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Abstract: Over the past few years, there has been a significant increase in the interest in and adoption
of solar energy all over the world. However, despite ongoing efforts to protect photovoltaic (PV)
plants, they are continuously exposed to numerous anomalies. If not detected accurately and
in a timely manner, anomalies in PV plants may degrade the desired performance and result in
severe consequences. Hence, developing effective and flexible methods capable of early detection of
anomalies in PV plants is essential for enhancing their management. This paper proposes flexible
data-driven techniques to accurately detect anomalies in the DC side of the PV plants. Essentially,
this approach amalgamates the desirable characteristics of ensemble learning approaches (i.e., the
boosting (BS) and bagging (BG)) and the sensitivity of the Double Exponentially Weighted Moving
Average (DEWMA) chart. Here, we employ ensemble learning techniques to exploit their capability
to enhance the modeling accuracy and the sensitivity of the DEWMA monitoring chart to uncover
potential anomalies. In the ensemble models, the values of parameters are selected with the assistance
of the Bayesian optimization algorithm. Here, BS and BG are adopted to obtain residuals, which are
then monitored by the DEWMA chart. Kernel density estimation is utilized to define the decision
thresholds of the proposed ensemble learning-based charts. The proposed monitoring schemes are
illustrated via actual measurements from a 9.54 kW PV plant. Results showed the superior detection
performance of the BS and BG-based DEWMA charts with non-parametric threshold in uncovering
different types of anomalies, including circuit breaker faults, inverter disconnections, and short-circuit
faults. In addition, the performance of the proposed schemes is compared to that of BG and BS-based
DEWMA and EWMA charts with parametric thresholds.

Keywords: photovoltaic systems; ensemble bagged trees; anomaly detection; shading; electrical
faults; statistical control charts

1. Introduction

Even with the COVID-19-induced economic slowdown, the renewable power sector is
continuously experiencing high growth in installed capacity, with more than 260 Gigawatts
(GW) in 2021, mostly by solar photovoltaic (PV). This fact led to a total installed capacity of
3064 GW [1]. The highest increase ever is due in large part to political support and cost
reductions. In most countries, producing electricity from solar PV and wind is becoming
increasingly more cost-effective than generating it from coal and gas power plants [2].
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The solar PV market increased in 2021 to a record 175 GWdc, for a total power capacity of
942 GWdc [3]. A recent investigation by the BloombergNEF company shows that the global
benchmark levelized cost of electricity (LCOE) [4] for fixed-axis utility-scale PV is $46 per
megawatt-hour (MWh) in the first half of 2022, while some of the cheapest PV projects were
able to achieve an LCOE of $21/MWh for tracking PV farms in Chile with very competitive
returns. In 2022, the solar PV market experienced strong competitiveness between PV
module manufacturers with new yields of up to 22.8% [5]. Despite this progress, numerous
challenges remain to be solved before solar PV can become a significant source of power
generation worldwide, leading to a sustainable energy future [6].

Like all electricity production systems, solar PV systems are often subject to various
faults and failures that significantly affect their components, such as PV modules, cables,
protection circuits, inverters, etc. [7]. The most general effect of faults is the loss of energy,
which is caused by one or more independent anomalies and failures. Some electrical faults
cause total shutdowns of PV plants, and other faults such as electric arcs can cause fires,
which leads to shortfalls and loss of income. Early detection of such faults is crucial to
prevent critical PV system failures and increase their reliability with a high quality of
performance. Over the past few years, the Fault Detection and Diagnosis (FDD) of solar
PV systems has become a topical research topic for many researchers [8,9]. Generally,
anomalies or faults occurring in grid-connected PV systems can be classified primarily
according to the side of the fault in the PV installation, either the DC side before the inverter
or the AC side at the output of the inverter up to the point of injection [8]. Faults in the
DC side of PV systems, which are principally located in the PV array, include; temporary
and permanent mismatches, hotspot, degradation, short circuit, open circuit, electrical
arc, line–line, and line–ground faults, as well as the DC/DC converter fault inside the PV
grid-tie inverter. On the AC side, total blackout and grid abnormalities (unbalanced voltage
and lightning) are the types of faults commonly found in PV systems [10]. A statistical
study of the power loss evaluation and clustering of faults affecting PV systems installed
in different climate zones in the world helps to decrease the number of faults in the new
PV installations [11]. The experimental data from PV installed systems show that a better
operation and maintenance (O&M) service significantly improves the average performance
ratio from 88% to 94%, and as a result, profits and environmental benefits are increased.
Indeed, improvements of the PV O&M include the following: (1) increasing efficiency and
energy production, (2) extending the lifetime of PV systems (25 to 40 years), (3) decreasing
system downtime, (4) reducing the possible risks and ensuring safety and (5) reducing the
cost of O&M [12,13].

Continuous and real-time monitoring of PV systems is essential during their working
cycle to ensure the rapid detection of faults, reduce downtime, maintain long-term prof-
itability, and exploit their full power. The key point of reliable monitoring and FDD strategy
is related to the quality of measurement accuracy of both meteorological and electrical data
of the PV system. Without a reliable monitoring system, the PV system is often expected to
operate with poor performance for a limited time period before the fault is detected and
identified. This fact generally results in a major loss of income [13].

An FDD tool based on the Artificial Neural Network (ANN) algorithm using Laterally
Primed Adaptive Resonance Theory (LAPART) was developed in [14] in order to detect
module-level faults with minimal error. The results showed that the LAPART algorithm
can quickly learn PV performance data (only 4 days of one-minute data) and provide
an accurate multi-level FDD tool. Other FDD methods include the k-Nearest Neighbors
(kNN) algorithm,which is a non-parametric method used for regression models and fault
classification [15]. In [16], four approaches made by EWMA (Exponentially Weighted
Moving Average) schemes and kNN-based Shewhart with parametric and non-parametric
models were used to detect faults. The results obtained showed a high capability for
detecting short-circuit faults, open-circuit faults, and temporary shading, whereas this
algorithm does not have the ability to distinguish the partial shading among faults occurring
on the DC side of the PV array. A real-time detection and classification technique based
on the clustering kNN rule was proposed in [15]. This technique does not require any
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predefined threshold to classify the faults; the threshold values are unknown and difficult
to choose for each PV system due to the strong dependence of the output power on the
climatic conditions. In [17], a C4.5 decision tree (DT) approach is proposed to detect
and diagnose the faults in a Grid-Connected PV system (GCPV) using a non-parametric
model by learning the task. In this work, a semi-empirical model by Sandia National
Laboratories (SNL) was used to predict the power produced from the PV array under
normal operation conditions (fault-free). Then, the supervised decision tree algorithm
was exploited to classify four cases: (1) fault-free, (2) string fault, (3) short-circuit fault,
and (4) line-line fault. The results obtained showed a high accuracy of around 99.86% for
detection and 99.80% for diagnosis. This supervised learning method requires data from
several sets of training examples to build a good classifier that can distinguish between
different faults. The authors in [18] used the ANN technique and FL (Fuzzy Logic) system
interface to develop a PV FDD algorithm that has been tested to detect ten faults cases,
such as a combination of four cases of faulty PV modules and two cases of low and
high partial shading. In such a PV FDD algorithm, the voltage and power variations
of the studied PV system were used as input for both the ANN technique and the FL
system. An unsupervised monitoring approach for detecting anomalies and faults in PV
installations using a one-class SVM technique is proposed in [19], where the one-diode
model is used under PSIMTM to simulate the normal operation of the PV array, while the
one-class SVM technique is applied to calculate residuals between measured and simulation
data for FDD. The use of machine learning techniques (MLT) is advantageous in the sense
that they have rapid detection response, they allow distinguishing among faults of the
same signature and classifying faults with high accuracy, and setting threshold limits is not
required. Nevertheless, the FDD accuracy depends proportionally on the trained PV model
to estimate the expected energy yield. Moreover, these techniques require more advanced
skills for real-time hardware and software implementation, and obtaining a training dataset
of all possible faults scenarios could be difficult.

