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Abstract: Asphaltene are large molecular crude constituents and their existence is related to numerous
problems. However, nanofluids have proven to be a very stable and effective way of dealing with
asphaltene agglomerations. This research addresses the effectiveness of nanofluids as compared to
traditional and available (FLOW-X) commercial inhibitors. The synthesis and characterization of
two green NPs and the preparation of nanofluids were performed successfully in this study. It was
found that by tuning the concentration of nanofluid, the efficiency increases by 17%. Crude samples
have shown different responses to nano inhibitors. It was found that nanofluids increase asphaltene
dissolution by nearly 22% as compared to commercial inhibitors.
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1. Introduction

Asphaltenes are physically coke-like compounds that alkanes can deposit and cause
to flocculate [1]. At room temperature, they are largely insoluble in typical paraffins such
as n-heptane, n-hexane, and n-pentane, but soluble in toluene or benzene. By studying its
structure and how asphaltene behaves in the presence of other hydrocarbon molecules,
several researchers have attempted to understand the nature of asphaltene and why it pre-
cipitates. SARA analysis, which stands for Saturates, Aromatics, Resins, and Asphaltenes,
is one method for calculating the asphaltene content in crude oil by weight percentage [2].
Once pressure, temperature, and compositional changes occur, asphaltene loses its stability,
and hence precipitation. It was found that during natural depletion, the amount of precipi-
tated asphaltene increases at the bubble point [3]. These changes affect reservoirs, tubing,
facilities for surface production, gas injection, and chemical treatment [4]. Researchers
have discovered that the physical characteristics of crude oil can change as a result of
asphaltene precipitation [5]. It was discovered that there is an ideal inhibitor concentration
that is essential to controlling deposition, using Sodium Dodecyl Sulfate (SDS), X−100, and
Salicylic Acid and Naphthalene [6]. The structure of asphaltene inhibitors causes them
to function as a bridge between residual oil, which is a non-polar substance, and asphal-
tene, which is a polar chemical. For example, inhibitors function by joining hydrophilic
groups to asphaltene and hydrophobic groups to the remaining oil. TiO2 (Titanium Oxide
nanoparticle) has been discovered to significantly improve asphaltene’s stability by creating
hydrogen bonds with an acidic medium. Because of their structural makeup, inhibitors
serve as a “bridge” between polar (asphaltene) and non-polar (the majority of oil) media,
preventing the aggregation of particles by joining hydrophilic groups to asphaltene and
hydrophobic groups to the majority of oil TiO2 [7]. Academics have proposed that the
average asphaltene aggregation size is more than 500 nm [8]. During EOR processes,
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asphaltene precipitation increases especially with CO2 injections [9]. The idea of using
a nanomaterial in asphaltene inhibition is still modern; however, there has been much
evidence showing that using metal oxide NPs will improve and disperse asphaltene. The
findings demonstrate that rutile (TiO2) fine nanoparticles can significantly increase the
stability of asphaltene in acidic settings and act in the opposite manner in basic condi-
tions. Metal oxide nanoparticles have a large specific surface area and a strong ability for
adsorption. Furthermore, the heteroatoms of oxygen, sulfur, and nitrogen contained in
asphaltene molecules can be absorbed by the surface of nanoparticles. By keeping the
asphaltene molecules in suspension and protecting them from precipitation and deposition,
oil recovery is increased by roughly 8–22% [10] (see Figure 1). Many scholars have studied
the application of nanotechnology in terms of (production, EOR, drilling, etc.) [11]. The
author in [12] found that asphaltene adsorbs to nickel–zeolite oxide nanoparticles. Based
on a number of factors, green technology-produced nanoparticles are considerably better
than those produced via physical and chemical processes. For instance, green methods
minimize the need for costly chemicals, utilize less energy, and produce products and
byproducts that are ecologically friendly. Table 1 demonstrates some of the key findings in
modern literature along with the outcomes of each study.
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Table 1. Uses of asphaltene Nano Inhibitors in literature.

Author year SARA% API Inhibitor AOS Outcome

[7] 2017 Asp 8.2%−11.4 22.4
26.7

0.04 wt%
(80%TiO2:20

%SiO2

production The onset of asphaltene flocculation
(the n-heptane volume increased).

