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Abstract: This paper investigates the model development of the state-of-power (SoP) estimation
for a 43 Ah large-capacity prismatic nickel-manganese-cobalt oxide (NMC) based lithium-ion cell
with a thorough aging investigation of the cells’ internal resistance increase. For a safe operation of
the vehicle system, a battery management system (BMS) integrated with SoP estimation functions
is crucial. In this study, the developed SoP model used for the estimation of power throughout
the lifetime of the cell is coupled with a dual-polarization equivalent-circuit model (DP_ECM)
for achieving the precise estimation of desired parameters. The SoP model is developed based
on the pulse-trained internal resistance evolution approach, and hence the power is estimated by
determining the rate of internal resistance increase. Hybrid pulse power characterization (HPPC) test
results are used for extraction of the impedance parameters. In the DP_ECM, Coulomb counting and
extended Kalman filter (EKF) state estimation methods are developed for the accurate estimation of
the state of charge (SoC) of the cell. The SoP model validation is performed by using both dynamic
Worldwide harmonized Light vehicles Test Cycles (WLTC) and static current profiles, achieving
promising results with root-mean-square errors (RMSE) of 2% and 1%, respectively.

Keywords: state of power; state of charge; internal resistance increase; battery management system;
aging; validation profiles

1. Introduction

With the consistent increment in power density and specific energy of Li-ion batteries,
the intensive use of these battery types is becoming common practice in the automotive
application sector. This contributes to a matured battery management system (BMS) uti-
lized in Li-ion batteries, having high charge and discharge current rates and high energy
density [1,2]. For the safe operation of the EV battery system, appropriate parameter identi-
fication methods of lithium-ion batteries are crucial [3]. Various methods are used for the
estimation of SoC and SoP, whereas Xiong et al. [4] used the Kalman filter joint estimator
method to calculate SoC and predict the SoP output. The study provides an SoP estimation
model using the SoC result as an input without considering the resistance increase in the
cells. On the other hand, a recursive extended least-squares (RELS) algorithm is used to es-
timate SoP using an online equivalent-circuit model parameter identification technique [5]
with an assumption of constant current as input and temperature as an influencing fac-
tor. However, the study did not consider the use of discharging current and power for
effective determination of the desired SoP. Jiang et al. [6] applied the multi-constraint SoP
estimation method under high-temperature conditions, proving that the resulting SoP had
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good precision. Thermal characteristics of batteries during acceleration or deceleration of
electric vehicles are also considered for assessing the temperature effect on SoP improving
the estimation accuracy [7]. However, the study lacks the incorporation of the SoC and
resistance effects on the resulting SoP.

Due to simplicity and a low computational time requirement, the equivalent-circuit
model (ECM) approach has also been used by different researchers. Gao et al. [8] used
a coupled ECM approach to estimate SoC and SoP. Jia et al. [9] made a comparative analysis
between the extended Kalman filter (EKF), strong tracking EKF (STEKF), and multirate
strong tracking EKF (MRSTEKF) and verified that the MRSTEKF has faster computation
time during estimation of SoC and SoP. However, these methods were found to be relatively
complex for utilization purposes. Different studies have also been conducted with online
state-of-power estimation techniques of lithium-ion batteries performed using constant-
voltage charging current and Kalman filtering state estimation methods [10–14] without
assessing the aging effects of internal resistance increase on the SoP estimation. In addition
to the SoC determination, a few kinds of research have been conducted to investigate the
effect of aging on SoP estimation. Esfandyari et al. [15] and Sun et al. [16] analyzed the effect
of aging status using a combined reference mode of constant-current and constant-voltage
methods for estimation of fresh-cell SoP where the various aging states are adapted. In this
method, the author tried to analyze the aging effect, which is limited to the beginning-of-life
(BoL) state-of-health (SoH) data, which might result in inaccuracy on the SoP estimation.
The state of charge (SoC) is one of the most important parameters in the battery cell study,
which needs accurate determination where it is changed nonlinearly during the charge and
discharge process. However, finding the most accurate SoC value becomes challenging as it
can be affected by different factors, including temperature and self-discharge. Furthermore,
the determination of the state of power (SoP) is the other crucial aspect that uses the
estimated output of SoC as an input for its computation. Nowadays, in electric vehicle
(EV) applications, the estimation of SoP is becoming an interesting study area that enables
optimal control of the battery power management through the BMS to be achieved [17].
Therefore, for the reliable operation of the battery system used in either EV or renewable
energy integration applications, an accurate estimation of battery SoP is essential, which is
a function of load current, terminal voltage, and SoC [18].

