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Abstract: A special dual-tube reactor-dual fluidized bed reactor (DFBR), including an external heat
exchanger (EHE) and a bypass, was designed to solve the problems that the waste heat of the hot fluid
cannot be fully utilized and the reaction temperature cannot be accurately adjusted. Two connection
schemes of DFBR and EHE with their thermodynamic equilibrium models and algorithms were
proposed, and the optimal scheme was obtained by comparing the outlet temperature and thermal
load. The results of the thermodynamic and operating characteristics of the optimal scheme showed
that the hot fluid and the cold fluid had positive and negative effects on the heat transfer process,
respectively. Increasing the cold fluid mass flow rate in the main stream can enhance the thermal load
of the system and increasing the cold fluid mass flow rate in the bypass helped to increase the thermal
load of DFBR, even exceeding that of EHE. Adding a bypass can adjust temperature precisely and
increasing the inlet temperature can more effectively increase the adjustment range of the reaction
zone temperature. The experimental results showed that introducing a bypass can significantly
reduce the calculation deviation (12.8%), which decreased with the increasing temperature.

Keywords: bypass; dual fluidized bed reactor; external heat exchanger; numerical simulation;
thermodynamic characteristics

1. Introduction

Tubular reactor was the continuous operation reactor with a tubular shape, a large
length-to-diameter ratio, no mechanical or movable parts, low back-mixing phenomena,
and only relying on different structures of fluid pipelines [1–3], so its volumetric efficiency
(production ability of unit volume) was high, which was especially suitable for thermo-
chemical reaction occasions requiring high conversion rate or series reactions and widely
used in many fields such as chemical industry, medicine, food, petroleum, environmental
protection [4,5]. Among them, the dual-tube reactor was the common one, and its heating
zone (outer annular zone) was usually used to provide thermal energy for the reaction
zone (inner circular zone) [6–8]. However, since the high-temperature hot fluid in the
heating zone still had a higher temperature after heating the cold fluid in the reaction zone
and being discharged from the heating zone, its direct discharge can result in a waste of
thermal energy [9]. Therefore, it was very important for the design and development of the
dual-tube reactor to make full and reasonable use of the waste heat and reduce the input of
external thermal energy [10,11].

Generally speaking, the cold fluid entering the reaction zone of the inner tube needs
to be preheated in advance to reduce the internal heating time and improve the reaction
efficiency. It was a necessary and reasonable way to preheat the cold fluid entering the
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reaction zone by the high-temperature hot fluid flowing out of the heating zone. Moreover,
to the best of the authors’ knowledge, currently, a relatively common application to achieve
the above requirements was to equip the dual-tube reactor with an external heat exchanger
(EHE) [12]. Many researchers used EHE to control the thermal energy recovery and temper-
ature control of the tubular reactor. To improve the heat transfer efficiency of the dual-tube
reactor, some researchers developed a specific heat exchanger. Wang et al. designed a heat
exchanger system for a circulating fluidized bed and gasifier, which used the gas flowing
out of the EHE to control the flow of hot sand instead of a traditional mechanical method
to avoid friction loss and accurately controlled the reaction temperature [13]. Tian et al.
designed a system that can simultaneously control the solid flow of two heat exchangers to
adjust the heat transfer surface [14].

In addition, the thermal load and temperature control of EHE were also the focus of the
design of the dual-tube reactor system, especially for temperature-sensitive thermochemical
processes, such as the combustion and pyrolysis of pulverized coal, whose reaction temper-
ature in the reaction zone generally needed to be maintained constant. Therefore, when
EHE was applied, its outlet temperature needed to be strictly controlled. Currently, adding
a bypass to the heat exchanger was an effective way to control the outlet temperature.
Compared with conventional heat exchanger networks, this way can significantly improve
adjustment characteristics [15]. The research results of Luyben et al. showed that increasing
the effective heat transfer area and the proportion of the bypass flow rate can significantly
expand the adjustment range of the overall heat transfer coefficient [16]. Some researchers
developed a calculation method for the heat exchanger and its bypass flow rate and valve
opening to precisely control the temperature [10,14,17]. Furthermore, many researchers
developed mathematical models to determine the optimal parameters of EHE and bypass
pipelines [1,4,9,18].

