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Abstract: The long and tiring discussion of who are the best drivers, men or women, is not answered
in this article. This article, though, sheds some light on the actual differences that can be seen in
how men and women drive. In this study, GPS-recorded driving dynamics data from 123 drivers,
48 women and 75 men, are analysed and drivers are categorised as aggressive, normal or gentle.
A total of 10% of the drivers was categorised as aggressive, with an even distribution between
the genders. For the gentle drivers, 11% of the drivers, the men dominated. The driving style
investigation was extended to utilise machine learning, confirming the results from statistical tools.
As driving style highly impacts a vehicle’s fuel consumption, while switching over to battery electric
vehicles it is important to investigate how the different driving styles impact battery utilisation.
Two Li-ion battery cell types were tested utilising the same load cycle with three levels of current
amplitude, to represent accelerations for the three drive categories. While one cell type was insensitive
to the current amplitude, the highly energy-optimised cell proved to be sensitive to higher current
amplitudes, corresponding to a more aggressive driving style. Thus, the amplitude of the dynamic
current can for some cells be a factor that needs to be considered for lifetime predictions, while it can
be neglected for other cells.

Keywords: lithium-ion battery; test; electric vehicle; gender; driving style; machine learning; support
vector machine

1. Introduction

Do women drive better than men? If only judging by the statistics, then yes. Men
stand for the larger part of the traffic law violations, e.g., in Sweden, 87% of traffic violations
during 2020 were conducted by men [1]. Men are also over-represented as drivers involved
in traffic accidents [2]. An often heard argument for the skewed numbers is that men drive
more and longer distances compared to females, which is true. However, when the number
of traffic law violations are normalised over driven distance, men are still over-represented
in traffic violations and accidents [3,4]. A British study showed that men have two times
higher risk per driven km to be involved in a fatal accident than female drivers [5]. The
main reason for this has been attributed to higher risk taking and overestimation of one’s
driving skill reported for men and especially for younger men [6,7].

The statistics clearly show that there is a difference in the risks taken by men and
women while driving, where men tend to drive faster than women [1,3–5,8,9]. It is also
well established that driving style depends on the physical and emotional state of the
driver. Driving style studies thus typically include characteristics such as the somatic,
behavioural and emotional conditions of the driver as complements to the recorded drive
data [10]. Aggressive driving is often attributed to be unsafe, including behaviour such as
speeding, tailgating, cutting in front of another driver and then slowing down, running
red lights, weaving in and out of traffic, changing lanes without signalling and blocking
cars attempting to pass or change lanes [11]. When only GPS-driving-dynamic data are

Energies 2022, 15, 6791. https://doi.org/10.3390/en15186791 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15186791
https://doi.org/10.3390/en15186791
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-7203-6243
https://orcid.org/0000-0002-0339-1807
https://orcid.org/0000-0001-8092-6011
https://orcid.org/0000-0001-5777-1242
https://doi.org/10.3390/en15186791
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15186791?type=check_update&version=2


Energies 2022, 15, 6791 2 of 15

available, several of the indications of an aggressive driving style cannot be used. The
usable entities are speed, acceleration, deceleration, road type and their distribution in
time and given journey. Eboli et al. [11] used GPS-logged acceleration and speed data to
classify safe and unsafe driving based on the friction coefficients of the car tires on dry
road pavement.

Driving style is not only linked to safety; it also impacts fuel consumption [12].
High speeds and high accelerations result in higher fuel consumption. Other aspects
that affect fuel consumption are the drive-train efficiency, vehicle weight and engine [13,14].
A calmer driving style is less energy- and power-demanding [10,12]. As battery electric
vehicles (BEVs) are becoming more and more popular, the impact of different driver be-
haviour and styles on electric vehicle (EV) has also become of high interest. Several studies
have compared moderate versus aggressive driver behaviour and have shown that mod-
erate driving behaviour can reduce the energy consumption by as much as ∼30% [15,16].
An aggressive driving style results in higher energy and power consumption, i.e., higher
average discharge current and larger current fluctuations due to higher average vehicle
speed and higher acceleration and deceleration.