Accurate monitoring of PV plants is necessary to meet the desired specifications
regarding power production and safety and help avoid serious incidents. Machine learning
techniques have demonstrated themselves as a prominent field of study within a data-
driven framework over the last decade by addressing numerous challenging and complex
real-world problems [20–24]. Thus, this study aims to design a semi-supervised data-
driven detector for anomaly detection in PV plants that do not require labeled data. Unlike
supervised methods, semi-supervised anomaly detection methods aim to train the detection
model using a normal event dataset only, which make them more attractive for detecting
anomalies in PV plants, since it is not always easy to obtain accurately labeled data.
Until now, very few research papers have investigated integrating machine learning models
and statistical control charts for fault detection in multivariate data. The contribution of
this work is threefold as summarized below.

• This paper aims to develop flexible and efficient semi-supervised machine learning-
driven methodologies to improve the operation and performance of PV plants. These
semi-supervised approaches only employ normal events data without labeling to train
the detection models, making them more attractive for detecting faults in practice.
This study presents a semi-supervised monitoring approach for anomaly detection
in PV plants by combining the advantages of the ensemble learning models and
the Double Exponentially Weighted Moving Average (DEWMA) chart. In the last
decade, ensemble learning-driven methods (e.g., boosting and bagging models), which
combine several single models, have demonstrated a promising solution compared to
traditional machine learning methods. Notably, ensemble models are characterized by
their ability to reduce the model’s variance while achieving a low bias, making them
appealing to improve prediction quality [25]. Overall, an efficient monitoring strategy
relies principally on the accuracy of the adopted modeling method and the sensitivity
of the anomaly detection technique. Here, we employed ensemble learning methods
to exploit their capability to enhance the modeling precision of the PV monitored



Energies 2022, 15, 6716 4 of 28

system. On the other hand, the key characteristic of the DEWMA scheme resides in its
capacity to enclose all of the information from past and actual samples in the detection
statistic, which makes it sensitive for uncovering anomalies with small magnitudes.
In the proposed approach, ensemble learning models are used for residual generation.
Essentially, residuals are close to zero in the absence of anomalies, while residuals
diverge from zero in the presence of anomalies. The DEWMA detector is employed to
check the generated residuals to uncover possible anomalies in the inspected PV array.

• Additionally, in this work, Bayesian optimization (BO) has been adopted to optimally
tune hyperparameters of the boosted trees (BS) and bagged trees (BG) models. Specifi-
cally, the BO is used to find the optimal parameters of the ensemble models based on
training data (anomaly-free data). This enables obtaining more accurate prediction
models and improves the detection performance.

• Note that the detection threshold in the DEWMA chart is computed based on the
Gaussian assumption of data. Here, to extend further the flexibility of the proposed
fault detection method, we employed kernel density estimation (KDE) to compute
the detection threshold in a non-parametric way. We assessed the effectiveness of
the considered fault detection approaches on real data from a 9.54 kWp photovoltaic
system. The detection capacity of the proposed approaches is investigated in the
presence of different types of faults. Six statistical scores are computed to judge the
fault detection quality. Results revealed the promising performance of the proposed
approaches in detecting various types of anomalies in a PV system.

This paper is structured as follows. The studied PV system is briefed in Section 2.
Then, the BS and BG models are introduced in Section 3. In Section 4, after presenting
the DEWMA scheme, we introduce the proposed approach. The experimental results are
provided In Section 5. Lastly, conclusions are offered in Section 6.

2. PV System Description

This section is devoted to presenting briefly the grid-tied PV system used in this study.
Indeed, the proposed algorithm for fault detection in this work will be verified using the
meteorological and electrical data measurement collected from a 9.54 kWp PV system at
the Renewable Energy Development Center (CDER) in Algeria. This PV system contains
90 PV modules with a total power of 9.54 kWdc in operation since 2004; it is composed of
three identical single-phase PV sub-systems (Figure 1).

The entire produced PV energy is injected into the low-voltage electrical grid. As shown
in Figure 1, each PV sub-system consists of a 3.18 kW sub-array, grid-tie inverter, and elec-
trical cabinets for protection. The sub-array contains two parallel strings of 15 PV modules
(PVM) in a series.

Tables 1 and 2 display, respectively, the main technical specifications of the PV sub-
array and the PV inverter.

Here, the STC refers to Standard Test Conditions (irradiance =1000 W/m2, cell temper-
ature =25 ◦C, air mass = 1.5) and MPP denotes Maximum Power Point. G is the received
irradiance by the PV module during the flash test, TC is the temperature of the PV cell,
and AM is the air mass. VOC is the open circuit voltage, ISC is the short circuit current,
VMPP is the voltage at MPP, IMPP is the current at MPP, and PM is the maximum power.

The meteorological and electrical measured data used in this work are recovered by an
external monitoring system composed essentially of sensors, data acquisition unit Agilent
34970A, and software under PC (Figure 2).
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Figure 1. Main electrical specifications of the PV module and sub-array at STC.

Table 1. Main electrical specifications of the PV module and PV sub-array at STC.

Parameters VOC (V) ISC (A) VMPP (V) IMPP (A) PM (W)

PV Module 21.6 6.54 17.4 6.1 106

PV sub-array 324 13.08 261 12.2 3180

Table 2. Main specifications of the PV inverters Fronuis IG 30 under nominal operating conditions.

Parameters Nominal AC
Power (W)

DC Voltage
Range (V)

AC Voltage
Range (V)

Inverter
Efficiency (%)

Frequency
Range (Hz)

Value 2500 150–400 195–253 92.7–94.3 49.8–50.2

Figure 2. Synoptic diagram of the PV monitoring system.

For the measure of tilted irradiance at 27 ◦C, a pyranometer and a reference cell are
used, and a thermocouple measures the ambient temperature. The DC voltage at the
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MPP of the PV sub-array is measured by a simple voltage divider circuit, while a voltage
transformer measures the AC voltage at the inverter output. A hall-effect sensor was used
to measure the current on both the DC and AC sides of the PV inverter. Table 3 reviews
the measured parameters with the main sensor information. Agilent 34970A provides the
conditioning and the measure of the signal at the sensor’s output. While the monitoring
user interface is designed under LabVIEW software, this interface can recover, display,
record, and analyze the measured data. According to IEC 61724 standard, the sampling
time was chosen at 1 min, which gives 1440 samples per 24 h.