In summary, although there were many studies on the application of EHE to dual-tube
reactors, the specific connection schemes of the two were not compared too much. Different
connection schemes led to different distributions of the temperature adjustment range
and thermal load in the dual-tube reactor [19]. When introducing the bypass adjustment,
the temperature adjustment and thermodynamic characteristics of different connection
schemes were still unknown, including the influence mechanism of operating parame-
ters on temperature, overall heat transfer coefficient and thermal load, and the changing
characteristics of the cold fluid in the main stream with the bypass.

Therefore, we attempted innovatively to introduce EHE and bypass regulation simul-
taneously for thermodynamic characteristics regulation of dual-tube reactors. The purpose
of this article was to utilize a special dual-tube reactor-dual fluidized bed reactor (DFBR),
whose inner tube and outer tube were both fluidized beds of excellent heat transfer effi-
ciency, to determine the optimal connection scheme of DFBR and EHE, and make full use of
thermal energy. First, two connection methods were proposed with their thermodynamic
equilibrium models establishment, a solution algorithm was developed, and the optimal
connection scheme was determined by numerical simulation. Then, the thermodynamic
and operating characteristics of the optimal connection scheme were obtained by numerical
simulation, with emphasis on the temperature and thermal load adjustment characteristics.
Finally, the DFBR and EHE experimental apparatus were built to verify the rationality of
the selected connection scheme by experiments. The results of this research can provide a
novel thermal energy utilization method and an EHE connection method for the tubular
reactor, which was of great significance to the development, utilization, and expansion of
the tubular reactor.

2. Heating Scheme

To facilitate the recycling of thermal energy, so that the DFBR system can work at
low energy-consumption operations, introducing a furnace to generate high-temperature
hot fluid (combustion gas) was an ideal heating method [20]. At the same time, adding
an EHE (spiral plate heat exchanger) can achieve the heat exchange process between hot
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fluid and cold fluid (air at room temperature, as a fluidized carrier gas for the reaction
zone). As shown in Figure 1, two common connection schemes of the DFBR and EHE were
selected and designed for comparative study, whose difference lay in the flow sequence
of the combustion gas (hot fluid in Figure 1). It passed through the DFBR first and then
entered the EHE in scheme 1, while it was the opposite in scheme 2. In addition, the cold
fluid was divided into a branch (mc,by) and directly entered the reaction zone, while the
main path (mc,in) needs to pass through the EHE. The precise temperature adjustment can
be realized by configuring the two flow rates above rationally.
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Figure 1. Connection schemes of DFBR and EHE: (1) DFBR; (2) furnace; (3) EHE: (a) scheme 1;
(b) scheme 2.

To facilitate the subsequent model establishment and numerical simulation, the main
parameters of DFBR and EHE are shown in Tables 1 and 2. In addition, the hot and cold
fluids were combustion gas (mainly nitrogen, carbon dioxide, and a small amount of water
steam) and air, respectively, whose thermophysical properties at different temperatures can
be calculated by interpolation using the data in Tables 3 and 4.
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Table 1. Main parameters of DFBR.

Parameter Value

Inner tube diameter 180 mm o.d., 170 mm i.d.
Outer tube diameter 273 mm o.d., 263 mm i.d.

Inner pipe length 1.4 m
Outer pipe length 1.55 m

Pipes material 310S
Others material 304

Packing type quartz sand
Quartz sand particles specification 0.256 mm

Quartz sand material SiO2

Table 2. Main parameters of EHE.

Parameter Value

Board thickness 0.4 m
Board width 0.003 m

Actual heat transfer area 1.7 m2

Inter-channel spacing 0.02 m
Center circle diameter 0.1 m

Maximum outer diameter 0.658 m
Material 310S

Table 3. Physical properties of combustion gas.

Temperature, ◦C Density, (kg/m3)
Specific Heat Capacity,

kJ/(kg·◦C)
Conductivity,

W/(m·◦C)

300 0.755 2.15 0.0556
700 0.566 2.26 0.0683
1000 0.443 2.31 0.0807

Table 4. Physical properties of dry air.

