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Abstract: The main problem in planning the optimal operation of renewable energy sources and
battery storage systems is the amount of data that must be considered to cover an entire observation
period. If the observation period is one year, the characteristic days or averaged data (daily, weekly
or monthly averages) are considered to reduce the number of data. Since the average values of the
entered data differ from the actual values, it is better to work with hourly or 15-min data at the annual
level. The study presents a framework for solving the problem of the optimal allocation and operation
of renewable energy sources and battery storage systems. The proposed method simultaneously
solves the optimal allocation and energy management problem considering hourly data at the annual
level. The fuzzy inference-based system is proposed for scheduling optimal profiles of battery storage
systems and renewable energy sources. The developed fuzzy inference system manages the power
factors of the photovoltaic and wind power systems, the power factor and output of the biogas plant,
and the operating status of the battery storage system. The presented method simultaneously finds
the optimal parameters of the energy management system and the optimal allocation and operation of
the renewable energy sources and the battery storage system. The developed method is based on the
calculation of steady-state power flow. The proposed method is to be used in the design phase for the
installation of various renewable energy sources and battery storage systems. In addition, the method
is intended to be used to optimally control the power output of energy sources and the operation of
energy storage systems during steady-state operation in order to operate the distribution network
with minimum annual active energy losses. The developed method is applied to the test distribution
system IEEE with 37 nodes. The reduction in annual energy losses in the tested distribution system is
about 80% compared to the base case without renewable energy sources and battery storage system.

Keywords: battery storage; distributed generation; energy loss reduction; fuzzy inference system;
metaheuristic optimization; power distribution system