[13] 2018

Saturate% 56.2
Aromatic% 34.1

Resin% 7.7
Asphaltene% 2.0

37 CaO 45 ppm
SiO2 45 ppm production/EOR

In wide ranges of data, as temperature
increased, asphaltene upper onset

pressure increased. CaO and
SiO2 nanoparticles decreased

asphaltene precipitations
in the presence of CO.

[14] 2017

(Poly
(vinyltoluene-

co-alpha-
methylstyrene))

6% wt

production

Asphaltene inhibitor makes the
asphaltene particles more stable due to

its unique ability to interact between
asphaltene particles and asphaltene

inhibitor molecules via p–p interactions
and hydrogen bonding.

[15] 2011 Asph 10% wt 19 TiO2
+ HNO3 (65%) production

Results show that rutile (TiO2) fine
nanoparticles can effectively enhance

the asphaltene stability in acidic
conditions and act inversely in

basic conditions.
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Table 1. Cont.

Author year SARA% API Inhibitor AOS Outcome

[16] 2020 A, B, C 500 ppm production

The results show that when an
asphaltene inhibitor is not injected into
the mixture of synthetic oil/n-heptane,
AOP (Asphaltene Onset Point) occurs at

35 vol.% of
n-heptane, while with addition of

3000 ppm of asphaltene B inhibitor,
AOP occurs at 60 vol.% of n-heptane.

[17] 2019

45.6
41
7.6
5.8

31.7 AI 1, 500 ppm production

The efficiency of the AI on dispersing
the asphaltenes

was observed to have a major impact on
the precipitation as possibly increasing

the deposition of
microcrystalline waxes.

[18] 2019

45
16.5
8.5
3

Wax 12

25.03 n-phenylamino
hexanol production

Asphaltene deposition in the pores of
sandstone core

is studied by flooding the virgin and
additive beneficiated crude oil

indicating less deposition in
beneficiated crude oil.

[19] 2012

28.04
21.16
12.48
38.32

SDJ agent
1% wt production

Colloid instability index greater than 0.9
can effectively

inhibit asphaltene deposition in the
wellbore.

[20] 2021 CNPs reservoir

Aggregation of asphaltene can be
delayed from 26 to

37% Vol n-C7 with the existence of
400 ppm CNPs.

2. Materials and Methods

A precursor of copper chloride (CuCl2), zinc sulfate (ZnSO4), and hydroxide (NaOH)
was acquired from Sigma-Aldrich Chemicals Co., Ltd. (Saint Louis, MO, USA) for the
synthesis of nanoparticles. In the city of Erbil, Eucalyptus nicholii was gathered from the
Soran province region. Two nano metal oxide particles were prepared and then subjected
to XRD, SEM, EDX, and UV–Vis spectroscopy for characterization. Methanol, Xylene, and
Dichloromethane (DCM) were acquired from Chem-Lab for the nanofluid synthesis. Nine
samples were utilized to examine the effectiveness of the nano inhibitor for asphaltene
dispersion testing. The samples and their corresponding attributes were gathered from
oilfields in Iraq. The wells are producing at depths between 2450 and 3720 m. Due to the
confidentiality of the data names, they have been given a different code; the pay zones
in these fields are qamchuka, pilaspe, Mishrif, sargalu, Baba, and shiranish. The fields’
previously used names have been removed. The fields often have various pay zones that are
produced from tertiary and cretaceous formations (upper and lower qamchuka, shiranish)
(see Table 2). A commercial inhibitor was procured from an oil field chemical provider in
order to compare the findings and the effectiveness of the produced nano-oxide fluid. This
inhibitor, known as FLOW-X, is frequently employed in field applications for the dispersion
of asphaltene.
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Table 2. Crude samples.