Energy consumption is not the only aspect that is important when considering BEVs;
the ageing of the battery pack is also highly dependent on the usage. It is well known that
the type of load profile heavily impacts Li-ion battery (LIB) ageing and, thus, the cycle life-
time. The main aspects that have proven to accelerate ageing are high state of charge (SOC),
large depth of discharge (DOD), high currents and high ambient temperature [17–22].
However, there have only been a few ageing studies conducted on how different current
frequencies and pulse amplitudes impact battery ageing [23–26] and even fewer related to
how dynamic drive behaviour impacts LIB ageing [27,28].

The purpose of this article is to present results from a study investigating different
driver styles based on GPS recordings, to answer how gender influences the selection
of vehicle and driver style and how this impacts battery degradation. The drivers are
categorised based on speeding, acceleration, deceleration and relative positive acceleration
(RPA). Driving style and how this relates to gender is investigated by using GPS-recorded
drive pattern data: acceleration, road type and speed. This research is conducted using
low-dimensional statistical analysis as well as machine learning (ML). Subsequently, the
driving style analysis is used to experimentally investigate how driving style impacts
battery degradation and how different levels of acceleration and deceleration (regenerative
breaking) impact battery ageing.

2. Materials and Methods

This work includes two studies, a driving style analysis based on GPS-recorded driving
dynamics data and lifetime testing of two different 18650 Li-ion battery cells. The driving
style analysis included gender aspects where the gender of the driver was determined from
questionnaire answers; all participants took part in a questionnaire before the recording
of the GPS data started. The cells were tested with driving cycles developed to represent
three different driving styles. The development of the driving cycles that represent the
different driving styles was based on the driving data analysis. Additionally, a support
vector machine (SVM)-based ML approach was scripted to discern driver behaviour using
the dynamics of the driving.

2.1. Driving Data Analysis

The data analysis is based on GPS-recorded driving dynamics data, collected during
2010–2012, in the Swedish car movement data project [29]. The project recorded data from
700 vehicles and 123 of these vehicles were owned by single households who reported
themselves belonging to one of the binary genders in the questionnaire sent out to the
participants before the start of the data recording [29]. The selection of participants was
randomised; vehicles with a home address in the region of Västra Götaland were randomly
selected from the Swedish vehicle registry. Participation was voluntary and a GPS tracker
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was sent to be installed by the driver, if they accepted to participate and answer the
accompanying questionnaire. A thorough description of the GPS equipment and data
acquisition procedure can be found in [29]. All vehicles in this study were of internal
combustion engine (ICE) type.

2.1.1. Descriptive Statistics of the Driving Data

When analysing and characterising the driving patterns, level measures, distribution
measures and oscillatory measures were used. The level measures used were maximum,
average and standard deviation of speed (v), acceleration (a) and deceleration (r). The
distribution measures were percentage of time in different speed intervals, road types
and speeding. The oscillation measure used was the RPA. Important parameters for fuel
consumption were found to be acceleration with high power demand, speed oscillation,
extreme acceleration/deceleration and number of stops [12].

2.1.2. Inferential Statistics of the Driving Data

In addition to the descriptive statistical analysis of the driving style, a SVM-based
algorithm from SKlearn [30] was used to further evaluate gendered driving style differ-
ences. The algorithm was trained with a gender-balanced training data set consisting of
14 randomly selected drivers, 7 females and 7 males.

In the proposed approach, the algorithm first chooses a feature randomly, quantifying
its maximum and minimum values. By partitioning randomly the selected feature between
these extremities, the algorithm subsequently tries to isolate an observation by testing
several splitting schemes while assigning an integer value for the number of partitions.
The overall structure of the partitioning is thus a forest of tree structures with branching
into smaller partitions. The registered number of partitions needed to isolate a sample
is the travelled distance from the root to the leaves of the recursive tree structure. After
averaging this distance for each tree over the complete forest of partitions, the algorithm
reaches a measure of anomalies. The decision function depends on the average distance to
the investigated samples and the samples reached by the shortest paths are predicted as
outliers [30]. As the approach does presume a Gaussian behaviour, it appropriately allows
for a more tailored analysis of the data at hand.