Temperature, ◦C Density, (kg/m3)
Specific Heat Capacity,

kJ/(kg·◦C)
Conductivity,

W/(m·◦C)

20 1.205 1.00 0.0259
350 0.566 1.06 0.0419
1000 0.277 1.18 0.0807

3. Development of Thermodynamic Equilibrium Model

A comparative analysis of the two connection schemes was carried out by theoretical
calculation methods in this section. Simplify the connection schemes and establish the
thermodynamic equilibrium models to describe the mathematical relationship between the
operating parameters and the adjustment object. Meanwhile, the operating characteristics
of the DFBR can be easily obtained to evaluate the rationality of the DFBR system connection
scheme by numerical simulation.

3.1. Model Establishment

It was known that the whole system was composed of DPFB and EXE, and DPFB
can also be regarded as a heat exchanger, so the whole system can be regarded as a
heat exchanger network in which two heat exchangers were connected in a certain way.
For convenience, DPFB was referred to as the main heat exchanger below and the two
thermodynamic equilibrium models of the two schemes were shown in Figure 2.
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Figure 2. Thermodynamic equilibrium model of DFBR and EHE: (a): scheme 1; (b): scheme 2.

Here, some basic assumptions were as follows:

(1) Ignore the effect of gravity on the gas;
(2) The kinetic energy of gas was conserved;
(3) Gas and solid mass were conserved;
(4) Ignore the temperature gradient in the radial direction of the inner tube;
(5) Ignore the effect of temperature on the physical properties of particles and metal containers;
(6) The particle size distribution was uniform and ignore deformation and cracking;
(7) Ignore the effect of radiation heat transfer.

According to the thermodynamic equilibrium model, the corresponding mathematical
relationship can be established. Here, scheme 1 was taken as an example to summarize
the establishment steps of a mathematical relationship. First, based on the conservation of
energy and mass, the following equations were obtained [21,22]:

Cphmh(Th,1 − Th,2) = Cpcmc(Tc,4 − Tc,3) (1)

Cphmh(Th,2 − Th,3) = Cpcmc,in(Tc,2 − Tc,1) (2)

mc = mc,in + mc,by (3)

Cpcmc,in(Tc,2 − Tc,3) = Cpcmc,by(Tc,3 − Tc,1) (4)

Next, the heat transfer constitutive equations were established and closed. The in-
ternal heat transfer process of the main heat exchanger and EHE can be described by the
following equations:

Q1 = A1K1tm1 (5)

Q2 = A2K2tm2 (6)

The effective heat transfer area of the main heat exchanger was a known amount.
Furthermore, this EHE was a spiral plate heat exchanger whose heat exchange method was
countercurrent heat exchange, whose main structural parameters were shown in Table 3,
and whose effective heat transfer area was larger than DFBR (the outer surface area of the
inner tube).
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The overall heat transfer coefficient K1 of DFBR can be calculated by our previous
research results [23]:

K1 =
1

d2
αgs1d1

+ d2
αgs2d1

+ d2
αsw1d1

+ 1
αsw2

+ δ1d2
λ1d1

(7)

The overall heat transfer coefficient K2 of EHE can be obtained by the classic heat
transfer equations. If the effect of impurities on heat transfer were ignored, there were [21]:

K2 =
1

1
αh

+ δ2
λ2

+ 1
αc

(8)

αx = 8.4
λx

de,x2

(
mxCpx

λxlx

)0.2
(9)

In summary, considering DFBR and EHE as an adiabatic system and ignoring the ther-
mal energy dissipation of the connecting tubes, the following thermodynamic equilibrium
relationships can be obtained:

Q1 = Cphmh(Th,1 − Th,2)
Q1 = Cpcmc(Tc,4 − Tc,3)
Q1 = A1K1tm1
tm1 = t11−t12

ln
(

t11
t12

)
t11 = Th,1 − Tc,3
t12 = Th,2 − Tc,4

(10)



Q2 = Cphmh(Th,2 − Th,3)
Q2 = Cpcmc,in(Tc,2 − Tc,1)
mc = mc,in + mc,by
Cpcmc,in(Tc,2 − Tc,3) = Cpcmc,by(Tc,3 − Tc,1)
Q2 = A2K2tm2

tm2 = t21−t22

ln
(

t21
t22

)
t21 = Th,3 − Tc,1
t22 = Th,2 − Tc,2

(11)

