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Abstract: This paper presents a passivity-based control (PBC) based on the Euler–Lagrange (EL)
model for dual active bridge (DAB) converters in the constant power load (CPL) condition. The EL
model, which is derived from Kirchhoff’s current equations at the input and output nodes, is first
presented in the DAB application, and the bidirectional CPL is considered in the theoretical analysis,
simulation, and physical verification. The PBC has strong robustness to large-signal disturbance
and negative incremental resistance load, and it is suitable for DAB converters in the CPL condition.
In this paper, the DAB’s EL model, passivity analysis, stability analysis, and controller design are
described in detail. The simulation results based on SIMULINK are also given in this paper. Finally, a
DAB converter prototype is built to demonstrate the validity and feasibility of the proposed approach.

Keywords: dual active bridge; passivity-based control; constant power load

1. Introduction

In 1991, the dual active bridge (DAB) was proposed by R.W. De Doncker. It has the
advantages of soft-switching, bidirectional power flow capabilities, buck–boost operation,
galvanic isolation, high power density, and a high degree of modularization [1,2].

Thereafter, DABs gained increasing attention and practical application in low DC
voltage and even in medium DC voltage when several DABs are series-connected to achieve
higher voltage access [3–5]. DABs are the key component in DC distribution applications.

Normally, the power is transmitted by voltage stabilizing control or constant power
control. The pulse modulation of fixing the primary side and lagging or leading the
commutation of the secondary side according to the power direction is adopted [6].

Whether in constant power control or voltage stabilizing control with tight regula-
tion, the load behaves as a constant power load (CPL) within its control-loop bandwidth.
Its negative incremental resistance characteristic is generally the origin of the converter
instability [7,8].

Some closed-loop regulations should be adopted to ensure the DAB’s stable operation
and fast perturbation rejection. A novel Lyapunov-function-based control [9] and state-
observer-based PI-PBC control [10,11] are presented to guarantee the converter’s global
asymptotic stability. The full-order continuous-time average modeling of DABs was studied
in [12]. The linear control, which is based on the small-signal model, is most popular in a
DAB’s closed-loop control, and it mainly includes pole-placement control and PI control.
However, pole-placement control has its disadvantages, such as its complexity and difficult
implementation [13,14]. Although the proportional–integral (PI) control is simple and easy
to implement, it suffers from the drawback of inconsistent performance across the entire
operating range [15].

Some non-linear controls are also employed, including feedback linearization control,
flatness-based control [16–18], model predictive control [19,20], sliding mode control [21,22],
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and virtual power control [23]. Although these non-linear controls can give high performance,
they are complex and difficult to make ready for physical application.

The passivity-based control (PBC) is the most practical non-linear control technique
due to its simplicity and easy implementation [24]. The PBC reshapes the dissipated energy
from the system’s Euler–Lagrange representation and then injects a virtual resistance matrix
to dampen the system and ensure its passivity [25]. Once every converter is guaranteed to
be passive and stable, their interconnected or cascaded system is also passive and stable, so
it is used in the power conversion system [26], rectifier [27,28], PV [29,30], STATCOM [31],
and other converters [32,33].

In [34], the port-controlled phasor Hamiltonian (PCPH) model of DABs was proposed
for the first time, but it is only valid for low-power applications because of its sinusoidal
pulse width modulation, and it is only verified by Opal-RT and dSPACE simulators. More-
over, based on the PCPH model, [35] applied Interconnection and Damping Assignment
PBC (IDA-PBC) to a DAB’s controller design; the hardware-in-loop (HIL) experiments
and low-power prototype experiments were all performed in large-signal disturbance,
but only resistive load was used in the verification, and the power flowed only from the
primary to the secondary side. Although the CPL is considered in DAB-based shipboard
power systems, it is only verified by simulation, and it needs further physical experimental
verification [36].

In this study, the PBC based on the Euler–Lagrange (EL) model is applied to a DAB’s
application for the first time, and the bi-directional CPL is considered in SIMULINK
simulation as well as in physical experiments.

The rest is organized as follows. In Section 2, the DAB modeling in EL form is pre-
sented. Section 3 implements passivity analysis, stability analysis, and controller design
sequentially. Later, in Sections 4 and 5, respectively, the SIMULINK simulation and proto-
type implementation are described with results. Finally, Section 6 states the conclusion.