2.2. Battery Lifetime Testing

The battery lifetime testing was conducted on two different 18650 cylindrical cells with
Lithium Nickel Manganese Cobalt oxide (NMC) positive electrodes. The LG INR18650 MJ1
(MJ1) highly energy-optimised NMC811-Graphite with 3.5 wt% Si (3.5 Ah, 240 Wh/kg) [31,32]
and the Samsung ICR18650-22P (22P) NMC111-Graphite (2.15 Ah, 175 Wh/kg) [33,34]. Both
cell types have 0.2 C in standard discharge current and a maximum of 10 A in discharge
current. The standard charge current is 0.5 C. The voltage interval for the MJ1 is 2.5–4.2 V
and for 22P it is 2.75–4.2 V.

2.2.1. Test Setup

The cells were tested using the Neware BTS4000 system, 5V20A and 5V6A testers with
CA-4008 temperature thermistor auxiliary equipment in room temperature (Figure 1). The
5V6A testers have inbuilt cell-holders, for the 5V20A tester cell-holders, shown in Figure 1,
were used to ensure good connections.

2.2.2. Load Cycles

The tests were conducted in two separate groups, one utilising constant current (CC)
cycles and one using dynamic current profiles. This was done in order to separate the
dynamic and CC impact on cell ageing. All tests had the same charge rate of 0.5 C with
CC and constant voltage (CV) for both the MJ1 and 22P cells. The synthetic CC load cycles
were only tested for the MJ1 cells. The discharge was conducted at three current levels,
0.2 C, 0.4 C and 0.6 C.
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Figure 1. Test setup used for the lifetime testing of the MJ1 and 22P cells.

The dynamic current profile was derived from an aggressive drive pattern containing
50% urban (v < 50 km/h), 30% rural (50 < v < 90 km/h) and 20% highway (>90 km/h)
driving time. To be able to analyse the contribution from acceleration and deceleration from
different driving styles, the selected driving pattern was adjusted to gentle and normal driv-
ing styles. Different driving styles result in different speeds and accelerations/decelerations
of a vehicle, which for a BEV results in different current drawn from the vehicle battery.
Higher vehicle speed draws a higher average current from the battery and high accelera-
tions result in high peak current. To be able to separate the transient behaviour, acceleration
and deceleration, some calculations on and adjustments of the data were needed. The
current was calculated by using a simple force balance, summarising all forces acting on
the vehicle,

Facc = ma = Ftractive − Fresistive (1)

where the resistive force is composed of aerodynamic drag, rolling resistance and grad-
ing force,

Ftractive = Facc + Fair + Froll + Fgrading (2)

To study the difference in transient behaviour, the same speed profile was assumed for
all cases. This resulted in the same resistive forces in all cases, leaving the only difference
to be the size of Facc. After these simplifications, the current was calculated from

i = (Pacc + Presistive)/Vnom (3)

and scaled to meet the maximum short time discharge current of 10 A for the test cells.
The standard charge level for the MJ1 (0.5 C, 1.7 A) was used as a limit for regenerative
breaking, thus limiting all charge pulses to 1.7 A.

The power levels required for normal and gentle drivers’ accelerations and decelera-
tions are lower compared to those of the accelerations and decelerations recorded for the
aggressive drivers. Thus, the aggressive drivers’ accelerations needed to be scaled to repre-
sent the accelerations for normal and gentle drivers. Six representative drivers, two from
each category, were used, where the mean of the maximum acceleration for each trip was
used to calculate the scaling factors. Based on these, the normal drivers’ acceleration was
85% of the aggressive drivers’ acceleration. The gentle drivers’ acceleration was found to be
merely 32% of the aggressive drivers’ acceleration. The power required for the acceleration
was scaled according to these values, and the maximum discharge current for the normal
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driver was 8.6 A and for the gentle driver 3.7 A. Thus, the reader should note that it is not
possible to achieve the speed profile in Figure 2a using the current profiles for normal and
gentle driving (Figure 2b).
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Figure 2. (a) The speed profile for the driving cycles used for the lifetime testing. (b) The calculated
current after scaling the acceleration according to the analysis of the different driving styles.