The methods mentioned above have their own pros and cons in terms of complexity,
accuracy, and computational time. Moreover, in the previous studies mentioned above,
the SoP response of battery cells was not performed until the end of life (EoL) of the cells,
and rather focused on the BoL parameter values. In this paper, the main objective of the
study is to compromise the gaps observed from the above reviews by developing a robust
SoP model used for the estimation of the state of power for an electric vehicle battery
cell by considering the effect of internal resistance increase throughout the life of the cell.
Following the parametrization of the SoP model with the proposed pulse-trained internal
resistance evolution approach, novel results showing the promising accuracy of the model
are achieved. The discharge peak currents and the influence of the aging effect in terms of
internal resistance increase have been considered for the determination of the SoP output,
which was not inclusively considered in previous studies. In addition to the SoP model, the
dual-polarization equivalent-circuit model (DP_ECM) is utilized for accurate estimation
of SoC together with lookup table parameters, which in turn is taken as an input for the
SoP model. The DP_ECM is coupled to the SoP model and the desired power output is
estimated. Finally, both the SoP and the DP_ECM are validated using dynamic Worldwide
harmonized Light vehicles Test Cycles (WLTC) and static current profiles, and promising
results are found.

2. Experimental Setup

The remaining sections of the manuscript are organized as follows: Section 2 describes
the experimental setup and parameter extraction. Section 3 discusses the model description,
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mathematical representation, and SoP model development. Section 4 presents the SoC and SoP
estimation results and model validation; and finally, the conclusion is presented in Section 5.

The overall battery test was performed using an efficient characterization methodology
for nickel-manganese-cobalt oxide (NMC)-based lithium-ion cells. The type of battery cell
used for testing is a 43 Ah large-capacity cell made up of NMC/C-based cathode material
and graphite anode. The battery cell under study is categorized as preferable for vehicular
services as it retains the properties of high-power density of 1200 W/kg, 840 g weight, and
nominal voltage of 3.6 V. Moreover, the operating voltage of the cell ranges from 3 to 4.2 V,
dimensions of 27.5 mm × 148 mm × 91 mm, and internal resistance of ≤2 mΩ. During
the test campaign, CTS custom climate chambers for controlling the temperature and PEC
manufactured testers were used.

An average of eight HPPC tests with duration of 800 full equivalent cycles (FECs) were
accomplished for all the four representative cells considered for the SoP estimation. The
characterization of batteries at various environmental and battery state conditions, such as
at different temperatures, state-of-charge, and current rates, were performed. The battery
model development procedure consists of a series of standard testing procedures used to
capture the electrical and thermal behaviors efficiently. The electrothermal characterization
procedure mainly incorporates the capacity, open-circuit voltage (OCV), quasi-open-circuit
voltage (qOCV), HPPC, and validation tests. Based on these characterization results,
an electrothermal model is parametrized and developed for the determination of the cells’
dynamic behaviors.

In Figure 1, it can be seen that the battery tester performs the charge/discharge process
and monitors the cell’s voltage, current, and temperature, and the climate chamber used
to control the environmental temperature. The voltage, current, power, energy, cycle, and
temperature are presented through the user interface.
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Figure 1. Block representation of test bench topology during cell experiment [19].