3.2. Algorithm Development

DFBR and EHE can be meshed along the effective heat exchange surface, then
Equations (10) and (11) can be iteratively solved by the one-dimensional finite difference
method. For Equation (10), the calculation started and solved from the fluid inlet until
the last grid. Due to the relatively short grid length, Equation (10) can be simplified and
discrete as follows: 

∆Qi
1 = Cphmh

(
Ti

h − Ti+1
h

)
∆Qi

1 = Cpcmc
(
Ti

c − Ti+1
c
)

∆Qi
1 = ∆A1Ki

1ti
m1

ti
m1 = Ti

h − Ti
c

(12)

Then, the total amount of heat transfer in DFBR was:

Q1 ≈
n

∑
i=1

∆Qi
1 (13)

The solution can be achieved when the inlet boundary conditions of DFBR were
known. However, since the inlet temperature of cold fluid Tc,3 of DFBR was unknown, and
the EHE was a countercurrent heat exchanger, the above calculation cannot be carried out.
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To start the iterative calculation, a hypothetical value at a certain node needed to be given.
Start to calculate at the inlet cold fluid of EHE, given an initial value Th,3[0] at the hot fluid
outlet, Tc,2 and Th,2, can be solved and derived. Then, Tc,2 and Th,1 can be taken as the
starting point to solve to get Tc,4 and Th,2, and Th,3 can be obtained. Finally, the difference
between Th,3 and Th,3[0] was calculated and iteratively checked to obtain an approximate
solution. A program was written to realize the calculation, whose program flow was shown
in Figure 3.
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e was the allowed deviation and set to 0.1%.
According to our previous research results, the number of grids was set to 10,000 to

minimize the calculation accuracy and minimize the calculation time [24]. The developed
model can be used to calculate the temperature and overall heat transfer coefficient of the
outlet and other positions of DFBR when the inlet boundary conditions were known. On
the contrary, if the temperature and fluid flow rate of a certain position were known, the
related inlet parameters can also be deduced.

4. Numeral Simulation

In the same way, the thermodynamic equilibrium model of scheme 2 was also estab-
lished. Based on the developed model, numerical simulation was carried out to analyze the
two schemes comparatively. Subsequently, further studies of the preferred scheme were
carried out to analyze the thermodynamic and operating characteristics of DFBR and EHE.

4.1. Comparison of the Two Connection Schemes

First, the mathematical models of the two schemes were solved, respectively, to obtain
their basic thermodynamic characteristics for comparative analysis. The mass flow rates
of the hot fluid and cold fluid in the main stream were fixed at mh = 0.0042 kg/s and
mc,in = 0.0008 kg/s, respectively. The changing trend of the outlet temperature and thermal
load with the bypass flow rate (mc,by) were obtained, as shown in Figure 4. In Figure 4a,
it can be seen that for scheme 2, with the increase of mc,by, the temperature difference
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between the hot and cold fluid gradually increased, but it was not obvious, and the outlet
temperature of the hot fluid was always higher than that of the cold fluid. This was because
DFBR was a parallel flow heat exchanger, where the direction of the fluid in the heating
zone and the reaction zone was the same and the outlets were on the same side. In contrast,
the outlet temperature of the hot fluid in scheme 1 was lower than that of the cold fluid,
and lower than the outlet temperature of the hot fluid in scheme 2 under the same working
conditions, indicating that the thermal energy utilization efficiency of scheme 1 was better.
In Figure 4b, the thermal load of the two schemes was compared, and it can be seen that the
thermal load of DFBR in scheme 1 was higher while the thermal load of EHE in scheme 2
was higher. In addition, compared with scheme 2, the thermal load in scheme 1 was more
sensitive to mc,by and had a larger adjustment range. In summary, scheme 1 was more
suitable for DFBR and EHE.
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temperature; (b) thermal load.