However, in this study it was the impact of the transient current that was investigated
and as the same speed profile was used for all drivers the mean discharge current would be
similar. Thus, the impact of acceleration and deceleration could be studied. As there was a
need to limit the regenerative charge pulses, which is often the case in real applications,
the mean discharge current was slightly larger for the aggressive and normal case. For the
MJ1, the mean discharge current corresponded to 0.2 C for the gentle case, 0.205 C for the
normal case and 0.208 C for the aggressive case. For the 22P, the mean discharge current
corresponded to 0.332 C, 0.340 C and 0.345 C, respectively.

3. Results
3.1. Driving Data Analysis and Gender Aspects

To be able to conduct an investigation into the gender-related characteristics of driving,
the gender of the driver needed to be known. The gender of the driver could only be
defined for single households. This study was thus conducted on 123 vehicles registered to
single households, 75 male and 48 female drivers. A deeper study was made into the outlier
driver behaviour, especially the gentle and aggressive drivers, studying the difference in
speed distribution, acceleration, inclination to follow speed limits and time driven on
different road types.

3.1.1. Vehicle Selection

Based on the questionnaire sent out to the drivers with the invitation to participate in
the project, additional information and user perspectives could be recorded. The drivers
were asked to estimate the amount of the vehicle’s yearly distance driven by them. While
91% of the male drivers estimated that they drove 100% of the yearly distance themselves,
only 81% of the female drivers gave the same estimation. Hence, the females were more
prone to lend their cars compared to the males.

Studying the choice of vehicles, additional clear trends could be seen. In 2010, diesel
vehicles were still marketed as an environmentally friendly choice. Among the 123 vehicles,
most of the men owned diesel vehicles, 67%. However, for the women, 94% drove a diesel
vehicle, while only 6% drove a petrol vehicle. This indicates that women were considering
more environmentally friendly vehicles to a larger extent than their male peers. This is
supported by several studies showing women to have a greater interest in sustainability
and sustainable choices in their vehicles [35–37].

An additional aspect in line with women considering more environmentally friendly
vehicles is the size of the vehicle, especially considering the weight and power. In general, a
car with a low power-to-weight ratio (PWR) is more environmentally friendly, as its motor
will work in, or closer to, its optimum operation window for a larger part of the driven
time. A low curb weight in combination with a small motor will in most cases result in a
car with lower fuel consumption [14].
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Figure 3 shows the PWR distribution normalised over the number of vehicles in each
gender group. The most common PWR range was 63–71 W/kg, with 35% of the male- and
33% of the female-owned vehicles. However, the majority of female-owned cars had a PWR
lower than this and the group had a mean value of 59 W/kg, compared to 68 W/kg for the
male-owned vehicles. This is also confirmed when looking at the choice of vehicle model:
more men than women owned performance and high-end vehicle models.
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Figure 3. Distribution of vehicle PWR for the vehicles owned by women and men.

3.1.2. Trips and Distance

The number of trips and driven distance recorded for each vehicle varied widely.
However, the difference on individual level was equalised on the group level. The overall
difference in driven distance followed the number of participants for each gender group,
where 39% were women and 61% were men, i.e., the women drove 39% of the recorded
total distance and the men 61%.

3.1.3. Vehicle Speed

Speed and time distributions were generated for the two genders by separating data
into male and female drivers (Figure 4a). The distributions show that the male drivers’
speed distribution is skewed to higher speeds compared to the female drivers’. For the
women, the distribution peaks at 70 km/h, while for the men, the peak is at 80 km/h.

0  20 40 60 80 100 120 140 160

Speed [km/h]

5

10

15

N
o
rm

al
is

ed
 t

im
e 

[%
] Female drivers

Male drivers

Female drivers

Male drivers

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7

RPA [m/s
2
]

0

5

10

15

20

25

N
o

rm
al

is
ed

 t
ri

p
s 

[%
] Female drivers

Male drivers

Female drivers

Male drivers

(a) (b)

-10 -8 -6 -4 -2 0  2  4  6  8  10 

Acceleration [m/s
2
]

10
-5

10
0

lo
g

(N
o

rm
al

is
ed

 t
im

e 
[%

])

Female drivers

Male drivers

Female drivers

Male drivers

-10 -5 0 5 10
Acceleration [m/s

2
]

0

50

100

150

200

S
p
ee

d
 [

k
m

/h
]

Male drivers

Female drivers

(c) (d)

Figure 4. Distribution of (a) time driven at different speeds and (b) RPA calculated for each trip by
women and men. (c) Distribution of time driven with different acceleration and deceleration for the
vehicles. (d) Recorded speed and corresponding acceleration/deceleration for the drivers compared
to the unsafe driving criteria for aggressive acceleration/deceleration (red dashed line).