Sample Sample
Point Sp, Gr API Grade Known Asphaltene

Problem

K1 main stream 0.916 23 Medium Non
K2 well head 0.904 25 Medium Moderate
K3 well head 0.86 33 Light Non
K4 well head 0.871 31 light Moderate
K5 wellhead 0.898 26 Medium Non
K6 separator 0.84 37 Light Non
K7 wellhead 0.993 11 U. Heavy Sever
K8 storage tank 0.887 28 Intermediate Non
K9 mainstream 0.882 29 Intermediate Moderate

2.1. Preparation of Eucalyptus Leaf Extract

Eucalyptus Leaf was washed with deionized water to eliminate any contaminants.
The leaf was then left to dry for six days in a dark place. By using a grinder and a mortar,
the leaf was turned into fine powder. Approximately 100 g of the plant was added to
250 mL of deionized water and heated to 80 ◦C with continuous stirring for 35 min. The
resulting yellow solution was filtered by using Whatman paper at room temperature. The
extract was then collected in a 150 mL beaker to be used directly for the syntheses of ZnO
and CuO NPs.

2.2. Synthesis of Green CuO and ZnO Nanoparticles

Figure 2 shows the synthesis of ZnO and CuO NPs from copper chloride (CuCl2)
and zinc sulfate (ZnSO4). Initially, the extract was heated to 70 ◦C. Then, at a molarity
of 0.1, both metal salts were added dropwise to the plant extract at 60–70 ◦C while being
vigorously stirred, and a (green) solution for ZnO was formed ideally while for CuO NPs,
a (dark-green) solution was obtained. The PH level was then raised to 11.8 for CuO NPs
and 11.9 for ZnO NPs by adding NaOH solution dropwise since an acidic environment is
essential for the formation of nanomaterials. Subsequently, the solution was kept at 75 ◦C
for 45 min; then, the solution was washed with methanol and calcinated in a muffle furnace
at 350 ◦C for three hours. After Calcination, a fine powder was obtained (yellow-grey) ZnO
and (Black) for CuO NPs, and sent for characterization.
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Figure 2. Nanoparticle synthesis steps.

2.3. Syntheses of CuO and ZnO Nonfluids/Chemical

The nanofluid was prepared using Xylene, DBSA, Benzene, Toluene, and DCM. To
ensure a thorough dispersion of the nanomaterial, the nanopowder was first dissolved into
a combination of DCM (Dichloromethane) and Xylene with continuous stirring for 24 h.
The visual approach was employed in periods of 1 and 24 h with various concentrations to
test the stability of nanofluids (see Table 3), as detailed more in the sections below.
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Table 3. Composition of nonfluids in this study.

Name Particle% Xylene% DCM% DBSA% Toluene% Benzene%
ZnO NF <1% 15% 40% 2% 17% 25%
CuO NF <1% 15% 40% - 19% 25%

2.4. Asphaltene Dispersion Test
Asphaltene Dispersion Test ADT

A modified version of the asphaltene dispersant test was used, which was proposed
by [21]. This method is cost-effective, easy, and is used throughout fields as dispersant
testing for asphaltene inhibitor efficiency. The test procedure is split into two stages.
The first identifies the amount of crude that is required to give a measurable quantity of
precipitated asphaltene, and this volume is then used in the second phase to evaluate the
performance of the candidate chemicals.

Phase I
Dilute 25 mL of crude with 25 mL of toluene. Shake well to create the oil stock solution

and heat to 80 ◦C until 50% vol is achieved. Add 10 mL of hexane or pentane to each
graduated centrifuge tube. Add 50, 150, 200, 250, 300, 400, and 500 µL of the oil stock
solution to the centrifuge tubes, shake well, and allow them to stand for two hours. Observe
and record the percentage of sedimentation due to gravity. Chose the crude oil dose that
gives between 4 and 10% sedimentation after two hours for use in step 2. For the purpose
of having a clear baseline, the highest yielding dosage of crude oil was used for all ten
samples in this research.

Phase II
Prepare 1% solutions by weight of the dispersants to be evaluated in an appropriate

solvent. Thus, 1 ppm will be equivalent to 1 µL of dispersant solution. Add 10 mL of
hexane or pentane to the graduated centrifuge tubes. Dose the tubes with the required
amount of the dispersant. Typically, the following dose rates are chosen: 0 (blank), 100, 200,
and 300 ppm. Shake well. As previously identified in step 1, add the appropriate amount
of oil stock solution to each tube. Shake vigorously for 1 min. Allow tubes to stand for two
hours (see Figure 3). Observe and record the percentage of sedimentation due to gravity.
The percent dispersed is determined by the following formula:
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% dispersed = 100 (St−Sb)
St , where St = sediment in treated sample, and Sb = sediment

in blank.