4.2. Thermodynamic Characteristics

When mh, mc,in, and mc,by were taken as independent variables, respectively, to cal-
culate the outlet temperatures under the conditions that Tc,1 = 30 ◦C and Th,1 = 850 ◦C,
and the results were shown in Figure 5. In Figure 5a, it can be seen that as mh increased,
Tc,4 and Th,3 both increased, and whether increasing mc,in or mc,by had a negative effect on
the outlet temperature, as shown in Figure 5b,c. This was because the hot fluid was the
thermal source of the entire system, and increasing mh can inevitably increase Tc,4 and Th,3,
while the cold fluid absorbed thermal energy, and increasing mc,in and mc,by can increase
the absorption of thermal energy.
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Similarly, the effect of fluid mass flow rate on the overall heat transfer coefficient was
studied, as shown in Figure 6. It can be seen that K1 was higher than K2, which was the
result of the fluidized bed in DFBR promoting the heat transfer process. mh had a positive
effect on K1 and K2 because the fluid mass flow rate was proportional to the gas velocity,
whose increase can promote the heat transfer process. It can also be observed that the
cold fluid (main stream and bypass) had a certain negative effect on K1 and K2. This was
because the increasing mc,in or mc,by decreased the average temperature of the hot and cold
fluids, and thus the fluid thermal conductivity also decreased, which was proportional to
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K1 and K2. This phenomenon showed that the effect of fluid thermal conductivity on heat
transfer efficiency was also very significant.
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Figure 6. The relationship between the mass flow rate of fluid and the overall heat transfer co-
efficients of DPFB and EHE: (a) mc,in = 0.0042 kg/s, mc,by = 0; (b) mh = 0.0042 kg/s, mc,by = 0;
(c) mh = 0.0034 kg/s, mc,in = 0.002 kg/s.

Next, the relationship between the thermal load of DFBR and EHE with the fluid mass
flow rate was calculated. The thermal load referred to the total heat transfer amount, as
shown in Figure 7, where Qt was the sum of Q1 and Q2. It can be seen that the increasing
mh, mc,in, and mc,by can increase Qt. However, as shown in Figure 7a, Q1 decreased with
the increasing mh, which was mainly because the increase of mh reduced the average
temperature difference between the cold and hot fluids in DFBR. Meanwhile, as shown in
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Figure 7b, as mc,in increased, Q1 continued to rise, which was the result of the increase in
the average temperature difference. While Q2 first rose and then fell, which was caused by
the increase in temperature difference between the hot and cold fluids in EHE cannot keep
up with the decrease in the cold fluid thermal conductivity. Although the fluid thermal
conductivity in DFBR also decreased, due to the existence of the fluidized bed, the heat
transfer efficiency was still higher. It can be seen in Figure 7c that as mc,by increased, the
heat transfer of DFBR gradually became dominant. This was because the fluid in the bypass
directly entered the reaction zone, which not only promoted the heat transfer efficiency
of the fluidized bed in the reaction zone but also expanded the temperature difference
between cold and hot fluids. This phenomenon also highlighted the great role played by
the fluidized bed in the process of convective heat transfer. However, from the comparison
of Figure 7b,c, the same increase in the mass flow rate of the cold fluid, increasing mc,in can
achieve a higher Qt, which confirmed the excellent effect of the combination of DFBR and
EHE. Increasing the fluid mass flow rate of the main stream enabled the two heat exchangers
to be fully utilized and improved the overall heat transfer efficiency. The temperature of the
cold fluid in the bypass was greatly increased after being heated by DFBR, which reduced
the average temperature difference of EHE and heat transfer efficiency. The purpose of
effectively distributing the thermal load can be achieved by adjusting the mass flow rate
ratio of the cold fluid in main stream and bypass, which also reflected the role of the
bypass flow.
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4.3. Operating Characteristics

The temperature adjustment characteristics were studied to evaluate the operating
characteristics of the entire system. The mass flow rate in the bypass had a significant impact
on the heat transfer and thermodynamic characteristics. To further explore the operating
characteristics of the DFBR and EHE, mc,by was used as a variable to investigate the
changing trend between the internal temperature of the reaction zone and other parameters.