3.1.4. Relative Positive Acceleration

The RPA was used as an indication for accelerations that demanded high power. It is
a measure of a drive pattern’s level of acceleration with strong power demand. The RPA
factor is high for drive patterns with a great amount of high power demand accelerations
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and low for patterns with fewer and less power-demanding sequences. The RPA is the
integration of the vehicle speed and positive acceleration over the total driven distance [12]:

RPA =

∫
v(t)a(t)dt∫

v(t)dt
(4)

The RPA value was calculated for each trip and the distribution of the RPA for the
normalised number of trips is shown in Figure 4b. As can be seen, there is not a big
difference in the RPA distributions for the two gender groups. However, the distribution
for the women is slightly higher compared to the male drivers.

3.1.5. Acceleration and Deceleration

For the acceleration and deceleration, the time distributions for normalised time are
fairly similar between men and women (Figure 4c). However, as could be seen in the
RPA, the mean acceleration for female drivers was 0.336 m/s2, while it was slightly lower,
0.322 m/s2, for the men. In addition, for the deceleration the same trend is visible: women
had a mean of −0.368 m/s2 and men −0.336 m/s2.

Defining aggressive acceleration and deceleration can be considered subjective, as it is
related to what is considered to be normal acceleration and deceleration. This is also related
to the speed of the vehicle. The definition of aggressive acceleration and deceleration used
for this work is based on Eboli et al.’s [11] definition of unsafe driving. The criterion to
evaluate safe or unsafe driving as a function of speed is based on the maximum friction
value in the longitudinal direction between the road surface and tire for dry pavement
conditions for rural roads:

a = g ·
(

0.214
( v

100

)2
− 0.64

( v
100

)
+ 0.615

)
(5)

r = −g ·
(

0.214
( v

100

)2
− 0.64

( v
100

)
+ 0.615

)
(6)

By applying the definitions of safe and unsafe acceleration, the same trend seen in
mean acceleration and deceleration can also be seen here. More female drivers triggered
the criterion than men. Even so, the men that were triggering the aggressive accelera-
tion/deceleration criteria were doing it 1.4 times more often, compared to the female
drivers. In addition, when looking at the acceleration at different speeds, Figure 4d, the
male drivers not only drove at higher speeds, but they also had higher accelerations at
higher speeds compared to the female drivers. Of the 20 drivers most often triggering
the aggressive acceleration and deceleration criteria, 14 were male drivers and six were
female drivers. Interestingly, the same trend can be seen when looking at the 20 drivers
with lowest numbers of times triggering the criteria (or not at al), where five were females
and 15 were male drivers.

3.1.6. Inclination to Follow Speed Limits

Two investigations were conducted to evaluate the time driven at different road types.
Based on the GPS position, the road type and speed limit of the road were extracted from
road grid data from the Swedish Transport Administration [38]. The first investigation
only took into account the actual vehicle speed and evaluated the percentage of time
driven below 50 km/h (urban), in 50–90 km/h (rural) and above 90 km/h (highway). The
second investigation instead considered the road classification and speed limit for the road.
Fascinatingly, the investigations resulted in two rather different time distributions.

In Figure 5a, the result from the first investigation, percentage of time driven at
different speeds shows that female drivers spent more time at lower speeds compared to
the male drivers, as shown in the speed distribution analysis. The female drivers spent
more than half of the driven time at speeds lower than 50 km/h. The male drivers instead
spent more than half of the driving time at speeds above 50 km/h. When investigating
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time distribution based on the road speed limit, Figure 5b, the difference in the percentage
of time driven in the different road categories is however minor.

Based on road speed limit, Figure 5b, a third of the time was spent driving on roads
with speeds less than 50 km/h and around 27% of the time on highway, for both men and
women. However, as seen in Figure 5a the vehicle speed data did not capture this. The
discrepancy is larger for the female drivers, where 18% extra time was spent at speeds
below 50 km/h.
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Figure 5. Percentage of time driven on urban, rural and highway road type based on (a) vehicle
speed and (b) road speed limit.