1. Introduction

The use of renewable energy sources in the power grid has increased in the last
decade. Despite the environmental benefits, the installation of renewable energy sources
in the electricity distribution networks is challenging from a technical point of view. The
production units that use renewable energy sources are usually of a limited size. In order to
integrate more smaller units into the power grid, they are called distributed generation (DG).
Due to the variable intensity of primary energy from renewable sources, the implementation
of battery storage systems (BESS) is also increasingly present in the smart grid concept
of the power system [1]. The use of the DG and BESS units in synergy work aims to
exploit the available intensity of the energy sources as much as possible. However, using
the maximum available energy from DG sources is not always optimal from the point of
view of power/energy losses in the power distribution system. Various algorithms for
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controlling the output of DG and BESS are described in the literature [2]. In [3], the optimal
allocation of photovoltaic (PV) DG with BESS is determined by metaheuristic optimization
and using daily variable data of PV production and load shape. The authors of [4] use
the voltage value of the node of the BESS system in the power grid to determine the BESS
operating state (charging or discharging) with the goal of controlling the voltage in the
system. The use of BESS for frequency control in a power grid with a high penetration of PV
DG is presented in [5]. In [6], BESS is used for peak shaving of load of industrial consumers.
In [7], the daily load changes are considered in the optimization problem of allocation
and power distribution of BESS, with the aim of minimizing the losses and smoothing the
voltage profile in the system. The metaheuristic optimization technique, namely the genetic
algorithm (GA), is used to solve the problem. The optimal BESS allocation and control
is solved in [8] by the metahueuristic African buffalo optimization (ABO) method. The
optimization method comprises two stages (outside and inside) and considers changes
in DG production and consumer load at the daily level with hourly resolution. In [9], the
algorithm for controlling the voltage profile by multiple BESS units is presented considering
daily input data. The authors of [10] use a mathematical programming approach to solve
the optimization problem of the energy management system in a smart grid consisting of
different types of DG, BESS and electric vehicles (EVs). The objective of the optimization
problem is to minimize the cost of importing energy into the smart grid. The mathematical
programming formulation is also used in [11] to control the power DG outputs to control
the voltage and reactive power in the power grid. In [12], particle swarm optimization
(PSO) is used to find an optimal allocation of BESS, and a deterministic strategy for the
charge/discharge profile of BESS is proposed. The daily DG production and load profiles
are used for optimization, and the cost of BESS installation and operation is considered
as an objective function. The various methods of computational intelligence, artificial
neural network, fuzzy logic, and metaheuristic optimization are used in [13] to predict
the production of DG based on weather data, define the operational state of the microgrid
(grid-connected or islanded), and dynamically control the microgrid in islanded mode.
For a recent review of the application of computational intelligence techniques to PV
system modeling, see [14]. In [15], the metaheuristic optimization methods are applied
to optimize the parameters of the PID controller of the DC-DC boost converter. The
techno-economic optimization of DG sources for the case study of the Great Canary Island
using the HOMER energy software is presented in [16]. The study presents the prediction
of renewable energy production for the projected future demand growth for different
scenarios. In [17], the optimal allocation of PV DG for hourly data is solved at the daily level,
where minimizing losses is the objective function. In [18], the authors use a co-simulation
approach and a metaheuristic optimization method to solve the optimization problem
with the objective of minimizing losses at constant load values. In [19], a co-simulation
approach and metaheuristic optimization are also used to solve the optimal DG allocation
as well as the DG power factor and output considering the variable load. The application of
fuzzy systems for battery storage control is used for various applications of battery storage
systems. In [20], the fuzzy controller is used to dynamically control the battery storage
system while driving an electric vehicle to improve vehicle autonomy. The fuzzy controller
combined with metaheuristic optimization is used in [21] for dynamic thermal control of
a Li-ion battery. In [22], a hybrid neurofuzzy-genetic method for controlling the electric
current with the goal of optimizing the battery temperature is presented. In [23], a fuzzy
logic controller is used to dynamically control the flow of energy generated by renewable
sources to the battery storage system and/or the grid. Usually, a certain local input variable
is used as a control variable to control the output of BESS and DG. In the smart grid concept
of the modern power distribution system, the application of a power/energy management
system (PMS/EMS) is proposed [24]. In such a management system, various measurable
variables can be collected and used as input variables for decision making on the output
amount of BESS and DG in the power grid. As can be seen from the research on the
application of BESS in power distribution, a local variable of the network node where
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BESS is installed is usually used to control the power and operating conditions of BESS.
In this study, a method for solving the complex optimization problem of simultaneous
optimization of DG and BESS allocation and power management system parameters is
investigated. The objective of the optimization problem is to minimize the annual active
energy losses in the power distribution system. The optimization considers an annual
period with an hourly resolution of input and output data. Due to this approach, there are
8760 cases for which the optimal steady-state operation of the power generation and battery
storage systems must be found, which further increases the complexity of the problem.
Moreover, the developed method finds the optimal type of measurable variables for the
inputs of the power management block. The study proposes a fuzzy inference system
(FIS) based optimization system for power/energy management. The study proposes the
use of a simulation approach that combines power system simulation and metaheuristic
optimization tools. The FIS-based energy management system generates power factor and
power values of DG as well as the operating condition (charging/discharging) and power
of BESS. During the optimization process, the FIS block acts as a learning agent for which
the optimal parameters are tuned by the optimization procedure. In the previous study,
daily profiles were generally used when variable input data (DG production, load) were
used in the model. Here, we use variable data at the annual level with hourly resolution.
This study is the continuation of the earlier research of the author [25,26]. The rest of
the article is organized as follows. In the second section, the mathematical modeling and
the description of the optimization problem are presented. In the third section, a brief
overview of the co-simulation approach and simulation tools used is given. Section 4
presents the proposed method based on metaheuristic optimization and a co-simulation
approach. Section 5 presents the results of implementing the method in the test network.
The last section summarizes the conclusions.

2. The Optimization Problem Definition

In this study, the two-objective optimization problem is considered, so the multi-
objective problem is applied in this case. The problem is solved with optimization software
using the Pareto definitions of the solution of the multi-objective problem. The objective
function consists of the annual active energy losses Wloss and the annual apparent energy
Wexc exchanged between the distribution system and the higher-level system at the transfer
point (a substation). The problem is described mathematically as follows:

[Wloss(~x), Wexc(~x)]→ minimize , (1)

where specific objectives are calculated using active power losses Pi,loss, active Pi,exc, reactive
Qi,exc and apparent Si,exc powers exchanged in substation for n time periods ti over a year,
according to

Wloss =
n

∑
i=1

Pi,loss · ti

Wexc =
n

∑
i=1

Si,exc · ti

Si, exc =
√

P2
i,exc + Q2

i,exc ,

(2)