Table 3. Measured parameters of the PV inverters Fronuis IG 30 under nominal operating conditions.

Measured Parameters Sensor N◦ Symbol Sensor Type & Reference Accuracy

Ambient Temperature (◦C) S1 Tamb Thermocouple K 0.5 ◦C

Tilted Global Irradiance for 27◦ (W/m2)
S2 Gic Isofoton PV Reference Cell ±5%

S3 Gip CM 11 Pyranometer ±2%

PV array DC Voltage (V) S4 VDC Voltage Divider ±0.9%

Grid AC Voltage (V) S5 VAC Voltage Transformer 1.5%

PV array DC Current (A) S6 IDC Hall Effect Sensor
±0.5%

Inverter AC Current (A) S7 IAC F.W. BELL CLSM-50S

3. Ensemble Learning Methods

This section briefly presents the two considered ensemble learning models: boosting
and bagging methods.

3.1. Boosted Trees

The boosting approach, which belongs to ensemble learning models, tries to enhance
the prediction accurateness of learning methods by boosting weak learners to strong
learners [26–31]. This work employs the boosting technique for prediction problems with
base learners as regression trees. To introduce the boosting algorithm, regression trees are
first briefly described. Let y ∈ R and X ∈ D ⊂ Rd denote, respectively, the wind power
and the input features used in the wind power prediction, where D is the feature space and
d is the number of input features.

Regression trees typically are based on the the partition of the feature space D into dif-
ferent and non-overlapping areas, which are known as leaves. The leaves of the regression
trees are denoted here by D1, . . . ,DT , where T denotes the number of leaves. Each leaf Di
is associated with a weight wi. For predictions via a given tree, the response is predicted as
the weights wi for the input feature X ∈ Di. The leaves Di and the weights wi are learned
from the training set.

In the process of regression tree training for a given data set {(X1, y1), . . . , (Xn, yn)},
the feature space D is recursively partitioned into sub-regions such that the objective
function defined by the residual sum of squares (RSS) is minimized until a certain stopping
criterion is achieved. The stopping criterion frequently used in the boosting algorithm is a
fixed number of leaves. For instance, if only two leaves are considered in a regression tree
training, then the feature space D should be split once, and the resulting tree is known as a
stump [32]. Indeed, the first step is based on selecting a cut-point s ∈ R and an input feature
Xj from the feature set X = {X1, . . . , Xd} so that the RSS objective function is minimized.
Then, the second step aims at defining the sub-regions D1(j, s) = {X ∈ D|Xj ≤ s} and
D2(j, s) = {X ∈ D|Xj > s}.

∑
i:Xi∈D1(j,s)

(yi − ȳD1(j,s))
2 + ∑

i:Xi∈D2(j,s)
(yi − ȳD2(j,s))

2, (1)
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such that ȳD1(j,s) = ∑i:Xi∈D1(j,s) yi/n1, and n1 stands for the number of samples for which
the input feature Xi ∈ D1(j, s). ȳD2(j,s) is defined analogously. If a two-leaves tree is
trained, then the weight w1 (resp. w2) corresponding to D1(j, s) (resp. D2(j, s)) is ȳD1(j,s)
(resp. ȳD2(j,s)). The algorithm splits both regression trees D1(j, s) and D2(j, s) (same idea
of partitioning D) until the stopping criterion is achieved. Quite often, the weight wi is
used as the mean of the response variable in the training data with the corresponding input
features Di. More details about regression trees can be found in [33].

To illustrate the boosting algorithm for wind power prediction, let us consider the
problem of predicting the wind power y by a function f ∗(X) of input features X so that the
risk is minimized,

f ∗(X) = arg min
f (.)

E[ρ(y− f (X))], (2)

where ρ(.) denotes a loss function (ρ(e) = e2 is the squared error loss) and arg min stands
for the argument of the minimum, that is the function f ∗(X) that minimizes the risk index
function over all possible functions under consideration. The boosting algorithm is based
on the idea of approximating f ∗(X) by an additive function of the following form

f (X) =
M

∑
i=1

fi(X), (3)

where fi(X), i = 1, . . . , M are regression trees.

3.2. Bagged Regression Trees

Breiman introduced the concept of bootstrap aggregating (bagging) trees by construct-
ing multiple similar but independent predictors, and the final prediction is obtained by
averaging the outputs of these predictors [34]. This allows the reduction of the variance
error, as pointed out in [35]. In bagging trees/ensembles of decision trees methods, a large
number of individual models (trees) are combined with each other (see Figure 3) to improve
the quality of prediction of the model. The use of the BGs predictive model is of great
importance due to the fact that it allows a reduction of the regression trees’ variance and
addressing the over-fitting problem in the regression progress with a single tree.

Figure 3 presents the main idea of a bagging trees predictive model. Such a figure
shows that N new training datasets of size n are first created from the original data through
the selection of n out of n samples uniformly with replacement from the original training
set of data. Then, a training process starts by training individually each tree on the
corresponding training new sets. In the present work, the bagging trees models are based
on 30 trees. Lastly, the final prediction is obtained by averaging all output predictions.
The prediction of the bagging trees model has the following form:

ŷ =
1
N

N

∑
i=1

fi(X), (4)

where the ith tree model fi is trained on the ith bootstrap data.
Theoretically, it is clear that the variance of prediction using n learners can be reduced

to 1/n of the original variance (single learner). Thus, the use of a large number of learners
is advantageous in the sense that a reduced variance is obtained compared to the prediction
with a small numbers of learners. To understand how the bagging process significantly
reduces the mean squared error of the prediction, the following regression problem with
base regressors b1(x), . . . , bn(x) is considered. Additional details on BG models can be
found in [23].
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Figure 3. Schematic drawing of the concept of the BG model.

Algorithm 1 below summarizes the main steps to calculate the bagging trees prediction.

Algorithm 1: Bagging trees approach
Input: Training and testing datasets, D
Output: Prediction output
for i = 1 : N in TrainingDataset do

• Take a bootstrapped replica Di, from D
• Call Decision Tree with Di and receive prediction ŷi
• Add ŷi to the ensemble Ŷ
• Compute the final prediction: ŷ = 1

N ∑N
i=1 ŷi.

end
PredictionBaggestTrees ← ŷ;
return PredictionBaggestTrees

4. PV System Modeling and Validation
4.1. Data Analysis

In this study, we used one month of data collected every ten minutes under normal
operating conditions to construct the studied machine learning models. The first three
weeks are used to train the models, and the last week is testing data to verify the predic-
tion performance of the constructed models. The collected data contain nine variables:
solar irradiance, ambient temperature, cell temperature, maximum dynamic DC power,
DC current, DC voltage, AC power, AC current, and AC voltage. Figure 4 shows the
probability density function of the KDE fit to the nine recorded variables in training data,
which indicates that these datasets are non-Gaussian distributed. Table 4 summarizes the
descriptive statistics of each variable, which confirm the non-Gaussian distribution of data.
It would be challenging for traditional monitoring charts, such as DEWMA and EWMA,
that are constructed based on the Gaussian assumption of data.
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Figure 4. Distribution of the investigated time-series data.