To further evaluate the inclination to follow the speed limits, the speed breach and time
spent speed breaching was investigated. In Table 1, a compilation of six different speed breach
levels are summarised with the resulting percentage of drivers in each gender group violating
the different speed breach levels (one driver corresponds to women 2.08% and to men 1.33%).

Table 1. Comparison of drivers speeding and the time spent speeding at different levels of speed
breach in each gender group in percentage.

Speed Breach Gender >30% >20% >10% >5% of Time

>5 km/h F 6.25 18.75 50 83.33
M 12.0 29.33 54.67 74.67

>10 km/h F 2.08 6.25 18.75 41.67
M 1.33 14.67 26.67 49.33

>15 km/h F 0 2.08 6.25 20.83
M 0 1.33 13.33 28.0

>20 km/h F 0 0 2.08 6.25
M 0 0 4 2.08

>25 km/h F 0 0 0 2.08
M 0 0 2.67 8.0

>30 km/h F 0 0 0 0
M 0 0 0 2.67
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The results show that in this study, a large part of the drivers violated the speed limit
on at least one occasion. A total of 83% of the women and 75% of the men mildly over-sped
(more than 5 km/h over the speed limit) at least 5% of the driven time. However, the
percentage of women speeding reduced notably with increasing percentages of time speed
breaching. Additionally, when speeding, the men did it for a larger percentage of the time
driven and at higher speeding levels. Looking at drivers who were speed breaching more
than 10 km/h, the men are over-represented. Interestingly, both gender groups had a few
drivers that stood out as more extreme speeders.

Looking at drivers with no or less than 5% driving time with speed breaching, Table 2,
we find that the remainder of the drivers, 25% of the men and 17% women, fulfil this
criterion. The percentage of men with very few occasions of speed breach was consistently
higher than the percentage of women drivers. Drivers with less than 1% of time speeding
or never speeding consist of five men and only one woman.

Table 2. Comparison of the drivers with least time spent speeding, in percentage for each gen-
der group.

Gender <5% <4% <3% <2% <1% of Time

F 16.67 14.58 10.42 6.25 2.08

M 25.33 20.0 17.33 10.67 6.67

3.1.7. Classification of Driver Style

By combining the above criteria, speeding, acceleration, deceleration and RPA, the
drivers were categorised into aggressive, normal or gentle drivers. An aggressive driver
was assumed to have a higher measure than the mean value plus the standard deviation,
and a gentle driver was assumed to have a measure lower than the mean value minus the
standard deviation. All criteria were then weighted together, for an overall evaluation of
the driver. Again, the mean and standard deviation were used as criteria for aggressive
and gentle drivers. No driver was considered aggressive in all four criteria; however,
five drivers were considered gentle drivers in all four criteria: four men and one woman. In
total, of the 14 drivers considered gentle drivers, only three were female drivers, which was
not expected beforehand. For the aggressive drivers, the distribution between the genders
was more even, with 13 aggressive drivers, five women and eight men, corresponding to
10% of the drivers for each gender group.

3.1.8. Inferential Quantification of Driving Style by ML

A further investigation of aggressive and gentle driving styles was conducted using
ML, an isolated forest algorithm from the SVM family of classifiers [30]. The SVM was
run on high-performance computing (HPC) nodes with limited computational resources.
Due to this, the data set had to be reduced to a sub-group from the 123 drivers. As the
initial data set was unbalanced in the disadvantage in the number of female drivers, care
was taken in the choice of the ML subgroup on which the Isolation Forest outlier analysis
was applied. Accordingly, an arbitrarily chosen subset of 14 drivers with a 50/50 balanced
gender distribution was used. The unsafe driving criteria used in the descriptive statistical
analysis, Equations (5) and (6), were used for the ML algorithm. The ML algorithm classified
72.8% of the outlier behaviour as male drivers and the remainder outliers as female drivers.