The constraints of the optimization problem consider the ranges of the node voltages
and the current limits of the power lines. The node voltage, line current and box (decision
variable ranges) constraints are in the form of inequality constraints:

Vmin ≤ Vi,j ≤ Vmaxfor each period ti and each node j

Ii,k ≤ Imaxfor each period ti and each line k

~xmin ≤ ~x ≤ ~xmix ,

(3)



Energies 2022, 15, 6884 4 of 17

where Vmin, Vi,j, Vmax are the minimum, calculated and maximum nodal voltages, respec-
tively, and Ii,k, Imax are the calculated and maximum (rated) line currents, respectively.
The proposed FIS energy management block consists of some steps based on fuzzy logic.
The FIS inputs and outputs are called linguistic variables, and each variable has some
intensity levels called linguistic values. The degree to which a linguistic value belongs to
a fuzzy set is defined by the membership function. The membership function is defined
for each linguistic value of each linguistic variable. The membership function can be of
different types, e.g., triangular, trapezoidal, Gaussian, and bell-shaped. Each of these types
has parameters that define the shape of the membership function. The crisp value of the
input variables is represented in FIS by the membership functions in the fuzzification
process. After fuzzification, the fuzzy rules are applied to produce a truth domain. The
defuzzification process is then applied to the truth domain to produce a crisp value for
the FIS output variable. The schematic overview of the FIS can be seen in Figure 1. The
parameters of the FIS membership functions and fuzzy rules are optimized during the
solution of the optimization problem (1).

Figure 1. Schematic overview of the FIS.

The solution of the optimization problem is the optimal values of the decision vari-
ables. The decision variables are the parameters of the FIS membership functions (xm f ,i, i ∈
(1, . . . , Nm f ), the allocation of the DG and BESS (xsize,j, xloc,j, j ∈ (1, . . . , Ndg,bess), the loca-
tions in the network where the FIS inputs are measured (xinFIS,k, k ∈ (1, . . . , NinFIS), fuzzy
rules (x f r,r, r ∈ (1, . . . , 3) and the type of FIS input (xtype,q, q ∈ (1, . . . , NinFIS):

~x = [xm f ,i, xsize,j, xloc,j, xinFIS,k, x f r,r, xtype,q]
T (4)

3. Co-Simulation Approach and Used Software Tools

The research is based on the so-called co-simulation approach. The co-simulation
approach enables the use of software simulation tools for power system calculation and
software tools for optimization algorithms. This approach ensures a more realistic mod-
eling of the physical system (in this case, the power distribution network) with fewer
approximations. The main drawback of using co-simulation in optimization is the lim-
itation of the type of optimization algorithm that can be used to solve the optimization
problem. Since the simulation software provides only numerical values as the result of
the calculations, this approach is a so-called “black box” optimization case. In this case,
only metaheuristic algorithms are suitable to perform the optimization process without
knowing the analytic notation of the objective function of the problem. The co-simulation
approach used (Figure 1) can be set up with any simulation/computation tool for power
systems and optimization methods. The main requirement for the tools used in the co-
simulation is the existence of compatible interfaces between the software used. We used
the Python programming environment and two well-known and widely used tools. For the
modeling of the distribution system, the software OpenDSS [27] is used, which is a modern
simulation tool for the analysis of the power distribution system (in particular, modern
distribution networks with DG and BESS). This tool allows modeling all objects present in
the power system, starting from sources, transformers, lines, loads to DG, BESS, capacitor
banks, various regulators and so on. OpenDSS is suitable for the modeling and simulation
of a general power system with balanced and unbalanced lines, loads and other objects. A
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metaheuristic optimization tool based on the ant colony optimization (ACO) method, called
the mixed-integer distributed ACO (MIDACO) solver [28], is used in the research. The
MIDACO solver is a general-purpose optimizer that can solve single- and multi-objective,
continuous, integer, mixed-integer, constrained, and unconstrained problems. In other
words, the MIDACO solver is capable of solving mixed-integer nonlinear programming
(MILP) optimization problems. Due to the above characteristics of OpenDSS and the
MIDACO solver, the tools are used here for simulating power systems and performing
optimization in a co-simulation environment.