Table 4. Descriptive statistics of the training data.

Min Max STD Q 0.25 Q 0.5 Q 0.75 Skewness Kurtosis

Ambient Temp 14.51 37.22 4.61 22.26 26.04 29.14 −0.22 2.36
Cell Temp 16.12 64.47 11.21 33.43 44.07 52.49 −0.25 1.98
Irradiance 42.67 1085.10 312.30 277.07 614.26 862.42 −0.21 1.65
DC voltage 205.56 263.19 9.24 227.58 233.76 240.11 0.01 2.78
DC current 0.50 11.78 3.22 3.22 6.57 8.96 −0.22 1.76
AC voltage 140.72 250.67 7.68 227.89 235.52 241.27 −0.64 7.28
AC current 0.38 11.83 3.00 3.24 6.45 8.49 −0.33 1.81
DC power 104.10 2969.84 733.36 784.03 1551.90 2034.70 −0.28 1.83
AC power 92.73 2857.53 703.93 764.18 1502.86 1961.53 −0.29 1.84

To quantify the self-similarity in the given time-series data over different delay times,
we computed the autocorrelation function (ACF). It is a time-domain measure of the
stochastic process memory. Importantly, the ACF for a time-series, xt is expressed as [36],

ρk =
cov(xt, xt−k)√

var(xt)var(xt−k)
(5)

where cov(xt, xt−k) denotes is the covariance between xt and xt−k, and var(x) refers to the
variance of x. Figure 5 depicts the ACF of the training data. Visually, we clearly observe the
presence of an apparent periodicity of 24 h. The time-series periodicity can be identified by
measuring the distance between two successive extremum points in the ACF. We suspect
this periodicity is caused mainly by the diurnal solar irradiance cycle.

It is important to note that the traditional monitoring charts are designed under the
assumption that the data are normally distributed and uncorrelated. However, in many real
applications, the normal distribution assumption is violated. In addition, it has been shown
in the literature that the performance of the traditional charts is significantly impacted by
the presence of autocorrelation [37,38]. Here, we observe from Figures 4 and 5 that the
collected data from the inspected PV system are non-Gaussian and correlated. Accordingly,
developing advanced monitoring charts based on machine learning is essential.
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Figure 5. Sample ACF of the training data.

Figure 6 depicts a Pearson correlation heatmap to highlight correlations between
measured variables. We can see from Figure 6 the presence of a strong relationship between
the following variables: irradiance, DC current, DC power, AC current, and AC power.
The DC current generated by the PV cell, PV module, or PV array is proportional to the
tilted irradiance. In the literature, there are many mathematical relationships that explain
this high correlation (i.e., more than 0.98) [39,40].

Figure 6. A Pearson correlation heatmap of data.

Since the cell temperature is proportional to the irradiance [41–43], there is a high
positive correlation (i.e., above 0.86) between cell temperature and the following parameters:
irradiance, DC current, DC power, AC current, and AC power. Furthermore, the cell
temperature is also influenced by variations in the ambient temperature.

The DC voltage of the PV module is the sum of the cell’s voltages in series. It is
generally almost stable but decreases when the cell temperature increases [39–41], which
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explains the presence of this negative correlation (i.e., around -0.59). Because the DC voltage
is almost stable, the DC power is directly proportional to variations of the DC current.

We observe from Figure 6 the absence of correlation between inverter AC voltage and
other variables. Indeed, the PV inverter converts DC energy to AC energy with typical
efficiency from 95% to 99% in recent inverters [44,45]. When driving power to the grid,
the PV inverter must provide a stable sinusoidal AC waveform that matches grid voltage
and frequency according to utility standards to obtain good synchronization.

Figure 6 shows clearly a high correlation between the irradiance, cell temperature,
current DC, AC current, power DC and power AC. The data of such a figure show positive
and negative correlations as well as low correlation between the DC voltage and the ambient
cell temperature, the DC current, AC current, DC power, and AC power. AC voltage does
not show a negative weak correlation with other parameters.

4.2. PV Array Modeling Using Ensemble Learning Models

In this study, we used one month of data collected every ten minutes under normal
operating conditions to construct the studied machine learning models. The first three
weeks are used to train the models, and the last week is testing data to evaluate the predic-
tion accurateness of the constructed models. Here, a fivefold cross-validation procedure is
adopted during the training to avoid the over-fitting problem. At first, we used the default
parameters for the BT and BST models: 30 learners with a minimum leaf size of 8, and a
learning rate of 0.1. We also considered hyperparameter optimization in this study by
investigating the performance of the optimized ensemble learning models (OBT and OBST).

Note that one of the most important steps in machine learning-based prediction is
hyperparameter tuning or optimization. Optimized ensemble models with tuned hyper-
parameters are characterized by the highest accuracy and least prediction error based on
the training dataset. Broadly speaking, hyperparameters can be computed via the mini-
mization of the loss function (e.g., mean squared error (MSE)) or via the maximization of
the prediction accuracy. Of course, the selection of the hyperparameters certainly plays a
crucial role in constructing accurate machine learning models, as the efficacy of the model
greatly relies on them. In this study, Bayesian optimization (BO) is applied to determine
the values of hyperparameters in the two investigated ensemble learning models [23,46].
The main advantage of the BO consists in its capability to select the optimal parameters
in an informed manner. More specifically, the BO accounts for the past evaluations when
selecting the hyperparameters set to consider next [47], making it less time-consuming
compared to both grid search and random search [48,49]. Table 5 lists the calculated values
of the hyperparameters of both BT and BST models using the BO procedure.

Table 5. The optimum hyperparameters using Bayesian hyperparameter optimization.

Model Hyperparameter Search Range Optimized Hyperparameters

-Number of learners: 10–500 -Number of learners: 10
Bagged -Minimum leaf size: 1–1684 -Minimum leaf size: 2

-Number of predictors to sample: 1–7 -Number of predictors to sample: 7

-Number of learners: 10–500 -Number of learners: 46
Boosted -Minimum leaf size: 1–1684 -Minimum leaf size: 89

-Number of predictors to sample: 1–7 -Number of predictors to sample: 7

Figure 7 depicts the actual and the predicted DC power from both the optimized and
non-optimized BT and BST models. From Figure 7, it is clear that the ensemble models can
catch the trend in the DC power data.



Energies 2022, 15, 6716 12 of 28

Figure 7. Power prediction using BG, BS, OBG, and OBS models based on training data.

To visually show the prediction accuracy of the four investigated models, Figure 8
contains the boxplots of the prediction errors of each model. It confirms that the optimized
models can reach better performance compared to the non-optimized models in predicting
DC power. Specifically, we can see that the prediction errors of the optimized BG and BS
models fluctuate around zero, indicating that the models can capture the variation and
follow the trend in the DC power data. Hence, these boxplots affirm the promising predic-
tion capacity of the two optimized models. Figure 9 illustrates the empirical cumulative
distribution function of the prediction errors from the four models; similar conclusions
hold true. Figure 9 indicates the superior prediction performance of the OBG model, which
is followed by the OBS model.