The cold fluid in the bypass was mainly used to adjust the temperature separately.
Therefore, when vc,in = 0.36 m/s and vh,in = 0.0042 m/s were fixed, the relationship between
Tc,4 mc,by and mc,in, was obtained, as shown in Figure 8. It can be seen that mc,by decreased
with the increasing mc,in, but Tc,4 rose. This was because mc,in was heated by EHE, which
helped a lot to increase Tc,4. However, the sum of mc,in and mc,by was not constant,
this was because the physical properties of the fluids changed with the temperature.
Nevertheless, Tc,4, mc,by and mc,in still showed a strong linear relationship, which proved
that adjusting mc,in had a certain degree of reliability for Tc,4. In Figure 8b, when mh
increased, the temperature adjustment range increased because the total thermal energy
input was increased. In Figure 8c, Th,1 rose from 800 ◦C to 900 ◦C, and the adjustment
range of Tc,4 significantly increased. From this point of view, compared with increasing
mc,in, increasing Th,1 can more effectively increase the temperature adjustment range of
DFBR inside. In general, the way of adding bypass to EHE can theoretically adjust the
temperature in the reaction zone while keeping vc,in constant, and there was a good linear
relationship between the outlet temperature of the reaction zone and mc,by.
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5. Experimental Verification
5.1. Apparatus and Method

Finally, the experimental verification of the theoretical calculation results of the ther-
modynamic characteristics was carried out. In this section, the designed DFBR had its own
EHE, a spiral plate heat exchanger, whose structural parameters were shown in Table 2. In
order to verify the rationality of the connection scheme, a furnace was designed, whose
outlet was directly connected to the outer tube of DFBR for combustion. The DFBR and
EHE experimental apparatus was shown in Figure 9 [25]. According to scheme 1, the EHE
was placed at the bottom of DFBR. The cold fluid outlet can be directly connected to the
reaction zone, while the heating zone is connected to the hot fluid inlet through a pipeline.
The cold fluid inlet in the bypass was added to the side of the reaction zone. The fuel was
liquefied petroleum gas with a calorific value of about 88 MJ/kg. The compressed gas
was used to provide air for the furnace and fluidized carrier gas in the reaction zone. Ball
valves adjusted the fluid mass flow rate. Thermocouples were installed in the reaction zone,
heating zone of DFBR, and each nozzle of EHE to detect temperature. Some thermcouples,
pressure meters and flow valves were used as sensors.
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Figure 9. Schematic diagram of the DFBR and EHE experimental apparatus(red arrows: hot fluid;
blue arrows: cold fluid).

This content was to measure the temperature of each position of DFBR and EHE under
the fixed fluid mass flow rate and compare it with the theoretical calculation results. In
order to facilitate operation, maintain the outlet temperature and mass flow rate of the
furnace, and change the mass flow rate of the two cold fluids.

5.2. Results and Discussion

The outlet temperature of the reaction zone (Tc,4 in Figure 2) under different cold fluid
mass flow rates was measured and compared with the calculated results. Figure 10a was
the relationship of Tc,4 and mc,in when mc,by was 0. It can be seen that the calculated values
were in good agreement with the measured values. As Tc,4 increased, the deviation also
increased towards 12.8%. This was mainly due to the increase in thermal energy loss after
Tc,4 rose. Subsequently, mc,by was increased to 7 × 10−4 kg/s, and the result was shown in
Figure 10b. It can be seen that Tc,4 decreased significantly, because the total absorption of
thermal energy of the cold fluid increased at this time, and the calculation deviation also
decreased significantly due to the decrease in temperature, which was about 5.4%.
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Figure 10. Comparison of the outlet temperatures of reactor between calculated and experimental
values of Tc,4: (a) cold fluid in main stream: mh = 0.0042 kg/s, Th,1 = 850 ◦C, mc,by = 0; (b) cold fluid
in main stream: mh = 0.0042 kg/s, Th,1 = 850 ◦C, mc,by = 7 × 10−4 kg/s.

In summary, the theoretical calculation results of thermodynamic characteristics were
highly reliable and can be used in the thermodynamic calculations of the DFBR system to
investigate the rationality of the scheme. Meanwhile, the test results also confirmed the
design of the tubular reactor structure, thermal energy supply, and effect of connection of
DFBR and EHE.