4. Proposed Procedure for Optimization BESS and DG Allocation and Output Profiles

The FIS proposed for managing the profiles of the power factor of all DG types (PV,
wind, and biogas) and the power profiles of biogas DG and BESS use measurable quantities
as input. In developing the method, it was necessary to use “easily” measurable quantities
in the power system, such as node voltage, line current, and active and reactive power flows
in the lines. The proposed procedure simultaneously optimizes the BESS and DG allocation
and the parameters of the FIS energy management system. The whole procedure is based
on a co-simulation approach, where the simulation program for the power flow calculation
of the power distribution system works in a loop with the optimization program. The
optimization program (in this case, the MIDACO solver) optimizes the location and size
of the DG and BESS along with the FIS input variables and the FIS controller parameters.
The optimization program sends the BESS and DG allocation along with the FIS input
variables and the membership function parameters of all input and output FIS variables
to the power system simulation tool (in this case, the OpenDSS software). The power
system simulation tool runs the serial power flow at the annual level and calculates the data
needed to compute the objective function values. In such a setup, the FIS controller acts as
an agent during optimization using the reinforced learning approach. In the optimization
procedure, the FIS parameters are not optimized directly based on the FIS output values,
but based on the objective function whose values are affected by the FIS output values. The
schematic overview of the developed method is shown in Figure 2.

In order to reduce the complexity of the FIS structure and the number of decision
variables of the optimization problem, an energy management system consisting of one of
the simplest FISs for each controllable output variable is proposed, as shown in Figure 3.
The linguistic output variables of the FIS are the power factor of the PV, wind, and biogas
plants DG, the output power of the biogas plant, and the operating status and power of
BESS. Each linguistic variable has three linguistic values and the Gaussian membership
functions are used for linguistic values. The optimization procedure tries to find the optimal
mean and deviation of membership functions. The overview of the linguistic FIS variables
and their values can be found in Table 1. The FIS input variables are normalized in the
range (−1, 0, 1, 0) by comparing them to the minimum and maximum values obtained
for the base case (without DG and BESS in the distribution system). This means that the
universe of discourse of the FIS input variable is in the range of (−1, 0, 1, 0). The universe
of discourse of the FIS output variable is different for the different FISs. FIS 1–3, used to
generate the optimal power factor from DG, have a universe of discourse defined by the
constraints on the power factor ranges depending on the DG type (PV, wind, or biogas). FIS
4 and 5, used to generate the optimal biogas DG and BESS output power, have a universe
of discourse for output variables in the range (0, 1.0) for biogas DG and (−1.0, 1.0) for
BESS (negative values for BESS charging and positive for BESS discharging). This range
represents the normalized value of the DG or BESS output with respect to their rated power.
Thus, the results of FIS 4 and 5 are relative coefficients of the nominal power of DG and
BESS, respectively. The possible fuzzy rules that can be used in the FIS controllers are listed
in Table 2. The fuzzy rules shown in Table 2 are simply generated as a combination of
all the linguistic values of the input and output variables. These all possible fuzzy rules
are generated by simply enumerating all combinations for three linguistic input values
and three output values, resulting in nine possible fuzzy rules. One of the most important
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issues in the implementation of FIS is the definition of the fuzzy rules. The fuzzy rules
are usually defined based on expert knowledge, correlations between input and output
data, and physical laws (when a physical system is considered). The type of FIS input
(current, active power, reactive power, or nodal voltage) is not known in advance in the
proposed method. Rather, the type of FIS input is determined during the optimization
process. For this reason, it is difficult to define the fuzzy rules based on the physical laws
or mathematical rules that apply to the power flow calculation in the power system. The
number of rules incorporated in the proposed FIS energy management block is limited to
three fuzzy rules. Therefore, the optimization method tries to find three fuzzy rules for each
FIS by selecting from nine possible combinations (Table 2). So, the optimization algorithm
excludes three fuzzy rules from the set of all fuzzy rules (Table 2) and implements them
into the FIS (Figure 2).

Figure 2. Proposed optimization setup based on co-simulation approach.
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Figure 3. Structure of the FIS based energy/power management system.

Table 1. Generic FIS input and output linguistic variables with their linguistic values.