Figure 8. Boxplot of residual errors of bagged tree, boosted tree, optimized BG, and optimized
BS models.
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Figure 9. Empirical CDF of the prediction errors for the invstigated models.

We also assessed the deviation of the prediction from each model (ŷ) and the testing
data (yt) in quantitative way by computing the three most commonly used statistical metrics:
root mean square error (RMSE), mean absolute error (MAE), coefficient of determination
(R2), and mean absolute percentage error (MAPE).

RMSE =

√
1
n

n

∑
t=1

(yt − ŷt)2, (6)

MAE =
∑n

t=1|yt − ŷt|
n

, (7)

R2 =
∑n

i=1[(yi, − ȳ) · (ŷi − ¯̂y)]2√
∑n

i=1(yi − ȳ)2 ·
√

∑n
i=1(ŷi − ¯̂y)2

, (8)

MAPE =
100
n

n

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣, (9)

where n denotes the length of the testing data. From Table 6, the results indicate that the
optimized models (i.e., OBT and OBST) achieved better prediction accuracy compared to
their unoptimized counterparts. This confirms that considering hyperparameter tuning using
Bayesian optimization is a very important step to reduce prediction errors and construct more
effective models. In addition, results show that the OBST achieved the best performance with
an RMSE of 11.36, which is followed by the OBT model with an RMSE of 14.65. Prediction
results have been significantly improved by optimizing the prediction models (Table 6).

Table 6. Evaluation scores of the prediction using testing data.

Methods RMSE R2 MSE MAPE (%)

BG 20.03 1 401.07 13.88

BS 53.98 0.99 2914.1 44.94

OBG 11.36 1 129.11 8.31

OBS 14.65 1 214.59 11.53
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5. EWMA and DEWMA Monitoring Schemes

This subsection presents the basic idea behind the EWMA and the DEWMA monitor-
ing charts. Unlike Shewhart charts employing only the value of the actual measurement,
the EWMA and DEWMA charts, as control charts with memory, are not very sensitive
in detecting small and moderate changes. Thus, they are better than Shewhart charts in
uncovering changes with small magnitude in the process mean.

5.1. EWMA Monitoring Scheme

Roberts introduced the EWMA chart as a memory chart to bypass the limitations of the
Shewhart chart in detecting small changes [50]. In short, the EWMA chart is characterized
by its use of information from the past and actual data points, making it sensitive to small
changes [51]. Lucas et al. investigated the statistical properties of the EWMA scheme
and showed it has similar performance to the CUmulative SUM (CUSUM) scheme in
sensing small changes. It is more straightforward to implement and use in practice than
the CUSUM chart [52–54]. The EWMA statistic is derived as a weighted linear combination
of current and past data.

st = νxt + (1− ν)st−1; s0 = µ0, (10)

where ν denotes the smoothing parameter such that 0 < ν ≤ 1, and µ0 is usually selected
to be equal to the mean of fault-free data. Using small values of ν provides less weight to
the most recent data points and larger weight to the past observations. In other words, ν
regulates the memory depth of the EWMA chart. Crucially, the use of small values of ν
enables a more significant influence of the past observations, enabling the EWMA chart
to be more capable of sensing small changes [52,55,56]. In practice, ν is usually chosen
within the interval [0.15 0.3] for detecting anomalies with small or medium magnitude. We
observe that the EWMA chart becomes similar to the Shewhart chart if ν = 1.

From (10), we obtain the following formula by recursively substituting st,

st = ν
t−1

∑
j=0

(1− ν)txt−j + (1− ν)ts0. (11)

We observe from (11) that the weights ν(1− ν)t are decreasing exponentially with
time, and the sum of these weights is unity because:

ν
t−1

∑
j=0

(1− ν)txt−j = ν

[
1− (1− ν)t

1− (1− ν)

]
= 1− (1− ν)t. (12)

The upper and lower detection thresholds of the EWMA scheme are computed using
the following equation.

UCL, LCL = µ0 ± Lσ0

√
( ν
(2−ν)

[1− (1− ν)2t], (13)

where the factor L represents the width of the decision thresholds. From (13), the asymptotic
thresholds are expressed as:

UCL, LCL = µ0 ± Lσ0
√

ν
(2−ν) . (14)

As it can be noticed, the [1− (1− ν)2t] in (13) becomes closer to unity in case of larger
t. The EWMA chart signals a potential fault if the EWMA statistic exceeds the decision
thresholds. Here, we used the one-sided EWMA chart by using the absolute value of
the EWMA charting statistic and only an upper detection threshold. More details on the
EWMA chart can be found in [57].
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DEWMA Monitoring Approach

The DEWMA chart was introduced in [58,59] to improve the capability of the conven-
tional EWMA approach to sense small changes in the process mean. The basic concept of
the DEWMA is founded on the double exponentially weighted moving average, which
is a common forecasting technique in time-series analysis. Several authors investigated
the performance of the DEWMA in the litterature [60–63]. It has been shown in [64] that
the DEWMA outperformed the EWMA scheme in the detection fault with small and mod-
erate magnitude. The two charts deliver relatively similar results in the case of large and
moderate changes [65]. The DEWMA charting statistic, wt is derived as follows,

w0 = s0 = µ0,
wt = νst +

(
1− ν

)
wt−1,

st = νxt +
(
1− ν

)
st−1, t = 1, 2, . . . , n.

(15)

As it can be noticed, in the DEWMA chart, the exponential smoothing is carried
out two times, and the wt values are extra smoothed (compared to the st). Here, we use
DEWMA with equal smoothing constant when computing st and wt as recommended
in [64]. We can compute the variance of wt as,

Var(wt) = ν4 1 + (1− ν)2 − (1− ν)2t((t + 1)2 − (2t2 + 2t− 1)(1− ν)2 + t2(1− ν)4)

(1− (1− ν)2)3 σ2. (16)

The asymptotic variance when t is large is computed as follows,

Varasymptotic(wt) =
ν(2− 2ν + ν2)

(2− ν)3 σ2. (17)

The DEWMA scheme declares an anomaly if the charting statistic wt overpasses the
decision thresholds, UCL, and LCL.

UCL, LCL = µ0 ± kσ

√
ν(2− 2ν + ν2)

(2− ν)3 . (18)

5.2. Monitoring PV Systems Using Ensemble Learning Techniques Based DEWMA Chart

As discussed above, there are several motivations for utilizing ensemble learning
methods with monitoring charts for fault detection purposes. The main motivation consists
in the capacity of ensemble learning methods to model multivariate input–output data,
and they outperform their alternative single models in many practical situations. It is
known that using ensemble models reduces the prediction error compared to single models.
Furthermore, monitoring charts, such as the EWMA and DEWMA, assume that data are
uncorrelated. Therefore, there is a consequent need for some ensemble-driven models for
generating uncorrelated residuals to enable successful fault detection using monitoring
charts. In addition, these integrated ensemble learning techniques-based monitoring charts
only employ the data of normal events to train the detection model, making them more
attractive for detecting faults in PV systems, since it is not always easy to obtain accurately
labeled data.