A visualisation of the results of the algorithm can be seen in Figure 6. For pedagogical
reasons, the outlier plot is in a two-dimensional space and the total dimension of the data
set is a five-feature hyperplane. The reported ML approach is intrinsically scalable to
higher-dimensional data. The contour background is generated by the algorithm and gives
an estimate of the driving style: the lighter the colour, the gentler the driving style is; the
darker the colour, the more aggressive the driving style is. As can be seen in Figure 6, the
zones identified by the SVM algorithm managed well to capture the driving style. The
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yellow circles represent a registered driving point, to the left an aggressive and to the right
a gentle driving style.
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Figure 6. Isolation forest quantification for driving style: the darker the colour of the contour, the
more aggressive the driving style is. The yellow circles represent a registered driving point for two
different drivers, to the left an aggressive and to the right a gentle.

3.2. Battery Cell Lifetime

The lifetime testing was separated into two test batches, where all tests were charged
with 0.5 C CC-CV. The first group tested with CC discharge cycles from 0.2 C to 0.6 C,
representing different power demanding driving cycles, was only applied to the MJ1 cells.
For the CC tests, the expected results of increased ageing for increased C-rate were observed
(Figure 7). However, the large spread between the duplicate cells was unexpected. It is not
uncommon to see a small spread in performance for mass-produced cells; however, the
spread seen for the MJ1 cell was surprisingly large. Spread in cell performance has been
reported by other researchers [39–42]. The large spread made the analysis more difficult;
however, for tests with increasing C-rate, the expected increase in cell ageing could be seen.
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Figure 7. (a) C/10 capacity degradation and (b) resistance increase for the MJ1 cells tested with CC
with three different C-rates.

In the second test batch, with the dynamic current profiles described in Section 2.2.2,
both MJ1 and 22P cells were included. This test was designed to investigate how the
transient current amplitude, due to acceleration and deceleration, impact the battery ageing.
Again, MJ1 cells displayed a large spread between duplicates (Figure 8). Still, cells tested
with the aggressive driving cycle showed a larger loss of capacity than those with the
normal and gentle driving cycles. Surprisingly, cells tested with the gentle driving cycle
had a larger resistance increase (Figure 8b). For 22P cells, much more uniform ageing
behaviour between the duplicates was seen. Contrary to MJ1 cells, there could not be seen
any difference in the ageing trends due to the transient current amplitude (Figure 8a). If any,
the normal driver case introduced a marginal resistance increase; however, the difference
was too small to draw any conclusions from.
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Figure 8. (a) C/10 capacity degradation and (b) resistance increase for the two cell types when tested
with the driving cycles corresponding to the three different driving styles.

4. Discussion

This study is based on a rather small number of vehicles from single households
where the gender of the driver could be determined. The analysed data are GPS-recorded
driver data and questionnaire replies from the drivers as well as vehicle brand, type and
specification. Of the 123 drivers, 75 were men and 48 were women. The unbalanced number
of drivers introduces an error that has not been calculated. Despite the unbalanced number
of men and women in this study, the two groups drove almost the same amount of time
on the different road types, 33% in urban, 40% in rural and 27% in highway. Thus, the
road type distribution is surprisingly similar for the two groups. When it comes to vehicle
selection, there was a clear difference between the gender groups. The findings in this study
support previous studies which concluded that women tend to select more environmentally
friendly vehicles of smaller size, with lower power capabilities, i.e., low PWR.

When looking at the recorded speed, similarities could be seen. Speeds were often
lower than the allowed speed limit, very likely due to traffic congestion during rush hours.
However, there are some interesting differences between the two groups. Women spent
more than 50% of the time at speeds <50 km/h, 18% more than expected based on road
type, while men spent 47% of the time at speeds <50 km/h, only 14% more than expected
based on road type. Men also had a 10 km/h higher shift in the speed distribution. The
higher speeds recorded for men were also reflected in speed limit violations. Men were
speeding for longer parts of the driven time and at higher levels of speed breach compared
to women. However, more than 80% of the women and 75% of the men were speeding at
some point.

For the RPA, women had slightly higher values compared to men. However, when
looking at acceleration, men were over-represented as drivers with aggressive or unsafe
acceleration, 20% compared to only 6% for women. Interestingly, for deceleration, the trend
was reversed. One reason for lower peak acceleration values for women could be the power
capability of their vehicles. Women had to a larger extent vehicles with lower PWR and
thus vehicles with limited acceleration capability.