Linguistic Variable Linguistic Value

input low mid high
output low mid high

Table 2. Set of fuzzy rules from which a optimization method find three rules for implementation in FIS.

Rule Number Rule Expression

Rule 1 IF input IS low THEN output IS low
Rule 2 IF input IS low THEN output IS mid
Rule 3 IF input IS low THEN output IS high
Rule 4 IF input IS mid THEN output IS low
Rule 5 IF input IS mid THEN output IS mid
Rule 6 IF input IS mid THEN output IS high
Rule 7 IF input IS high THEN output IS low
Rule 8 IF input IS high THEN output IS mid
Rule 9 IF input IS high THEN output IS high
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The main objective of the proposed method is to find the optimal allocation and
operation of DG and BESS in the design phase of the installation of DG and BESS in the
power distribution network. The input data used to solve the optimization problem in the
planning phase of the installation of DG and BESS are based on hystoric data. Therefore,
once DG and BESS are installed (in the operational phase), the real data in the distribution
network may differ from the data used for optimization. The proposed method overcomes
this problem by proposing input variables for the FIS energy management system that are
easily measurable in the grid operation. In the study, the optimized FIS energy management
system is tested with input data that are completely different from the data used in the
optimization to verify the generality and robustness of the proposed method. With this
approach, it is possible to adapt the outputs of DG and BESS to the real conditions of the
power system in the operational phase.

5. Application of the Proposed Procedure to the Test Power Distribution Network

The presented method for implementing the simultaneous optimization of the alloca-
tion of the DG and BESS and the parameters of the FIS-based power management system
is applied to the IEEE 37-node distribution feeder [29]. The tested feeder has three-phase
lines and unbalanced loads. Additionally, in this application, there are voltage regulators
whose taps are fixed in the center position. A PV system, a wind turbine and a biogas plant
DG and a BESS are also integrated into the original test grid. The power generation profiles
of the PV and wind turbines DG are generated using the online tool [30]. The load profile of
the consumers is created with the estimation tool [31]. The input data (load profile and DG
generation profiles) are created at an annual level with hourly resolution, i.e., 8760 input
data are used simultaneously to solve the optimization problem. With respect to the defined
optimization problem in Section 2, the following ranges are used for the constraints:

• Voltage constraint Vmin = 0.9 p.u and Vmax = 1.1 p.u;
• Line current constraint Imax = rated line current;
• Range of means of Gaussian distributions for linguistic values Low, Medium and High

are (−1.0,−0.33), (−0.33, 0.33) and (0.33, 1.0), respectively;
• Range of standard deviations of Gaussian distributions is (0.01, 0.5);
• Size (rated power) of PV, wind and biogas plants are in the ranges (0, 500), (0, 1000)

and (0, 2000) kVA, respectively;
• Capacity and rated power of BESS are in the ranges (0, 5000) kWh and (0, 1000) kW,

respectively.
• Type of possible measurable quantities used for FIS inputs are: line active power, line

reactive power, line current and node voltage;
• Feasible values of power factors from DG are (0.95lagging, 0.95leading), (0.9lagging,

0.9leading), and (0.85lagging, 0.85leading) for PV, wind, and biogas, respectively, DG.

The optimization procedure is performed on PC, equipped with Intel Core i7-10700
CPU, RAM 48 GB, MS Windows 10 Pro, MIDACO 5.0, Python 3.8.5 and SIMPFUL 2.5.0.
During the optimization, the solution space is explored with 5000 possible solutions. The
number of power flow calculations for the 8760 input data used and 5000 solutions explored
was 5000 × 8760 = 43,800,000. The computation time of the optimization process for the
given data was about 125,000 s (34.7 h). Once the optimization process is completed, the
calculation of the FIS output for the given input data is performed in a time of 1.9 ms. This
means that in the implementation phase of the proposed FIS controller, the FIS outputs
are actually generated in real time compared to the intervals of load and DG production
changes (which can be considered at the minute, 15 min or hour level). The obtained
optimal allocation of the units BESS and DG and the location of the measured variables for
the FIS inputs are visualized in Figure 4. Table 3 shows the type of measured quantities
for the FIS inputs obtained during the optimization, and Table 4 gives an overview of the
obtained energy losses and exchange reductions for optimal solutions of (1). Table 5 shows
the optimized fuzzy rules for each FIS used in the procedure (Table 3). As mentioned at
the beginning of the optimization procedure, the constraint of the three fuzzy rules per
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FIS is applied, and the optimized rules are found by the optimization process among the
generic rules given in Table 2. The base case represents the situation without BESS and DG
installed in the power distribution network.

