-PID control scheme
(regulation time: 313 ms) had a faster dynamic performance than the traditional PI + PID
control scheme (regulation time: 441 ms), which shows very poor stability under the
parameter uncertainties and load torque step. What is more, under the condition of the
same variation of motor inductance parameters, the fluctuation range of the current in
Figure 7 is much smaller than the fluctuation range of the current in Figure 8. At the same
time, this shows the robustness of the proposed control strategy to parameter changes.
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6. Conclusions

In this study, an adaptive PI + RBFNN-PID control strategy for current was designed
for PMSM drives using a simple and easy control algorithm. This paper presents an
adaptive tuning method, which can automatically adjust the gain of PI+ PID controls so
as to obtain a good current response performance. The method used the gradient descent
adaptive tuning method. Therefore, the control scheme proposed in this paper can ensure
the accuracy and rapidity of current in the case of system inductor parameter changes and
load interference from outside. The control system stability was analyzed exhaustively. The
effectiveness of the control strategy was verified through experiments. As a comparison,
the traditional PI + PID controller and proposed controller were tested under the same
conditions. The experimental results showed that compared with the traditional PI + PID
control method, the proposed adaptive PI + RBFNN-PID control algorithm significantly
improved control performance. The main results of the study are the following:

1. A new adaptive PI + RBFNN-PID control strategy was proposed, and detailed design
steps were given.

2. The Lyapunov method provided mathematical proof of control system stability, zero
convergence and the pertinent lemmas.

3. We verified the adaptive PI + RBFNN-PID control method and showed that we tested
the adaptive PI + RBFNN-PID control scheme and the SPMSM driver can accurately
track the speed under the change of motor parameters and external load disturbance.

4. The results were given and the traditional PI + PID controller results were compared.
Currently, many researchers are developing new PI + PID gain analysis and tuning
methods, and the proposed adaptive PI + RBFNN-PID control method contributes to
reducing the difficulty of these tasks.
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