Combining the four criteria, 10% of the drivers were labelled aggressive drivers with
38% women and 62% men. Despite the high speed breach levels and accelerations seen
for several of the men, normalising for each gender group, the contribution of aggressive
drivers was even from both gender groups. An additional fascinating result was that
out of the gentle drivers, 11% of the drivers, only three were women. The analysis has
shown that there is a larger spread in driver style within the male gender group, while
the female drivers cluster as a group which exhibits less variance in driving dynamics.
Thus, for this set of drivers, men could be concluded to be the gentler drivers but also the
most aggressive.

For the inferential quantification, the computational resources were limited. The
SVM was applied to a sub-group of 14 drivers total. However, the initial data set was
unbalanced, while the ML subgroup for the isolation forest outlier analysis was applied to
an arbitrarily chosen subset of drivers with a 50/50 balanced gender distribution. Despite
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the limited number of drivers, the inferential statistical analysis results conform with the
initial descriptive statistical analysis results. Drivers which were outliers comprised to
70% by individuals who classed themselves as the gender man. The introduction of ML
therefore enables automatised classification with higher numbers of features. The reported
proof of concept using real driving data enables the introduction of more tailored products
and supports sustainable resource usage.

Driver style is closely correlated with fuel consumption. A high RPA indicates high
fuel use, and similarly does speed oscillations, high acceleration/deceleration and number
of stops. Women had higher RPA and larger decelerations, while men had the more extreme
accelerations and higher speeds for longer times.

In a BEV, energy and power are provided from the battery. It is well established that
higher C-rates increase battery degradation, which was also confirmed for the MJ1 cells. An
aggressive driving style, defined by higher speed and high acceleration, is more energy- and
power-demanding and will result in higher average discharge current and peak transient
currents. The experimental results on the cell level was inconclusive, yet gave some
important indications. The MJ1 is a highly energy-optimised cell, including small amounts
of silicon in the graphite electrode; for this cell, the amplitude of the transient current seems
to be important. However, for the 22P, this seems not to impact ageing negatively.

An important note is that the 22P has been on the market for several years and has
a well-established chemistry, while the MJ1 is one of the first highly energy-optimised
cells on the market with silicon containing negative electrodes. Thus, silicon-containing
electrodes are still in the early development stages. This can also be seen in the larger
spread of the duplicate cells. Still, the results from this small study show that the current
amplitude of the transient current can for some cells impact the ageing noticeably.

5. Conclusions

So, do women drive better than men? This study cannot answer that; however, it has
concluded that there is a difference between how women and men drive. The average
female driver drives at lower speeds compared to the average male driver. When separating
the two gender groups’ drive behaviours, it can be seen that the male drivers have a much
broader driver distribution compared to female drivers, which are a more homogeneous
group. Hence, the most aggressive but also the gentlest drivers can be found among
the men.

There is a large number of male drivers that drive at higher speeds, use higher
accelerations and spend more time speeding and at higher speed limit breach. However, a
majority of the female drivers violate the speed limit as well, though with a lower speed
limit breach. Interestingly, the average female driver also tends to have higher acceleration
and deceleration compared to the average male driver. This may be attributed to the gearing
ratio practices by original equipment manufacturer, applied for smaller PWR vehicles.

Another clear trend seen is that men and women choose different types of vehicles.
Women tend to select smaller and lighter vehicles with lower PWR compared to men.
Performance and high-end vehicle models were more common among the vehicles owned
by men.

For electric vehicles, the difference in driving style impacts battery ageing. The main
impact for battery ageing will be from average discharge current. The amplitude of the
dynamic part of the current only influences the ageing to a smaller extent. However,
different battery chemistries show different levels of sensitivity to the amplitude of the
dynamic current. The highly energy-optimised cell, MJ1, proved to lose more capacity for
higher amplitudes of the dynamic current, though the lower amplitude generated a larger
resistance increase. In contradiction, the P22 cell showed no sensitivity to the amplitude
of the dynamic current. Thus, the amplitude of the dynamic current can for some cells be
a factor that needs to be considered for lifetime predictions, while it can be neglected for
other cells.
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