Figure 4. Obtained optimal allocation of BESS, DG and measured FIS inputs.

Table 3. Optimized types of the physical quantities used as FIS inputs.

FIS FIS Input Quantity FIS Output Quantity

FIS 1 line active power power factor of PV DG
FIS 2 line reactive power power factor of wind DG
FIS 3 line reactive power power factor of bio-gas DG
FIS 4 line reactive power power of bio-gas DG
FIS 5 line current power of BESS (charge/discharge)

Table 4. Annual energy losses and exchange.

Case Energy Losses [kWh] Losses Reduction [%] Energy Exchange [MVAh] Exchange Reduction

Base case 51,624 - 3228 -
Lowest losses 10,187 80.3 728 77.4
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Table 5. Optimized fuzzy rules for each used FIS (Table 2).

FIS Fuzzy Rule 1 Fuzzy Rule 2 Fuzzy Rule 3

FIS 1 Rule 2 Rule 6 Rule 8
FIS 2 Rule 2 Rule 4 Rule 9
FIS 3 Rule 3 Rule 6 Rule 9
FIS 4 Rule 1 Rule 4 Rule 9
FIS 5 Rule 1 Rule 4 Rule 7

The power factor profiles for the period of a week for example weeks in year of PV,
wind and biogas DG, profiles of PV and wind generation, profile of BESS charge/discharge
and BESS SoC are shown in Figures 5–7.

Application of the Optimized FIS Energy Management System for Different Load Shapes

In the optimization phase, the parameters of the FIS energy management system are
set to minimize the values of the objective function based on the input data. The actual
input data in the FIS implementation phase in the system may be more or less different from
the data used to optimize the FIS agent. For this reason, the optimally tuned FIS is tested
for data that are different from the data used for optimization to check the generalization
and robustness of the proposed method. The results of this testing step are presented in
Table 6. The load curves used are denoted as Lsh1, Lsh2, and Lsh3 for the load curve data
used in the optimization and test step, respectively.

Table 6. Annual energy losses and exchange for different loadshapes.

Case Energy Losses [kWh] Losses Reduction [%] Energy Exchange [MVAh] Exchange Reduction

Base case Lsh1 51,624 - 3228 -
Optimized Lsh1 10,187 80.3 728 77.4
Base case Lsh2 72,009 - 4977 -

Optimized Lsh2 13,547 81.2 382 92.3
Base case Lsh3 32,406 - 2928 -

Optimized Lsh3 6466 80.0 387 86.8
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Figure 5. Load, DG and BESS profiles for 1st week in year: (a) Consumers load shapes, (b) DG output
profiles, (c) BESS power profile and SoC, (d) DG power factor profile.
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Figure 6. Load, DG and BESS profiles for 25th week in year: (a) Consumers load shapes, (b) DG
output profiles, (c) BESS power profile and SoC, (d) DG power factor profile.
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Figure 7. Load, DG and BESS profiles for 40th week in year: (a) Consumers load shapes, (b) DG
output profiles, (c) BESS power profile and SoC, (d) DG power factor profile.