The proposed ensemble learning (BS and BG)-based DEWMA chart to detect anomalies
in PV systems is briefly explained in this section and depicted in Figure 10. Specifically, this
approach is implemented in two main stages: model construction using training data and
fault detection. At first, the ensemble learning models are trained using training data. Here,
Bayesian optimization is used to optimally find values of the hyperparameters of the BS
and BG models based on training data. In addition, in this step, the detection threshold of
the DEWMA and EWMA charts are computed when applied to the residuals obtained from
the ensemble learning models. Residuals represent the deviation separating the real output
measurements and the predicted values from the ensemble learning model. Under normal
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operating conditions of the inspected PV systems, the residuals are around zero due to noise
measurements and model errors; however, in the case of faulty conditions, the residuals
deviate significantly from zero. Here, the ensemble learning models (BS and BG) are trained
using fault-free data and then employed for monitoring new data. Then, in the second
stage, the constructed models are used for residuals generation, and the DEWMA chart
with the previously computed detection threshold is applied to detect potential anomalies
in the monitored PV systems.

Figure 10. The framework of the proposed ensemble learning-driven fault detection technique.

Note that the decision threshold of the DEWMA and EWMA charts is derived based on
the Gaussian distribution of data. However, often in practice, the underlying distribution
of data deviates from Gaussianity or is unknown. In such cases, the monitoring results
would be unsuitable. To bypass this limitation, in this paper, a non-parametric kernel
density estimation (KDE) method was used to set a detection threshold of the DEWMA
and EWMA for fault detection. For more details about KDE, refer to [66]. Importantly, it
has been shown that the use of KDE to set up the detection threshold does not need to
assume that the data follow a Gaussian distribution [67,68], which extends the flexibility
of the monitoring charts. Thus, KDE-based detection thresholds are widely employed for
process monitoring. A non-parametric detection threshold of the DEWMA chart using KDE
is carried out as follows. First, we used KDE to estimate the distribution of the DEWMA
statistic based on fault-free data. Given the DEWMA statistic w, the PDF through the KDE
is computed as follows.

f̂ (w) =
1

nh

n

∑
i=1

K
(

w−wi
h

)
, (19)

where K(·) is the kernel function, and h is the kernel bandwidth parameter and refers to the
number of samples. It is mentioned that the Gaussian kernel function is commonly used.

K(w) =
1√
2π

exp
(
− w2

2

)
. (20)

Now, the threshold of the distribution-free DEWMA chart is derived as the (1− α)-th
quantile of the estimated distribution of the DEWMA statistic computed via the KDE. We
signal the presence of a potential anomaly if the DEWMA charting statistic exceeds the
KDE-based threshold.

The DEWMA with a non-parametric detection threshold is performed as follows:

• Step 1: Computing the DEWMA charting statistic (Equation (18)) for each observation.
• Step 2: Estimating the probability density function for given DEWMA measurements

via KDE.
• Step 3: Setting up the detection threshold based on the previously estimated distribu-

tion of DEWMA in a non-parametric way as the (1− α)-th quantile.
• Step4: Flagging out a fault if the DEWMA statistic is above the detection threshold.
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To assess the efficiency of the studied ensemble learning-based monitoring charts,
we used six most commonly used performance measures: true positive rate (TPR), false
positive rate (FPR), accuracy, recall, F1-score, and area under curve (AUC), and EER (equal
error rate) [69]. For a binary detection problem, the number of true positives (TP), false
positives (FP), false negatives (FN), and true negatives (TN) is utilized to calculate the
performance measures. The 2 × 2 confusion matrix is depicted in Figure 11. The six
performance measures are computed as the following.

TPR =
TP

TP + FN
. (21)

FPR =
FP

TN + FP
. (22)

Accuracy =
TP + TN

TP + TN + FP + FN
. (23)

F1-score = 2
Precision · Recall

Precision + Recall
=

2TP
2TP + FP + FN

. (24)

EER =
FP + FN

NF
. (25)

Figure 11. Performance indices used in fault detection.

6. Results and Discussion

As discussed above, ensemble learning-based monitoring charts enable automatically
flagging anomalies in the inspected PV system while avoiding false alarms during normal
operating conditions. In this section, the ability of the proposed ensemble learning-based
DEWMA schemes to detect anomalies in the DC side of a PV system is assessed. Here,
the experimental data were collected from an actual PV system described in Section 2. This
study considered five kinds of anomalies: PV string fault (F1), inverter disconnection (F2),
circuit breaker faults (F3), partial shading of two pylons (F4), and two PV modules (PVM)
short-circuited (F5), as they are represented in Figure 12. For an effective fault detection
approach, the TPR, accuracy, F1-score, and AUC values should be close to 1 so that all faulty
data are detected. On the other hand, the FPR and EER values should be close to zero to
avoid false alarms. For a fair comparison between the competing fault detection methods,
in what follows, we used the optimized BG and BS models for each monitoring chart.

6.1. Scenarios with String Faults

The aim of the first experiment is to study the efficiency of the proposed methods in
detecting open-circuit faults in the monitored PV system. Broadly speaking, open-circuit
faults could be caused by the deterioration of DC protection or the disconnection between PV
modules in series. In this case, a string fault is intentionally generated by switching off the
circuit breaker of the PV system. More specifically, we disconnect one string from the PV array.
The results of the optimized ensemble models (BG)-based DEWMA and EWMA charts are
provided in Figure 13 and show the presence of energy losses in terms of DC power. The results
based on BS-based schemes are omitted because they all provide relatively similar results. We
observe that the considered monitoring charts with parametric and non-parametric thresholds
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perform similarly for detecting this severe fault that resulted in a decrease of relatively 50% of
the rated power, making it easy to detect by the investigated models.

Figure 12. Considered anomalies in this study.

Figure 13. Results of the BG-based schemes in monitoring a string fault: (a) BG-DEWMA scheme,
and (b) BG-DEWMA scheme.

6.2. Scenarios with Inverter Disconnections

In the next experiments, the efficiency of the BG and BS-based DEWMA charts and the
competing charts using both parametric and non-parametric thresholds have been investi-
gated in the case of inverter disconnections. Broadly speaking, inverter disconnections are
caused if the electrical characteristics exceed the operational limits of the inverter, which
are usually given in the datasheet. Note that if inverter disconnections occur, the PV system
will shut down until the re-connection of the inverter. In this case study, to verify the
detection efficiency of the considered methods, we selected one day of data with inverter
disconnection faults. Here, the inverter disconnections are caused by grid instability. More
specifically, the voltage and frequency of the grid overpassed the inverter operating limits.
Inverter disconnections can be recognized by their very short period and look like spikes,
making them easy to discriminate from temporary shading and string faults.