2.5. Extraction of Asphaltene

The IP−143 method was used for the determination of crude oil asphaltene con-
tent [22]. n-Hexane and toluene were used for precipitation and purification of asphaltene,
respectively. First, 5 g of crude oil was weighed and mixed with 200 g of n-heptane with a
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ratio of 1:40 crude to solvent. The first reflux was performed for asphaltene precipitation
in crude oil by the n-Hexane solvent in the Soxhlet extractor. The primary reflux was
performed for 3 h; then, the n-hexane/crude oil solution was aged overnight in a dark place.
In the second stage, the obtained mixture was filtered using filter paper. The asphaltene
and a small number of other components were deposited on the filter paper. The second
reflux was performed for separating other components that were bonded in the filter paper
by adding n-hexane. In the last reflux, asphaltene on the filter paper was separated by
adding toluene. Finally, the asphaltene/toluene solution was put under a slow stream of
air to evaporate the toluene

3. Results

As shown before, the plant extract was used to synthesize the nanomaterial, and then
a stable nanofluid was prepared. The synthesized nanofluid was used as an inhibitor
for asphaltene.

3.1. UV–Vis of the Plant Extract

Reduction of Zn and Cu ions was performed by using eucalyptus leaf extract. The
important peak was 265, which is an indication of flavonoids [23] whose existence is
necessary for the bioreduction of metal salts (see Figure 4).
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3.2. FE-SEM, EDX, and Elemental Mapping Analysis

The purity of NPs was investigated using field emission scanning electrons at different
magnifications. In both cases for CuO NP and ZnO NPs, the shape of the structures was
round and unattached (Figure 5a,b). Note that in CuO NPs, there are some agglomerations
in structural shapes. EDX analysis showed very pure Zn, O, and Cu, all of whose peaks were
free of any impurities. The chemical elements were investigated using energy dispersive
X-ray spectroscopy (EDX) (Figure 5c,d). Almost no impurities were detected and the overall
composition of Nio NPs was Ni at 72% and oxygen at 27%, while for ZnO NPs, it was Zn
at 75% and oxygen at 24%. In order to improve the quality of the SEM images, NiO NPs
were coated with a thin layer of gold, which is why Au can be seen in the EDX spectrum.
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3.3. X-ray Diffraction (XRD)

Figures 6 and 7 show that an X-ray diffractometer was used to demonstrate the exis-
tence of nanoparticles and analyze their structural properties. CuO and ZnO nanoparticles
were scanned at 20 to 80 degrees 2 theta in accordance with JSPDS cards 98–006−9758
and 98–005−7478 (Figures 6 and 7). Nanoparticles were recognized and their structural
properties were examined using an X-ray diffractometer (Figures 6 and 7). The phytochem-
icals in plant extract are what cause the oxide peaks. No additional peak is visible in the
XRD patterns, which is a clear sign that all precursors and impurities were completely
washed and that no impurity peaks were observed by examining the full width at half
maximum (FWHM) value of the XRD spectrum. Consequently, the average crystallite
size was calculated from the XRD measurement using the Debye–Scherrer equation [24]
(Tables 4 and 5). It was found that CuO NPs are 52 nm on average, and ZnO NPs are
20 nm [24,25].

D =
0.95λ

βDcosθ
(1)
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Table 4. CuO NPs average crystalline size calculation using Debye–Scherrer Equation.

Peak Position 2θ (◦) FWHM Bsize (◦) D-Spacing (Å) Dp (nm)

31.2316 0.048 2.86159 179.6245
31.3156 0.036 2.86120 239.5484
31.7262 0.288 2.81810 29.97385
35.6244 0.288 2.51816 30.28406
38.863 0.336 2.31544 26.20617

45.4286 0.288 1.99489 31.25658
48.8144 0.384 1.86414 23.74646
53.4745 1.152 1.71216 8.071059
58.3345 0.768 1.58055 12.38219
61.625 0.768 1.50381 12.58912
66.174 0.768 1.41103 12.90474

68.1274 0.48 1.37525 20.88255
Average FWHM 0.467 Average size 52.2

Table 5. ZnO NPs average crystalline size calculation using Debye–Scherrer Equation.