6. Discussion

The working hypothesis established at the beginning of the research was that it is
possible to simulatively optimize the FIS energy management system and BESS and DG
allocation using the co-simulation approach and computational intelligence techniques
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(such as fuzzy logic and metaheuristic optimization methods). Based on the results pre-
sented in the previous section, we can state that the hypothesis is proved. The optimization
problem is very complex and involves the simultaneous treatment of different aspects of
power/energy management in the smart grid concept, including different DG sources and
BESS. The requirement that the optimization process be solved simulatively for a year
horizon with 8760 data makes the problem even more difficult to solve. The obtained
reductions of the defined objective functions show that it is possible to apply and tune the
FIS-based energy management system for such a complex, defined optimization problem.
It is quite difficult to find research papers that all have the same optimization problem,
the same objective function, and the same decision variables. Moreover, the input data
generated in different studies usually differ from each other, and the resolution of the data
(e.g., constant load, monthly data, hourly data) is also different in the studies. Considering
these facts, the results obtained here are compared with those of previous studies that
considered a similar, but not the same, optimization problem of optimal BESS and DG allo-
cation and power control. It should be noted that this study considers optimization of the
allocation of BESS and DG, optimization of the generation of BESS and DG power profiles,
optimization of the generation of DG power factor profiles, optimization of fuzzy power
management, and optimization of input type for FIS in a single optimization problem. The
PV, wind and biogas plants DG, BESS and hourly data resolution at the annual level are
considered in this study. The following discussion briefly describes the similarities and
differences between the optimization problem used here and the optimization problem
used in other studies, as well as the main results. Based on the described differences in
the studied optimization problem, the relative (percentage) loss reduction is discussed.
In [17], only PV DG is considered without the BESS. The objective function is to minimize
the losses. The input data are collected on 12 typical days (over one year) with minute
resolution. The proposed method is applied to the example of IEEE 14-bus test network for
data. The obtained results show a reduction in the network losses to about 38% compared
to the losses for the base case (without installed PV DG). In [18], the objective function is
to minimize the network losses. Two generic types of DG, type I and III, are used in the
study. The constant outputs of load and DG are considered without using the time-varying
outputs of load and DG production. The proposed method is applied to the distribution
network IEEE with 123 busses and results in about 79% reduction in power losses, com-
pared to the original power losses (without DGs). In [19], the optimal placement, sizing,
and power factor of DG are studied. The variable load and DG generation profiles as well
as the optimal allocation and power management are considered. The presented method is
applied to a power distribution network consisting of 69 busses. The PV, wind and biogas
plants DG are considered without installing BESS. The presented results show a reduction
of energy losses in ranges (depending on the number of DGs) of 63–69% and 89–98% of
the original energy losses for constant load and power factor one and constant load and
optimized power factor, respectively. In the variable load scenario, the reduction in energy
losses is in the range of 72–95% of the original energy losses (depending on the impact
of the targets in the objective function). The study also considers the injection of active
energy from the upstream grid. The results obtained for this objective are in the range of
60–90% and reduce the value of the base case (without DG installed). Our earlier study of
optimal allocation and power control of DG [32] used the same tested distribution network
and input data as this study. The earlier study did not consider the installation of BESS
and proposed an artificial neural network to generate DG power profiles. In addition, the
earlier study only considered line losses, not substation losses, which are considered in
this study. The achieved reductions in annual losses and energy exchange in [32] are in the
ranges of 47–92% and 74–95% of the energy losses and energy exchange in the base case,
respectively. The study conducted here shows that annual energy losses could be reduced
by 80% and energy exchange by 77% of the values without DG and BESS. In addition, it is
important to note that a similar reduction in annual energy losses and energy exchange is
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achieved for load data other than those used in the optimization procedure—a reduction in
losses of about 80% and a reduction in energy exchange of 92% and 86%, shown in Table 6.

7. Conclusions

The presented research shows that it is possible to solve a very complex power man-
agement problem in a modern power distribution system using computational intelligence
techniques and co-simulation approaches. The presented method considers the influence
of different controllable variables (location, output power, and power factor of DG and
BESS) on the optimal allocation of DG and BESS, by including the optimization of DG and
BESS outputs in the optimization problem. The co-simulation approach can be used with
the goal of more detailed and realistic modeling of the power system under study. The
co-simulation approach can facilitate the modeling of the power system for the purpose of
optimization, but on the other hand, such an approach requires a high computational effort
due to the use of metaheuristic optimization techniques. The obtained results show that
the use of biogas DG, whose output can be controlled, dominates over the non-controllable
ones, such as wind and PV DG. The optimization algorithm provides a solution for the size
of the biogas plant equal to the upper limit (2000 kVA for the tested network) set in the
optimization problem for the nominal power of the biogas DG. This shows that most of the
losses are reduced by controlling the output of the biogas plant DG. Controlling the output
power and operating condition of BESS and the power factors of the PV and wind biogas
plants DG contribute much less to reducing annual losses.
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