The monitoring results of the investigated ensemble learning-based fault detection
charts are depicted in Figure 14. Visually, Figure 14 indicates that these inverter disconnec-
tions have been recognized by the considered charts. In addition, we observe that residuals
of DC power from the BG and BS models deviate significantly from zero (Figure 14). This
means that the constructed models describe well the fault-free data and diverge in the
presence of faults. Table 7 lists the detection performance of the considered charts in
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terms of the five commonly used evaluation scores. As the magnitude of this fault is large,
Table 7 clearly indicates that the considered charts easily detect this fault. The results in
this table also revealed that the BG and BS-based DEWMA charts with non-parametric
thresholds achieved the best performance compared to the other charts. Here, the BS-
DEWMA obtained the best detection with an AUC of 0.99, which was followed by the
BG-DEWMA chart with an AUC of 0.9881. This could be due to the use of non-parametric
thresholds, allowing the DEWMA to be more sensitive than other considered charts. Note
that for this fault with a large magnitude, the two types of DEWMA charts (parametric and
non-parametric) have slightly similar performance.

Figure 14. Results of the BG and BS-based schemes in monitoring inverter disconnections: (a) BG-
DEWMA, (b) BG-EWMA, (c) BS-DEWMA, and (d) BS-EWMA schemes.

Table 7. Detection results by procedure when inverter disconnections occurred.

Method TPR FPR Accuracy AUC EER

BS-EWMApa 1 0.0779 0.9223 0.9610 0.0777
BS-EWMAnp 1 0.0304 0.9697 0.9848 0.0303

BS-DEWMApa 1 0.0276 0.9725 0.9862 0.0275
BS-DEWMAnp 1 0.0200 0.9801 0.9900 0.0199
BG-EWMApa 1 0.1511 0.8494 0.9244 0.1506
BG-EWMAnp 1 0.0257 0.9744 0.9872 0.0256

BG-DEWMApa 1 0.0437 0.9564 0.9781 0.0436
BG-DEWMAnp 1 0.0238 0.9763 0.9881 0.0237

6.3. Scenario with Circuit Breaker Faults

The third experiment aimed to assess the ability of the proposed monitoring schemes
in detecting circuit breaker fault failures. Crucially, the use of a residual current circuit
breaker (RCCB) with a miniature circuit breaker (MCB) is necessary for ensuring the desired
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performance and protecting PV systems from sudden shock or electrical anomalies. The key
role of RCCB is the protection of people from electric shock, and the principal MCB function
consists of protecting a PV system against short circuits or overloads. More specifically,
the RCCB immediately turns off the power in the presence of a potential electrical fault in
the inspected PV system. In this scenario, we generate an RCCB fault within one hour using
the collected data. Figure 15 shows the detection performance of the eight investigated
ensemble learning-based EWMA and DEWMA charts. We observe that this large fault has
been recognized by all the studied charts (Figure 15). We can also see that the BG-DEWMA
chart can clearly uncover this fault with reduced false alarms compared to the other charts.

Figure 15. Results of the BG and BS-based schemes in monitoring a circuit breaker fault: (a) BG-
DEWMA, (b) BG-EWMA, (c) BS-DEWMA, and (d) BS-EWMA schemes.

Table 8 presents the performance of the studied BS and BT-based monitoring schemes.
From Table 8, it can be clearly seen that BT-based schemes perform slightly better than
BS-based schemes. Here, BG-based schemes achieved an AUC of around 0.98, and BS-based
schemes obtained an AUC of around 0.97. This means that the considered schemes can
efficiently detect this RCCB fault. Results showed that the BG-based EWMA and DEWMA
schemes with non-parametric thresholds models reached the highest detection performance
in terms of the five evaluation metrics. As the magnitude of the occurred RCCB fault is
large, we can see that the BG-based EWMA and DEWMA schemes perform similarly.
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Table 8. Detection results by procedure when a circuit breaker fault occurred.

Method TPR FPR Accuracy AUC EER

BS-EWMApa 0.9815 0.0315 0.9692 0.9750 0.0308
BS-EWMAnp 0.9815 0.0241 0.9762 0.9787 0.0238

BS-DEWMApa 0.9815 0.0346 0.9662 0.9734 0.0338
BS-DEWMAnp 0.9815 0.0304 0.9702 0.9755 0.0298
BG-EWMApa 0.9815 0.0063 0.9930 0.9876 0.0070
BG-EWMAnp 0.9815 0.0042 0.9950 0.9886 0.0050

BG-DEWMApa 0.9815 0.0084 0.9911 0.9865 0.0089
BG-DEWMAnp 0.9815 0.0042 0.9950 0.9886 0.0050

6.4. Scenario with Shaded Modules

Next, the capability of the ensemble learning-based techniques in detecting partial shading
is demonstrated. Broadly speaking, different factors can cause shading losses, such as the instal-
lation of the PV system close to pylons and trees [8]. Crucially, the production of a PV system
exposed to partial shading will decrease from the desired production. Here, the monitored
system is exposed to two communication pylons (Figure 16), which can decrease the power
output. The data are collected within a period of the day in the presence of partial shading.

Figure 16. (Top) PV array with shaded modules due to two communication pylons installed in front
of this PV array. (Bottom) Shading of pylon 2 on PV sub-array 2.

The results of the BG and BS-based techniques are depicted in Figure 17. From the plots
in Figure 17, we observe that the partial shading of the two pylons resulted in a significant
power. It is observed from Figure 17 that the considered charts can sense the presence of this
partial shading. So, the proposed ensemble learning-based detection methods effectively
flagged out this partial shading. Furthermore, we notice that the BS-based EWMA and
DWEMA schemes detect this shading partially, i.e., with some missed detections. On the
other hand, all BG-based schemes provide good detection results of this partial shading.
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Hence, we conclude that the BG model catches most of the variability in the data compared
to the BS model, facilitating obtaining more sensitive residuals.

Figure 17. Results of the BG and BS-based schemes in monitoring partial shading: (a) BG-DEWMA,
(b) BG-EWMA, (c) BS-DEWMA, and (d) BS-EWMA schemes.

Table 9 shows that the non-parametric DEWMA performed better than the conven-
tional DEWMA and single EWMA schemes with lower FPR and the highest TPR, accuracy,
and precision. The non-parametric DEWMA reaches an AUC of 0.984, and the conventional
DEWMA and EWMA schemes reached, respectively, AUC values of 0.932 and 0.65. The con-
ventional schemes flag this shading but with some false alarms and missed detection. Such
results may indicate the non-parametric DEWMA rather than the conventional DEWMA
and EWMA charts for appropriately revealing partial shading in a PV array.

Table 9 lists the detection results of the BG and BS-based techniques in terms of the
five evaluation scores. From Table 9, it can be inferred that the BG-based EWMA and
DEWMA schemes with non-parametric thresholds outperformed all other methods by
providing the best detection performance with a TPR of 0.9805 and very few false alarms
(FPR = 0.9869), and an accuracy of 0.9869. This highlights the capacity of these BG-based
EWMA and DEWMA schemes in accurately detecting partial shading. Furthermore, it
is worth observing that the BG-based schemes with non-parametric thresholds dominate
the parametric BG-based schemes’ counterparts. In the parametric schemes, the detection
thresholds are determined based on the assumption of the Gaussian distribution of data,
which is not often valid. However, in the non-parametric counterparts, the threshold
is automatically determined using the KDE approach, making them more effective and
flexible. As expected for anomalies with a large magnitude as in this case of partial shading,
the DEWMA and the EWMA perform similarly. In contrast, the BS-based monitoring
schemes can sense the presence of power loss but with some missed detections. Here,
the BS-based DEWMA and EWMA schemes are showing comparable performance with an
AUC around 0.89 but with several missed detection (TPR around 0.8).
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Table 9. Detection results when shading has occurred.