Peak Position 2θ (◦) FWHM Bsize (◦) D-Spacing (Å) Dp (nm)

31.7811 0.2755 2.81569 31.34
34.4442 0.551 2.60384 15.78
36.3632 0.4723 2.47072 18.51
47.5726 0.4723 1.91145 19.21
56.4683 0.4723 1.62963 19.96
62.8988 0.7872 1.47761 12.36

Average FWHM 0.5051 Average size 19.52588

D is the average crystallite size (diameter), λ is the wavelength of the incident X-ray
(0.154 nm), θ is Bragg’s angle, and βD is full width at half maximum (FWHM).

3.4. Nanofluid Stability

The colloidal stability of nanoparticles was studied by using the visual method. The
main goal is to observe for any sedimentation. Copper oxide nanofluid was prepared at
100, 200, 300, and 700 ppm, as mentioned before, and observed for 1 h and 24 h. For the
first hour, the nanofluid remained stable and no sedimentation was observed, while after
24 h, some sedimentation was observed for both ZnO and CuO (Figure 8c).
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3.5. Asphaltene Dispersion Test

To ensure reliability and reproducibility of the test, each of the nine samples was tested
three times and the average was taken. Figure 8a shows the test results as an example. The
main difference in preparation for the test was that each of the samples required a certain
amount of crude concentration (microliter) to show around 10% precipitation as shown
in Figure 8b; for example, K3 required 300 µL of crude to show asphaltene, while some
of the crudes showed asphaltene at concentrations of 100–250 µL. For each crude sample,
concentrations of 100, 200, and 300–700 ppm were prepared for (CuO NPs, ZnO NPs, and
FLOW-X). In general, NPs gave an average improvement over the commercial inhibitor.

3.6. Blank Test Results

Figure 8b shows the results of the ADT control test for asphaltene. It is important to
note here that for most of the crude samples, asphaltene precipitation was kept at 10%,
which was crucial to determine the efficiency of the chemical inhibitor based on the amount
of initial precipitation. While samples K1, K3, and K6 showed a little less than 10% for the
given crude volume (Figure 9).
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3.7. ADT Results at 100–700 ppm Doses of Cuo, ZnO, and FLOW-X

Figure 9 shows the results of 100 ppm dosages for the three inhibitors used. It is
notable that the commercial inhibitor is effective on most crudes in reducing asphaltene at
the initial concentration, while (K9, K7) CuO nanofluids gave the best results in terms of
inhibiting asphaltene. Figure 10 shows asphaltene dispersion for each of the samples tested
in percentages of the total asphaltene. Some of the important observations are that at a
100 ppm dosage, crude type is the controlling factor, and for each type, certain optimizations
need to be considered. At a 200 ppm dosage for the three inhibitors used, it is clear that
the green metal nano oxide chemical performs better than the commercial inhibitor in K4,
K9, and K7. Some of the important observations noted are that at the 200 ppm dosage,
the inhibitor concentration is the controlling factor in reducing the amount of precipitated
asphaltene. At the 300 ppm dosage for the three inhibitors used, it is evident that ZnO NF
gave better results in terms of reducing or dispersing asphaltene as compared to the other
two inhibitors. While for the CuO NF, sample K7 was the most dispersed asphaltene in
most of the concentrations. For the 400–700 ppm dosage, ZnO showed the same trend as
before in that it had slightly better dispersion than FLOW-X; in some cases of 700 ppm, the
difference was almost 20% (K1–K4). From the properties of the tested crudes, it is obvious
that the CuO inhibitor was effective on heavy crude samples, whereas for light crudes, ZnO
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was better than FLOW-X. Further increasing the concentration would be uneconomical and
expensive, which is discussed later in this research. Figure 10 shows asphaltene dispersion
for each of the samples tested in percentages of the total asphaltene. Some of the important
observations are that at the 700 ppm dosage, the inhibitor reached its potential and no
distinct differences can be found above 700 ppm.
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3.8. Asphaltene Dispersion from UV–Vis Tests

