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Abstract: Distributed energy resources (DERs) and demand side management (DSM) strategy imple-
mentation in smart grids (SGs) lead to environmental and economic benefits. In this paper, a new
DSM strategy is proposed for the day-ahead scheduling problem in SGs with a high penetration
of wind energy to optimize the tri-objective problem in SGs: operating cost and pollution emission
minimization, the minimization of the cost associated with load curtailment, and the minimization of
the deviation between wind turbine (WT) output power and demand. Due to climatic conditions,
the nature of the wind energy source is uncertain, and its prediction for day-ahead scheduling is
challenging. Monte Carlo simulation (MCS) was used to predict wind energy before integrating with
the SG. The DSM strategy used in this study consists of real-time pricing and incentives, which is
a hybrid demand response program (H-DRP). To solve the proposed tri-objective SG scheduling
problem, an optimization technique, the multi-objective genetic algorithm (MOGA), is proposed,
which results in non-dominated solutions in the feasible search area. Besides, the decision-making
mechanism (DMM) was applied to find the optimal solution amongst the non-dominated solutions
in the feasible search area. The proposed scheduling model successfully optimizes the objective
functions. For the simulation, MATLAB 2021a was used. For the validation of this model, it was
tested on the SG using multiple balancing constraints for power balance at the consumer end.

Keywords: hybrid demand response programs; smart grid; renewable energy sources; multi-objective
genetic algorithm

1. Introduction

Smart grid networks need accurate forecasting of renewable energy sources (RESs)
such as solar and wind energy [1–4]. Thus, some prediction models have been developed
to address this issue [5–9]. Due to climatic condition, RESs are uncertain and depend on the
weather conditions. To avoid such problems, energy storage systems (ESSs) can be used as
a backup source to balance the demand at the user end [10–12]. However, there are several
problems with ESSs, such as the maintenance cost, low capacity, charging and discharging
cycle limitations, and high operational cost; therefore, their integration with RESs becomes
necessary in order to provide balanced power to the end-users [13].

In SGs, the end-users connected with smart meters so that there is a bi-directional com-
munication between the end-users and the utility through the smart grid operator (SGO).
By using this information, the SGO sets the DSM strategy for the consumers and sends
penalty and incentive signals through which consumers can change their loads to benefit
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both the utility and consumers [14]. DSM is a strategy used for resource scheduling [15], re-
liability [16], and household appliances [17] to optimize different objective functions in the
SG by load curtailing and shifting, peak clipping, etc. The DSM strategy also maximizes the
load factor by managing the relationship between power generation and demand [18–20].

The DSM strategy was used with the involvement of RESs to optimize the net cost
of SGs in [21]; this problem was tackled using the distributed algorithm (DA). Besides, to
facilitate the RESs penetration in SGs, MCS through robust optimization was employed.
The SG’s optimal operation in relation to the market electricity price was presented in [22]
considering energy prices to maximize the penetration of WTs and ESSs, respectively. The
coordination of the output RES power and DLs based on customers’ real-time thermal
rating was presented in [23]. In the distribution grid, the operational cost, loss of load
expectation, and pollution emission were considered as a tri-objective optimization problem
using the two-stage optimization algorithm (TSOA) [24].

Some research work has been conducted on multi-class and multi-objective schedul-
ing [25–28]. For instance, in [29], the stochastic optimization scheduling of large-scale
sources with peak clipping in the SG in two stages was solved; the authors used Bender’s
decomposition approach (BDA) to solve this problem. The authors developed multi-type
and multi-state models for resilience assessment and enhancement in [30,31]. The energy
management problem of the SG was tackled considering the operational cost and pollution
emission in [32]; this problem was solved using MOGA technique. The availability of the
RES objective function was added in [33] with high RES penetration and the DSM strategy.
The authors used multiple techniques to solve this problem, and the results were com-
pared after the successful implementation. The RESs’ and loads’ optimal scheduling with
the regulation of the voltage to optimize the reliability and cost of the SG was presented
in [34,35].

Many researchers have performed plenty of work on scheduling problems in the distribu-
tion grid from different viewpoints [36–39]. Some of the existing studies are discussed in detail
as follows:

In [40], the multi-objective scheduling problem consisted of the emissions and cost in
the SG in the presence of DERs, ESSs, and DRPs. The authors used the epsilon constraint
method for the Pareto set solution and the fuzzy mechanism to pick the optimal solution. To
reconfigure the distribution grid, a multi-objective optimization problem was investigated
by integrating the taxi cab method (TCM) and the MOPSO algorithm.