This paper mainly deals with the development of the SoP estimation model, and
therefore covers the SoP estimation and model validation based on the internal resis-
tance increase. The proposed methodology incorporates the effect of resistance increase
throughout the lifetime of the cells during the SoP estimation. The hybrid pulse power
characterization (HPPC) test pattern used to find the resistance (R) and capacitance (C)
parameters was analyzed. The internal resistance of the battery cells was extracted from
the HPPC test conducted according to the defined test conditions of three different SoC
points of 80%, 50%, and 20% with three different C-rates of 0.33 C, 0.5 C and 1 C [20]. The
charge and discharge cycles were performed using predetermined current rate (C-rate)
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values with constant current–constant voltage (CC-CV) standard charging of cells. The
summary of the overall electrothermal and aging characterization procedure is presented
in Figure 2. In addition to the electrical characterization procedure, the standard aging test
protocols were followed by checkup tests performed from BoL to EoL of the cells to find
the internal resistance and capacity fade results throughout the life of the cells.
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From Figure 2, it can be seen that two types of check-ups were performed during
aging of the cells. The first check-up is the short check-up (SCU), which is performed every
100 cycles; and the second one is detailed check-up (DCU), performed every 300 FECs.
The HPPC test is intended to measure the battery impedance using a test profile that
incorporates both discharge and charge pulses. The primary objective of this test is to
establish the internal resistance of the tested cell as a function of SoC. A representative
figure showing the current pulses is presented in Figure S2 of the Supplementary Material
provided separately. During the 10 s charge and discharge pulses, extended voltage limits
were used. A preliminary simulation was performed using the different pulses and the
electrical parameters needed for the model (R0, R1, C1, R2, and C2) were extracted. The
methodology for the parameter extraction is explained in Section 2.2.

In addition to the HPPC test, OCV test is another important characterization test
performed to provide the open-circuit voltage level of the cell. In this characterization test,
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the cell is first fully charged at 100% SoC with a C/2 current rate. During the test, the cell is
resting for 3 h and the OCV is measured from the last voltage point. Then, it is discharged
with C/2 for a 5% decrement of its total discharged capacity, rested for 3 h, and the OCV
is measured for the new SoC. This process continues until the safety limit of the cell is
reached (Vmin = 3 V). The last value is considered as the first point of charging the OCV,
by which estimation starts with a similar way but with positive current until the upper
safety limit of the battery cell (Vmax) is reached. An experimental result for 25 ◦C is shown
in Figure S3 of the Supplementary Material.

2.1. ECM Parameter Extraction

It is well-known that the SoC and SoH of the battery cells are the most crucial parame-
ters needing accurate determination for effective operation and control of the BMS on the
overall power system [21–24]. However, in this paper, the scope of the SoP model devel-
opment is mainly dependent on accurate determination of SoC parameters, and therefore,
the aspects related to SoH parameters will not be addressed. The total SoC is the sum of
the state of charge due to both voltage and current effect. Primarily, the SoC can also be
determined by using the coulomb-counting method defined by [25]:

SoC = SoC0 −
1

Cinit

∫
Ibattdt (1)

where SoC0 is the initial state of charge of the cell and Ibatt is the battery current.
With the combined use of the coulomb counting and EKF methods, the total SoC

can be estimated by considering the sum of SoC with voltage and current inputs. Both
algorithms consider the current input, with the EKF considering both voltage and current
as input. Therefore, total SoC at Kth time step is given by:

SoCk = SoCI,k + SoCV,k (2)

where k stands for the time step, I stands for the current in (A), and V stands for the voltage
in (V).

2.2. Table-Based Linear Interpolation (TBLI) Parameter Extraction

The ECM parameters, including R0, R1, C1, R2, and C2, are extracted at SoC_HPPC
points of 20%, 50%, and 80% intervals using table-based linear interpolation (TBLI) method
in account of the varying SoC values and C-rates. The temperature considered for this
scenario is limited to 0 ◦C, 10 ◦C, 25 ◦C, and 45 ◦C. The electrochemical reaction responses
during a current pulse are shown in Figure 3.
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The HPPC characterization results with the values of R0, R1, C1, R2, C2 versus
HPPC_SoC points at different temperatures are analyzed and presented below.
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Figures 4–8 show the HPPC characterization results with the values of R and C
parameters at different temperature ranges. As shown in the figures, the ohmic resistance
is higher at lower SoC levels and decreases with the increase in SoC level. Moreover, the
result shows that in most of the cases, at a lower temperature, resistance is higher; and at
higher temperature, resistance is found to be lower, which is coherent with the previous
reports in [26,27].
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3. Model Description and Mathematical Representations

In addition to the SoP model, to identify the behaviors of the battery cell and find the
electrical response, an electrothermal model is developed based on the Thevenin model [28]
(Figure 3), which consists of a voltage source with an ohmic resistance and two parallel RC
circuits. Based on the equivalent-circuit model, the battery output voltage of the Li-ion cell
is the voltage drop resulting from the battery open-circuit voltage (OCV), the battery ohmic
resistance (R0), and battery polarization impedances (R1C1, R2C2 circuits). The output
voltage of the cell is given by [28,29]:

Vcell = Voc − R1I1 − R2I2 − R0Ibatt (3)

where Ibatt is the flowing current in the battery (A), I1 is the current passing in the polarization
resistance (A), and I2 is the current flowing through the charge transfer resistance (A).