2. Topology Analysis

The DAB is made up of S1–S8, L1, T, C1, and C2, as depicted in Figure 1. S1–S8 are
fully controlled power switches, such as MOSFET, IGBT, IGCT, et al.; S1-S4 make up the
primary bridge converter; S5–S8 make up the secondary bridge converter; L1 is an inductor
for energy exchange; T is a high-frequency (HF) transformer for voltage matching and
electrical isolation; C1 and C2 are capacitors for primary and secondary filtering and energy
exchange; and R1 and R2 are equivalent resistances to simulate primary and secondary
power losses. A DAB converter can realize voltage conversion between different voltages
with electrical isolation, and it can realize bidirectional power exchange at the same time.
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According to the related research [2], the power transmitted by the DAB can be
expressed as

P =
Nv1v2

2 fsL1
D(1− |D|), (1)

where N is the HF transformer’s turn ratio; v1 and v2 are the primary voltage and secondary
voltage, respectively; f s is the switching frequency of the switches; and D is the phase shift
duty ratio, which means that the phase shift time is equal to DTs/2, where Ts = 1/f s is the
switching period.

It is assumed that the converter’s loss can be ignored, and the primary average bridge
current and the secondary average bridge current can be described as{

iH1 = P
v1

= Nv2
2 fsL1

D(1− |D|) = K v2
ωsL1

,

iH2 = P
v2

= Nv1
2 fsL1

D(1− |D|) = K v1
ωsL1

,
(2)

where
K = NπD(1− |D|). (3)

According to Kirchhoff’s current law, we can further obtain the formula{
C1

dv1
dt + 1

R1
v1 +

K
ωsL1

v2 = i1,
C2

dv2
dt + 1

R2
v2 − K

ωsL1
v1= −i2.

(4)

where i1 and i2 are the input and output currents of the DAB converter, respectively.
Assuming the resistors, capacitors, and inductors are all time-invariant, the controller can
be designed based on these differential equations, and its properties can also be exploited
in the closed-loop system analysis.

If X = (v1, v2)T and V = (i1, −i2)T are selected as state variables and input variables,
respectively, (4) can be expressed as a standard Euler equation in the form of

M
•
X + JX + RX = V, (5)

where M is a positive definite symmetric coefficient matrix, i.e., MT = M > 0. J is a skew-
symmetric coefficient matrix, i.e., JT = −J. R is a positive coefficient matrix, i.e., RT = R > 0,
which means that the converter has a dissipative characteristic.

M =

(
C1 0
0 C2

)
, J =

(
0 K

ωsL1

− K
ωsL1

0

)
, R =

(
1/R1 0

0 1/R2

)
(6)

3. PBC Controller Design
3.1. Passivity Analysis

It is assumed that the energy storage function is

H =
1
2

XTMX =
1
2
(C1v1

2 + C2v2
2) ≥ 0, (7)

and the change rate of energy storage function can be obtained as

•
H = XTM

•
X = XT(V− JX−RX) = XTV−XTRX

= v1i1 − v2i2 − (v1
2/R1 + v2

2/R2).
(8)

For all input variables V , if the output variable is selected as Y = X, and the function
Q(X) is defined as v1

2/R1 + v2
2/R2, then (8) can be further rewritten as

•
H ≤ YTV−Q(X), (9)
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where Q(X) is a positive definite function. According to passivity theory, the DAB converter
is strictly passive.

3.2. Stability Analysis

It is assumed that the reference value is X* = (v1* v2*)T, the error vector is Xe = X −
X*, and (5) can be further expressed in Xe form as

M
•
Xe + RXe = M

•
X−M

•
X ∗+R(X−X∗) = V− (M

•
X ∗+JX + RX∗), (10)

Obviously, when X approaches X*, Xe will approach 0, and Equation (10) will be equal
to 0, that is

M
•
Xe + RXe = V− (M

•
X ∗+JX + RX∗) = 0, (11)

On the other hand, according to (8), the change rate of storage energy function ex-
pressed in Xe form is

•
He = Xe

TM
•
Xe = −Xe

TRXe ≤ 0. (12)

Therefore, the value of dHe(Xe)/dt is not always 0 for any initial state Xe 6= 0, and
when ||Xe||→∞, there is He(Xe)→∞. Consequently, the designed PBC controller can
realize the asymptotic stability of the DAB converter.

3.3. Controller Design

According to (11), the PBC controller can be designed as

V = M
•
X ∗+JX + RX∗, (13)

To accelerate Xe convergence to 0, a damping injection matrix is used, and (13) fur-
ther becomes

V = M
•
X∗+JX + RX∗−RdXe, (14)

where Rd = diag{g11, g22} is the damping injection matrix.
That is {

i1 = C1
dv1∗

dt + K
ωsL1

v2 +
1

R1
v1 ∗ −g11(v1 − v1 ∗),

−i2 = C2
dv2∗

dt −
K

ωsL1
v1 +

1
R2

v2 ∗ −g22(v2 − v2 ∗).
(15)

When the DAB works in constant secondary voltage (CSV) mode, the control target
value is reference v2*, and (15) can be simplified to

K =
ωsL1[i2 + C2

dv2∗
dt + 1

R2
v2 ∗ −g22(v2 − v2 ∗)]

v1
. (16)

When the DAB works in constant primary voltage (CPV) mode, the control target
value is reference v1*, and (15) can be further simplified to

K =
ωsL1[i1 − C1

dv1∗
dt −

1
R1

v1∗+ g11(v1 − v1 ∗)]
v2

. (17)

Whether in CSV or CPV mode, the variable K can be calculated from (16) or (17). Then,
D can be obtained by solving the monadic quadratic Equation (3).