The operational cost, pollution emission, and customer satisfaction (CS) objective
functions were considered in the SG using the epsilon constraint method in [41]. In [42],
the optimal dispatching problem in a microgrid was solved for the environment, economic,
and CS indices using a dominance-based evolutionary algorithm (DBEA), and the best
solution was obtained through fuzzy clustering and grey relation projection (GRP). In [43],
a brief overview of SGs regarding the power distribution industry was given. Different
technologies were discussed and explained to bring more potential and strength to the
distribution grids. Besides, the impacts of many features on SGs were also taken into
consideration, such as reliability, DSM implementation, the security of SGs, metering, the
integration of RESs with SGs, etc.

The integration of RESs is uncertain and sometimes cannot meet the demand due to
their uncertain behavior, so prediction and control models are needed [44–48]. Furthermore,
in [49], electric vehicle (EV) batteries’ extra capacityto meet the demand of end-users was
discussed. Moreover, the integration of EVs and the SG was adopted using communication
technologies and protocols to efficiently manage energy in the SG using different mecha-
nisms and techniques. The integration of DSM in the SG for carbon emission reduction was
discussed in [50]. The authors presented the DSM operational mode, energy production
profile, storage, and consumption, and finally, the study was concluded by explaining the
benefits of DSM implementation. The DSM strategy and approaches evaluated in this
study were peak clipping, valley filling, load shifting, strategic conservation, strategic load
growth, flexible load shape, TOU, and DRPs, respectively.
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In the above studies, some key objective functions of SGs were covered using differ-
ent approaches. Some researchers tracked single-objective problems, which were solved
through single-objective optimization algorithms; others tracked multi-objective problems,
which were solved through multi-objective algorithms. However, some gaps remain open.
Different from our recent work [51], in which wind speed is predicted via probability
distribution function. The multi-objective optimization problem is solved via DSM strategy
consisting of objective functions: (1) operating cost and pollution emission minimization,
(2) Load curtailment cost minimization, and (3) Coordination between WT output power
and shiftable loads. In this work, MOGA is adopted to solve a tri-objective optimization
problem consisting of the following objective functions: (1) minimizing the operating cost
and pollution emission; (2) minimizing the cost of load curtailment; (3) minimizing the
deviation between the WTs’ output power and demand. As the problem in the proposed
study is a tri-objective optimization problem, random weights are considered for MOGA
selection, providing multiple non-dominated solutions in the feasible search area. Be-
sides, wind speed is predicted via monte Carlo simulations. This problem is solved in
two phases: in the first phase, in the feasible search space, non-dominated solutions are
obtained using the MOGA, and in the second phase, the optimal solution is picked among
the non-dominated solutions using the DMM. The contributions of the proposed study are
summarized as follows:

• Proposing a new demand side management strategy, a hybrid scheme of demand
response programs based on real-time pricing and real-time incentives to solve the SG
scheduling problem.

• Solving the SG day-ahead scheduling problem using the multi-objective genetic algo-
rithm to obtain the Pareto set solution and the decision-making mechanism to find the
optimal solution in the feasible search area.

The remainder of this work is organized as follows: Section 2 illustrates the system
model. The methodology is discussed in Section 3. The numerical and simulation results
are explained in Section 4. The conclusion of the proposed study is presented in Section 5.

2. Proposed System Model
2.1. Wind System Model

The modeling of the wind RES is briefly analyzed considering the wind speed, and
the prediction of the wind speed is necessary before integrating it with the SG. In this study,
Monte Carlo simulation was used for wind speed prediction [52]. The WTs’ power genera-
tion consists of the rated, cut-in, and cut-off speeds and is modeled in Equation (1) [53].

P(VW) =


0 VW < Vc_i

PR
(V−Vc_i)
(2Vr−Vc_i)

Vc_i ≤ VW < Vr

PR Vr ≤ V < Vc_o
0 V ≥ Vc_o

(1)

where PR and VW represents the WTs’ rated power and wind speed and Vc_i, Vr, and Vc_o
indicate the WTs’ speed in different operational regions [54].

2.2. EESs’ Technical Constraints

In order to reduce the energy generation and demand difference, the most common
solution is to involve ESSs in the energy management of the SEDG. In most applications,
batteries are used as the ESSs. The state of charge (SOC) represents the charging and
discharging energy relationships of the ESSs. From the SOC, charging, and discharging,
the lifetime of the batteries can be expressed. The SOC of the ESSs at time t can be modeled
using Equation (2) [55].

SOC(h) = SOC(h− 1)+WESSs(h) (2)
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SOCmin ≤ SOC(h) ≤ SOCmax (3)

where Equation (3) shows ESSs maximum and minimum SOC.

2.3. DG Technical Constraints

The minimum up- and down-time of DGs and the ramp-up and down-time limitations
of DGs collectively represent the DGs’ constraints and are modeled in Equations (4), (7),
(14) and (15), respectively.