As shown in Figure 9, the current, initial SoC, and temperature are the inputs for
the DP_ECM and its outputs are SoC, resistance, and energy. The resistance and SoC
outputs are fed as an input to the SoP model together with lookup table parameters (cycling
resistances and cycle numbers) and power is the output of the SoP model.
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3.1. SoC Estimation

The total SoC at time t, which is described in Equations (1) and (2) of Section 2.1, can
also be expressed as z(t), which can be expressed in terms of battery capacity as shown in
Equation (4):

z(t) = Qinit +
η∗i0(t)

Qnorm(t)
(4)

where Qinit is the initial battery capacity (Ah), η is battery efficiency, Qnorm is the current
battery capacity (Ah), and i0 is the load current passing through the ohmic resistor.

3.2. Proposed SoP Estimation Logic

To find out the SoP, the maximum discharge current first has to be defined, which is
given by:

idis
max = Crate∗Qnorm (5)

where C-rate is the current rate of the cell and Qnorm stands for the cell nominal capacity in Ah.
The maximum discharge current due to SoC at kth time step can be expressed as:

idis,SoC
max,k = η∗Crate∗Qnorm ∗ (SoCk − SoCmin) (6)

where η is cell efficiency, commonly taken as 1 at BoL.
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On the other hand, the maximum discharge current due to voltage is given as:

idis, volt
max,k = |i0,k| ∗ (Vocv −Vmin) ∗

(
1

|Vocv −Vmin|
+

1
Vmax − (Vocv −Vmin)

)
(7)

where Vocv is the open-circuit voltage (V) at the SoC value of the Kth time step, Vmin is the
minimum cell voltage and Vmax is the maximum cell voltage, and i0,k is the load current at the
Kth time step. For the battery cell under study, the following parameter values are considered.

Here, Vmax = 4.2 V and Vmin = 3 V, SoCmin = 0.1, SoCmax = 1, Qnorm = 43 Ah, Crate = 1 C.

idis
max,k = min

(
idis
max, idis,SoC

max,k , idis, volt
max,k

)
(8)

The maximum power where the cell could perform is also defined as:

Pdis
max = Vmax∗idis

max (9)

Finally, the maximum discharge power Pdis
max,k is defined as the function of the dis-

charge current, voltage, and discharge resistance parameters.

Pdis
max,k = min

(
Pdis

max, idis
max,k ∗

(
Vocv − idis

max,k∗Rdis

))
(10)

3.3. SoP Estimation Model Development

The overall model is developed based on MATLAB/Simulink environment. The objec-
tive of the model development is to determine the SoP of the cell in relation to the internal
resistance increase not only at BoL, but also throughout its lifetime for consideration of the
aging effects. The model is a coupled model combined with electrothermal and SoP mod-
els. The electrothermal is used to reproduce the cell’s electrical performances/behaviors,
whereas the SoP model is used for the estimation of the SoP parameter crucial for the BMS.
The SoP estimation model is developed based on Equations (5)–(10), parameterized using
SoC, voltage, temperature, and current experimental data found from the test result. Using
the electrothermal model output of these parameters, input of lookup table is provided
to the SoP model and then maximum discharge current and discharge resistances are
calculated. Finally, the SoP throughout the lifetime of the cell condition is estimated.

The estimation of SoP through lifetime until EoL condition is estimated by defining
the range of equivalent cycles and internal resistance increase parameters. The reference
resistance increase at EoL is estimated using the rate of internal resistance (Ri) increase at
50% SoC. The total Ri increase rate is estimated by using the combined effect of the FECs,
the resistance cycle (estimated using the difference between two consecutive Ri values),
and the cycle test resistance values. To find out the total Ri, and hence estimate SoP at EoL
condition, first the rate of Ri increase is multiplied with Ri value at BoL condition. Finally,
using the respective current rate and total resistance increase, the SoP output of the cell is
estimated until its EoL.