When K is greater than 0, D is also greater than 0, which means that the power is
transmitted from the primary side to the secondary side, so we can obtain

0 < D =
1
2
−
√

1
4
− K

Nπ
<

1
2

, when K ≥ 0. (18)
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When K is less than 0, D is also less than 0, which means that the power is transmitted
from the secondary to the primary side, so we can obtain

− 1
2
< D = −1

2
+

√
1
4
+

K
Nπ

< 0, when K < 0. (19)

According to the analysis above, (16) or (17) is used to calculate the variable K in CSV
and CPV mode, respectively. Then (18) or (19) is used to calculate the phase shift duty ratio
according to the power direction. The PBC control diagram is shown in Figure 2.
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3.4. Closed-Loop System Stability Analysis

Substituting the control (15) into the system model (4), the closed-loop system can be
written as {

C1
d
dt xe1 = − 1

R1
xe1 − g11xe1

C2
d
dt xe2 = − 1

R2
xe2 − g22xe2

(20)

where xe1 = v1 − v1*, xe2 = v2 − v2*. We can select the Lyapunov function as

W(xe1, xe2) =
1
2

C1xe1
2 +

1
2

C2xe2
2 ≥ 0 (21)

The time derivative of W(xe1, xe2) along the closed-loop system trajectory (20) is
shown as

•
W(xe1, xe2) = (− 1

R1
xe1 − g11xe1)xe1 + (− 1

R2
xe2 − g22xe2)xe2

= −( 1
R1

+ g11)xe1
2 − ( 1

R2
+ g22)xe2

2 ≤ 0
(22)

Since Equation (21) is positive definite and Equation (22) is negative definite, the
equilibrium state of the closed-loop system at the state space origin Xe = (xe1, xe2)T = 0 ∈ R2

is asymptotically stable. Moreover, when ||Xe||→∞, W(Xe)→∞ is satisfied for any
t ≥ 0. Therefore, according to the Lyapunov stability theorem, the closed-loop system is
asymptotically stable in a large range of the equilibrium state.
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4. Simulation

To validate the effectiveness of PBC based on the EL model for a DAB converter in the
CPL condition, time-domain simulations are carried out in SIMULINK under voltage and
power perturbation. The main parameters are listed in Table 1.

Table 1. Main parameters of DAB converter.

Parameters Value

1 DC voltage v1 (V) 750
2 capacitance C1 (µF) 2200
3 resistance R1 (Ω) 100 × 103

4 voltage v2 (V) 375
5 capacitance C2 (µF) 2200
6 resistance R2 (Ω) 100 × 103

7 inductance L1 (µH) 200
8 HF transformer’s turn ratio 750:375

9 DAB switching frequency
(kHz) 10

10 damping coefficient g22 3.2
11 proportional coefficient kp 0.12
12 integral coefficient ki 0.25

According to the CPL equivalent circuit, the CPL can be equivalent to the parallel
connection of a CCS and a negative resistor. In the simulation, another CCS is used to
control the negative resistor’s current, which is decided by power and voltage, as shown in
Figure 3.
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Figure 3. CPL simulation model.

4.1. CPL Perturbation Simulation

Figure 4 shows voltages and power waveforms in the CPL step change simulation.
In the simulation, a 750 V source supplies the DAB’s primary side, the CPL connects to
its secondary side, and the reference v2* is set as 375 V. At the time t1, the power is set as
15 kW, then the power is set as −15 kW at the time t2.

It can be seen that the power tracks the reference value quickly without obvious
voltage fluctuations, and it has a smaller ripple voltage compared with PI control. The PBC
has a good response characteristic when a CPL perturbation occurs.
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4.2. Source Perturbation Simulation

Figure 5 shows voltages and power waveforms in source perturbation simulation. In
the simulation, a controlled voltage source (CVS) supplies the DAB’s primary side, the CPL
also connects to the DAB’s secondary side, and the reference v2* is also set as 375 V. At the
time t3, the power supply voltage decreases rapidly to 600 V and restores to the normal
voltage at the time t4.
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This shows that the secondary voltage v2 has no obvious fluctuations during the
transient process, and PBC has better response characteristics and smaller voltage ripples
compared to PI control when in the source perturbation condition.