6. Conclusions

In this study, two connection schemes of DFBR and EHE, including a bypass, with
their thermodynamic equilibrium model were proposed. The heat transfer equations and al-
gorithm were established and the optimal one was selected by numerical simulation. Then,
the thermodynamic and operating characteristics were studied to obtain the adjustment
range of temperature and fluid mass flow rate. Finally, the DFBR and EHE experimental
apparatus were set up to verify the rationality of the scheme. The main conclusions were
as follows:

(1) DFBR was taken as the main body, and the design idea of the tubular reactor system
was proposed. EHE was added to improve thermal energy utilization efficiency
and a bypass was introduced to achieve precise temperature adjustment, and two
connection schemes were proposed.

(2) A thermodynamic equilibrium model of the reactor system was established and a
solution algorithm was proposed. The effects of the two connection schemes were
compared by numerical simulation and scheme 1 had higher thermal energy utiliza-
tion efficiency. In addition, the thermal loads of scheme 1 were more sensitive to
the cold fluid flow rate in the bypass, which had a larger adjustment range and was
suitable for DFBR and EHE.

(3) The basic thermodynamic and operating characteristics of the optimal scheme were
carried out by numerical simulation further. The existence of the fluidized bed
promoted convective heat transfer with a higher overall heat transfer coefficient
of DFBR. Compared with increasing the fluid mass flow rate, increasing the inlet
temperature can more effectively increase the adjustment range of temperature in the
reaction zone inside.

(4) The experimental verification was carried out and the results showed that the calcu-
lated values obtained by the developed model were in good agreement with the
experimental values, and the calculation deviation decreased with the decrease
in temperature.
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Nomenclature
Acronyms
DTBR dual fluidized bed reactor
EHE external heat exchanger
Symbols
A1 effective surface area of heat transfer in DFBR, m2

A2 effective surface area of heat transfer in EHE, m2

Cpc specific heat capacity, J/(kg ◦C)
d1 diameter of the inner tube in DFBR, mm
d2 radius of the outer tube in DFBR, mm
de hydraulic diameter of tube section, m
i grid unit number, −
K1 overall heat transfer coefficient in DFBR, W/(m2· ◦C)
K2 overall heat transfer coefficient in EHE, W/(m2· ◦C)
l tube length, m
mh mass flow rate of the hot fluid, kg/s
mc,in mass flow rate of the cold fluid in the main stream, kg/s
mc,by mass flow rate of the cold fluid in the bypass, kg/s
n total number of grids, −
Q1 amount of the thermal energy in DFBR, W
Q2 amount of the thermal energy in EHE, W
Qt amount of the thermal energy in the whole system, W
T temperature, ◦C
tm1 logarithmic mean temperature in DFBR, ◦C
tm2 logarithmic mean temperature in EHE, ◦C
tm1

i logarithmic mean temperature of the i-th grid in DFBR, ◦C
vc,h velocity of the hot fluid, m/s
vc,in velocity of the cold fluid in the main stream, m/s
vc,by velocity of the cold fluid in the bypass, m/s
∆A1 effective heat transfer area of a single grid, W
∆Q1

i amount of the thermal energy of the i-th grid in DFBR, W
Greek Letters
α heat transfer coefficient in EHE, W/(m2·◦C)

αgs1
heat transfer coefficient between fluid and solid in the inner tube of DFBR,
W/(m2·◦C)

αgs2
heat transfer coefficient between fluid and solid in the outer tube of DFBR,
W/(m2·◦C)
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αsw1
heat transfer coefficient between the vessel and solid in the inner tube of
DFBR, W/(m2·◦C)

αsw2
heat transfer coefficient between the vessel and solid in the outer tube of
DFBR, W/(m2·◦C)

δ1 thickness of inner tube in DFBR, m
δ2 thickness of spiral plate wall, m
λ1 thermal conductivity of DFBR, W·(m·◦C)
λ2 thermal conductivity of EHE, W·(m·◦C)
Subscripts
c cold fluid
h hot fluid
x cold fluid or hot fluid
out gas outlet parameters
s solid
w the vessel wall
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