Two crude samples, K3 and K7, were used in order to verify the ADT findings,
reliability, and repeatability of this test. First, 0.07 mg/mL of toluene was used to dissolve
the isolated asphaltene precipitate. Peaks for K3 and K7 were seen at 286 and 305 nm,
respectively. Figure 11 (K3 and K7) shows the absorbance for various inhibitor doses
(FLOW-X, CuO, and ZnO NFs).
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3.9. Inhibitor Efficacy and Feasibility of This Research

On the basis of inhibitor concentration in terms of ppm for each of the used chemicals
in Table 6, the efficiency of CuO, ZnO, and FLOW-X can be calculated in ppm/dispersed
asphaltene% to calculate whether it is feasible to use nano-inhibitors as compared to
those commercially available. This calculation is based on the amount of 1 ppm required
to disperse a certain amount of asphaltene, which means the lower value is efficient
when comparing concentration to concentration of the inhibitors used in this study. The
concertation of 400 ppm will be used since it gave the most tangible results. Results
show that ZnO nanofluid/chemical is on average 5−22% more effective than commercial
inhibitors. The most effective setup per ppm of asphaltene dispersed is ZnO for K6 at
5.1 ppm/1% asphaltene dispersed, and the least effective is FLOW-X for K7 at 10 ppm/1%
asphaltene. While CuO showed the worst results, it was the most effective on sample K7.

Table 6. Efficiency 1 ppm of inhibitor to 1% percent of asphaltene dispersion.

Sample 400/Dis FLOW-X 400/Dis ZnO 400/Dis CuO
K1 7.8 7.2 9.3
K2 7.3 7.0 9.3
K3 6.1 5.9 8.4
K4 5.9 5.9 7.8
K5 6.3 6.3 8.9
K6 5.4 5.1 6.9
K7 10.0 8.2 8.0
K8 6.0 6.8 7.8
K9 6.9 6.3 6.8

Average 6.8 6.5 8.1

4. Discussion

Many scholars have studied asphaltene adsorption into nanoparticles. The authors
in [26] found that synthesized calcium oxide nanoparticles have a greater adsorption
capacity than silicon dioxide. While [13] showed that CaO nanoparticles reduced asphaltene
precipitation during a reduction in pressure. The authors in [27] formulated a zirconia–
zinc–copper nanocomposite and found greater absorption levels than for zirconia alone.
The results of the ADT test are completely in line and confirm what the literature has found.
The confirmation of ADT tests by using UV–Vis also adds to the finding of this research
that metal oxide nanoparticles exhibit a higher adsorption capacity. Below are some key
points of discussion.

• Control tests for ADT were kept at 10% asphaltene for all samples, which can give
precise measurements and a good baseline indicator to compare the results of each
inhibitor of this research to each other.

• ADT is a simple and well-documented test and can be used in oil field trials to monitor
inhibitor performance.
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• At the 100 ppm dosage, the controlling factor was crude oil type in terms of API,
Specific gravity, and asphaltene content.

• A 500 ppm dosage of ZnO gave the best result out of the three inhibitors used, while
CuO for K7 was very efficient.

• At 100 ppm, FLOW-X was better in inhibiting asphaltene as it is used in oil fields.
• At 700 ppm, there was a negligible improvement, especially for CuO and ZnO NPs, and

the advantages of lower ppm outweigh the added cost of increasing the concentration.

5. Conclusions

In the context of this study, nano chemical inhibitors outperformed commercially avail-
able inhibitors in terms of improving asphaltene dispersion by a minimum of 5% to 22%.
Any inhibitor’s ability to work depends on a variety of factors, including (concentration,
efficiency, and manufacturing costs). The most effective formulation per concentration of
the active solution was the ZnO nanofluid/chemical. UV–Vis tests confirmed the visual
ADT findings. The use of nanomaterials, however, increases the extent of asphaltene
adsorption, thereby enhancing the inhibitory properties of commercial inhibitors, which
work very well. This study adds to the body of evidence showing how effectively and
efficiently asphaltene precipitation can be improved by nanotechnology. Some of the main
conclusions from this work are listed below.

• The ZnO nanofluid/chemical was the most efficient in terms of concentration per
asphaltene dispersion.

• The CuO nanofluid/chemical had the efficiency dispersion percentage of asphaltene
at heavy crudes.
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