4.3. Voltage Reference Step Simulation

Figure 6 shows voltages and power waveforms in reference step change simulation.
In the simulation, a power source supplies the DAB’s primary side; the CPL connects to
the DAB’s secondary side. First, the reference v2* is set as 375 V, and it is set as 300 V at
the time t5; then, it is reset as 375 V again at the time t6. This shows that the secondary
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voltage tracks the reference step with a transient process, and it also has good response
characteristics.
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Through the simulations, it can be concluded that the proposed PBC control can
stabilize secondary voltage without obvious fluctuation, whether in a load or source
perturbation condition or in a reference step change condition, and it has better response
characteristics than PI control.

5. Experiment

The experimental setup, which is used for the validation of the proposed PBC based on
the EL model, is presented in Figure 7, and its main circuit parameters are listed in Table 2.
In the experiment, an electronic load APL-II (Myway company) is used to simulate a CPL,
and a bidirectional power source PSB9750 (EA company) is used to simulate the power
supply. Voltage perturbation, power perturbation, and reference step change experiments
are also carried out in the platform.

Table 2. Main parameters of DAB converter prototype.

Parameters Value

1 DC voltage v1 (V) 300
2 capacitance C1 (µF) 1360
3 resistance R1 (Ω) 200 × 103

4 voltage v2 (V) 150
5 capacitance C2 (µF) 5440
6 resistance R2 (Ω) 100 × 103

7 inductance L1 (µH) 156
8 HF transformer’s turn ratio 300:150

9 DAB switching frequency
(kHz) 20

10 damping coefficient g22 13
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5.1. Starting Experiment

Figure 8 gives the voltages and current waveforms of the DAB converter when starting
the process. At the time t1, the DAB converter begins to start in CSV mode, and the
secondary voltage increases gradually. At the time t2, the soft starting process ends, and
the PBC control starts. At the time t3, the secondary voltage is stable at the set value (100 V),
and the starting process ends.
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Figure 8. Waveforms in starting experiment.

This shows that the voltage overshot is about 8 V, the whole starting time is 1.6 s, and
it has quick starting and low voltage overshoot characteristics.

5.2. CPL Perturbation Experiment

Figure 9 gives the voltages and current waveforms of the DAB converter in the CPL
perturbation experiment. In Figure 9a, the secondary voltage is stable at an initial 100 V. At
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the time t4, a 1 kW CPL switches on, and the secondary current increases gradually. At the
time t5, the secondary current is stable at 10 A. At the time t6, the CPL is cut off, and the
secondary current recovers to 0 quickly.
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In Figure 9b, the secondary voltage is also stable at an initial 100 V. At the time t7, a
−1 kW CPL switches on, and the secondary current decreases gradually. At the time t8,
the secondary current is stable at −10 A. At the time t9, the CPL is switched off, and the
secondary current also recovers to 0 quickly.

This shows that when a CPL is switched on, the secondary current increases or
decreases gradually, and when the CPL is cut off, the secondary current restores to 0
quickly. The secondary voltage has no obvious overshot or sag in the whole dynamic
process. This means that the PBC control has a good transient performance.

5.3. Source Perturbation Experiment

Figure 10 gives the voltages and current waveforms of the DAB converter in a source
perturbation experiment. At first, the source voltage is 250 V, and the secondary voltage is
stable at 80 V with a 1 kW CPL. At the time t10, the source voltage drops to 230 V suddenly,
and the secondary voltage remains stable with slight fluctuation. At the time t11, the source
voltage restores to 250 V suddenly, and the secondary voltage also remains stable at the
same time. This shows that the DAB converter can stabilize the secondary voltage with
large source perturbation.
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5.4. Voltage Reference Step Experiment

Figure 11 gives the voltages and current waveforms of the DAB converter in the
voltage reference step change experiment. At first, the source voltage is 250 V, and the
secondary voltage is stable at 80 V with a 1 kW CPL. At the time t12, the reference voltage
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is set to 50 V suddenly, the voltage tracks the reference quickly, and the current increases
correspondingly. At the time t13, the reference voltage is reset to 80 V suddenly, the voltage
also tracks the reference quickly, and the current also decreases correspondingly. This
shows that the DAB converter has a good dynamic response characteristic.
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6. Conclusions

This paper develops a practical PBC controller based on the EL model for the DAB
converter. This controller is validated under different conditions, including source per-
turbation, CPL perturbation, and reference step change. Compared with the previous
approaches, the proposed approach has a definite physical meaning which is deduced
from Kirchhoff’s law, and it is more suitable for voltage-stabilizing control scenarios. The
results, which are obtained from simulations and low-power prototype experiments, prove
its feasibility and good performance.
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