4. Results, Validations, and Discussions
4.1. SoC Estimation and Model Validation

It is recalled that while estimating the SoP of the battery cell, the consideration and
verification of the SoC result is essential for the safe operation and efficient control of the
BMS. The SoC estimation and verification are accomplished through the DP_ECM coupled
with the SoP model. Using the WLTC as the input current validation profile, the estimation
and validation of the DP_ECM are performed and the output voltage with respective time
is provided. The root-mean-square error (RMSE) of the output is also found according to
the variation of the predefined SoC values. The summary of the validation result for the
electro-thermal model is shown in Table 1.
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Table 1. Summary of RMSE deviation of DP_ECM electrical model.

DP_ECM Validation Deviation

Temperature (◦C) 0 10 25 45
RMSE (%) 1.9 1.8 1 1

Current profile WLTC WLTC WLTC WLTC

In addition to the voltage validation results shown in Figure 10, the SoC estimation
result is provided in Figure 11. The estimation output shows a comparison between the
measured and simulated results and a respective RMSE of 1% is found, which is in line with
the voltage validation output ranging from 1% to 1.9% for different temperature values.

As the accurate result of SoC is among the determinant parameter fed as an input to
the SoP model, the estimation and validation of the SoP model is dependent on the results
found from the DP_ECM illustrated in Figures 10 and 11. The validation result of the SoP
model is presented in the below section.
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4.2. SoP Estimation Results and Model Validation

Before the analysis of the SoP of the battery cell, the response of Ri as a function of
the respective SoC of the cells was illustrated throughout the total FECs. Based on the
measured data of the cell, the relation between the SoC, FECs, and Ri was presented with
a 3D surface fitting curve, shown in Figure 12. Typically, a 100% internal resistance increase
is considered as the first life EoL of the cell.
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Applying varying values of SoC between 0.1 and 1 as input, the SoP output from
BoL to EoL of a representative single cell is shown in Figure 13, where the SoP output is
dependent on the internal resistance [26,27]. The SoP result follows the magnitude of the
Ri increase throughout the total FECs.
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From Figure 13, it can be seen that the SoP did not follow a uniform trend. This is
because the measured internal resistance did not increase monotonically, which is a result
of the dynamic current profile used; and the inconsistent Ri measured data show that the
resistance change is not dominant for these cells.

4.3. Validation of the SoP Model

The validation of the SoP model was performed using two types of current profiles.
The dynamic WLTC and static load current profiles were used for evaluation of the model
performance and its accuracy. From Figure 14a, it can be seen that the estimated Ri
output follows a similar trend to the measured Ri. However, there is some deviation
observed between the two curves. The resulting RMSE is found to be around 2%, which is
almost comparable with the values reported by previous studies [9,15]. However, this error
resulted mainly from the inconsistency of the measured internal resistance, where it was not
constantly increasing in line with the respective FECs. Obviously, in the process of battery
aging, the change of internal resistance contains a complex electrochemical mechanism
evolution process, which could also result in inconsistent output. The SoP model validation
expressed in terms of internal resistance is shown in Figure 14.

From Figure 14b, it is shown that the estimated output follows the measured value
with better accuracy, showing that the static profile provides a better validation result
compared to the dynamic profile. In this case, the RMSE is found to be around 1%, which
seems better compared to the results found in previous reports [16,27].
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5. Conclusions

In addition to the accurate SoC parameter estimation, the development of the SoP
estimation logic used in this study enables the evaluation of the cells’ behaviors in terms
of their SoP output, which is considered an essential parameter in the safe operation of the
battery and BMS system. In this paper, an efficient method was used to estimate the SoC and
to define the maximum discharge current, which is crucial for estimation of the SoP. Therefore,
it is identified that an accurate estimation of the SoC is essential for precise estimation of
battery cells’ SoP. The result of the analysis show that high accuracy of SoC estimation from
the DP_ECM is found with an error of 1%. In addition, the maximum RMSE of SoP is found
with the dynamic WLTC profile, whereas a relatively lower RMSE is found with the static
validation profile. The RMSE result of the model validation with the dynamic and static
profile is found to be 2% and 1%, respectively. The resulting error is mainly caused by the
inconsistency of the measured internal resistance value where the resistance change is found
as not dominant for the cells under study. In the future, the aspects of module-level SoP
estimation model development and validation can be further investigated.
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