Method TPR FPR Accuracy AUC EER

BS-EWMApa 0.8182 0.0342 0.9072 0.8920 0.0928
BS-EWMAnp 0.8052 0.0299 0.9046 0.8876 0.0954

BS-DEWMApa 0.8831 0.0983 0.8943 0.8924 0.1057
BS-DEWMAnp 0.7727 0 0.9098 0.8864 0.0902
BG-EWMApa 0.9740 0.0214 0.9768 0.9763 0.0232
BG-EWMAnp 0.9675 0.0128 0.9794 0.9774 0.0206

BG-DEWMApa 0.9935 0.0256 0.9820 0.9839 0.0180
BG-DEWMAnp 0.9805 0.0043 0.9869 0.9881 0.0103

6.5. Short-Circuit Fault

In this last investigation, we examine the performance of the proposed monitoring
schemes in the presence of short-circuit faults. Short-circuit faults if not detected can
induce degradation of the PV modules’ performance [70]. In this scenario, the BG and
BS-based monitoring schemes are verified in the case of two PV modules short-circuited.
The monitoring results of BG and BS-based strategies are presented in Figure 18. Here,
the EWMA and DEWMa charts are applied to residual of DC power obtained from the
already constructed ensemble learning models (i.e., BG and BT). We observe that the
studied monitoring schemes can recognize this short-circuit fault (Figure 18). The BS-based
DEWMA and EWMA schemes flag this fault, but with several missed detection. In contrast,
BG-based charts detect the fault with minimum false alarms and missed detection.

Figure 18. Results of the BG-based schemes in the presence of two short-circuited modules: (a) BG-
DEWMA, (b) BG-EWMA, (c) BS-DEWMA, and (d) BS-EWMA schemes.

Table 10 quantitively summarizes the results of BG and BS-based monitoring tech-
niques. From Table 10, the results confirm that the BS-based schemes dominate the
BG-based monitoring schemes. In addition, results revealed that the proposed BG-based
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DEWMA scheme with a non-parametric threshold provides the best results in this case
study. It is followed by its parametric counterpart.

Table 10. Detection results by procedure when two modules are short-circuited.

Method TPR FPR Accuracy AUC EER

BS-EWMApa 0.6230 0 0.7983 0.8115 0.2017
BS-EWMAnp 0.6407 0 0.8078 0.8204 0.1922

BS-DEWMApa 0.6319 0 0.8030 0.8159 0.1970
BS-DEWMAnp 0.6832 0 0.8305 0.8416 0.1695
BG-EWMApa 1 0.0122 0.9943 0.9939 0.0057
BG-EWMAnp 0.9876 0 0.9934 0.9938 0.0066

BG-DEWMApa 0.9965 0.0244 0.9867 0.9860 0.0133
BG-DEWMAnp 0.9929 0.0041 0.9943 0.9944 0.0057

In summary, this work shows that merging ensemble learning models to capture
describe DC power with the good detection capability of DEWMA enables an efficient
detection of anomalies on the DC side of a PV system. The ensemble learning-based fault
detection schemes presented in this paper can effectively detect the presence of potential
anomalies on the DC sides of the PV system, but they do not identify the types of detected
anomaly. Anomaly identification can be performed by the analysis of the DC current and
DC voltage. Table 11 lists the influence of the considered anomalies on DC current and DC
voltage. Overall, anomaly identification could be conducted by employing semi-supervised
anomaly detection methods, such as one-class SVM and isolation forest, to monitor DC
current and DC voltage.

Table 11. Considered faults with their indicators.

Duration DC Current Indicator (A) DC Voltage Indicator

PV string Faults (open-circuit) Permanent −50% No change

Circuit breaker fault Permanent Zero energy Voc (280–300)

Inverter disconnection Temporary (1–5 min) Zero energy Voc (280–300)

Partial shading (pylons) Temporary (0.5–2 h) −15/35% 220–260

2 PV modules short-circuited Permanent No change −10%

7. Conclusions

Accurate fault detection is essential to photovoltaic systems’ efficiency and continuous
operation while maintaining the desired performance level. In this work, we developed
and studied ensemble learning-based EWMA and DEWMA control charts that are suitable
for detecting different anomalies in the AC and DC sides of the PV system. This is mainly
motivated by the ensemble learning-driven models’ capability to enhance the performance
of machine learning models by merging numerous learners versus single regressors. Specif-
ically, the boosted trees (BST) and bagged trees (BT) models are considered in this study.
To enhance the detection performance, we employed Bayesian optimization to find the
optimal parameter values of the ensemble learning models based on training data. In addi-
tion, kernel density estimation is adopted to non-parametrically determine the detection
threshold of the DEWMA chart, which makes it more flexible in dealing with both Gaussian
and non-Gaussian data. In order to evaluate the accuracy and performance of the proposed
techniques, different electrical faults and environmental anomalies, generally occurring
in PV systems, were considered The obtained results showed that the detection and the
identification of faults were successfully achieved.

Despite the encouraging obtained results, future research works on PV systems moni-
toring could be undertaken in several directions:

• It would be useful to incorporate more data inputs such as open circuit voltage, short
circuit current, and fill factor to further enhance the fault detection and diagnosis
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capabilities of the proposed approach. Moreover, electrical sensors on the AC side of
the PV system at the connection point could be added to monitor the energy flow.

• We also plan to develop deep learning-driven monitoring charts by merging the
extended capacity of deep learning models (e.g., long short-term memory (LSTM) and
gated recurrent unit (GRU) [71,72]) in automatically extracting important features from
multivariate data with statistical monitoring charts such as the generalized likelihood
ratio test [73,74] to improve fault detection in PV systems.

• We plan also to construct parsimonious ensemble learning models by selecting only
the important variables for the prediction by the random forest algorithm. Then,
the reduced models can be employed for residuals generation to detect faults.

• Since the DEWMA chart assumes a fixed threshold [75], which may not be suitable to
deal with non-stationary (or time-varying) data, adaptive ensemble learning-based
DEWMA techniques will be developed in future work by allowing the thresholds of
these methods to varying online to account for the changing nature of the data.

• Data from PV systems are usually tainted with noise measurements, which can de-
grade the performance of the designed fault detection methods by increasing the
number of false alarms and masking pertinent features in data. Future works will
improve the robustness of the ensemble learning-based-DEWMA model to noisy mea-
surements by developing a wavelet-based DEWMA detector. Noise effects will be
reduced using wavelet-based multiscale denoising; hence, the fault detection perfor-
mance will significantly be improved.

• In addition, it will be interesting to investigate the detection capability of the proposed
data-driven anomaly detection methodology in other renewable energy systems, such
as wind turbine monitoring.
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