λon(h, sc, d)+
min(T,t−1+MU)

∑
t=t+1

λo f f (sc, t, d) ≤ 1 (4)

γo f f (h, sc, d)+
min(T,t−1+MD)

∑
t=t+1

γon(sc, t, d) ≤ 1 (5)

T

∑
t=1

Wd(t, sc, d)−
T

∑
t=1

Wd(t− 1, sc, d) ≤ RU (6)

T

∑
t=1

Wd(t, sc, d)−
T

∑
t=1

Wd(t, sc, d) ≤ RD (7)

where γon, γo f f , MU , MD, and RU and RD represent the on- and off-time of the DGs (i.e.,
on = 1 and off = 0), the minimum up- and down-time, and the ramp-up and -down of the
DGs at time slot t, respectively.

2.4. Demand Side Management: Hybrid Demand Response Programs

A new DSM strategy, H-DRPs based on real-time pricing and incentives, is used, in
which three types of consumers participate: (i) consumers with shiftable loads (responsive
consumers), (ii) consumers with curtailable loads (responsive consumers), and (iii) non-
responsive consumers. From the proposed H-DRPs, the first two types of consumers
obtain benefits.

2.5. Objective Functions
2.5.1. First Objective Function

The first objective function of the proposed scheduling model is modeled in Equation (8)
as follows:

min F1

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T
∑

t=1


B
∑

b=1

{
δPDG

2(t, b) + ωδPDG(t, b) + σ
}

+{Csu × γon(t, b)}+
{

Csd × γo f f (t, b)
}
+

T
∑

t=1

[
B
∑

b=1

{
βPDG

2(t, b) + yδPDG(t, b) + φ
}]

+

T
∑

t=1

[{
λP

Grid × PGrid(t)
}
+ {ψGrid × PGrid(t)}

]
+

T
∑

t=1


N
∑

n=1

{
Ck

op × PESS
Discharge(t, n)

}
+

N
∑

n=1
Ck

op × PESS
Charge(t, n)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(8)

where the DGs’ cost factors are represented by δ and σ and the on/off DGs states are
represented by γon and γo f f . Besides, the DGs’ emission factors are represented by y, β,
and φ, and the grid market price is shown by λP

Grid, respectively.
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2.5.2. Second Objective Function

The minimization of the load curtailment cost is taken as the second objective function
of the proposed scheduling model and is modeled in Equation (9) as follows:

min f2 =
CLoad

∑
cload=1

CCLoads×DCLoads(t, CLoad) (9)

where CCLoads and DCLoads represent the bid price offer by responsive consumers who
curtail their loads and power consumption by shiftable loads.

2.5.3. Third Objective Function

The deviation between the WTs’ output power and demand minimization is consid-
ered as the third objective function of the proposed scheduling problem of the SG. By
adopting the H-DRPs, the minimization of the deviation between the WTs’ output power
and demand is modeled in Equation (10) as follows:

min F3 =
SC
∑

sc=1
ρsc

H
∑

h=1

∣∣∣∣N
∑
n

Dn(h, n)−WWT(sc, h)
∣∣∣∣ (10)

where ρsc, Dn, and PWT represent the probability of the scenario, responsive consumers’
demand, and the power of the WTs, respectively. The responsive consumers’ demand (Dn)
consists of shiftable loads and fixed loads and is modeled in Equation (11) as follows:

Dn(h, n) =[DFix(h, n)+DDL(h, n)] (11)

where DFix and DDL are the fixed and shiftable loads. After shifting loads from h to h′, the
new shiftable loads can be modeled in Equation (12) as follows:

DDL(h, n) =∑
h′

N

∑
n=1

DDL(n, h, h′)−∑
h′

N

∑
n=1

DDL(n, h, h′) (12)

where DDL shows the demand of shiftable loads. Moreover, the shiftable loads’ response
level is modeled in Equation (13) as follows:

0 ≤
N

∑
n=1

DDL(n, h, h′) ≤ ς
N

∑
n=1

DDL(h, n) (13)

where ς indicates the response level of the consumers.

3. Methodology
3.1. Multi-Objective Genetic Algorithm

To solve multi-objective scheduling problem, MOGA is adopted, which is based on
particles’ velocity and position [56]. MOGA search for non-dominated solutions of the
proposed multi objective problem in the feasible search area, then each particle/gene in
the feasible search space organized and ranked according to its position. The Pareto-set-
solution-based particles are ranked as 1, and other solutions in the feasible area are ranked
according to their positions. The ranks of each particle can be obtained using Equation (14)
as follows:

Rassigned = 1 + Ns (14)

Rassigned represents the rank assigned to the particles, and Ns indicates the number of
particles/solutions, respectively. In this study, the problem was considered as a tri-objective
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optimization problem, for more than one objective function, and Equation (15) is used
as follows:

f (z) = k1 f1(z) + ... + ki fi(z) + .... + k j f j(z) (15)

where [k1, k2. . . . . . ki], z, and fi(z) represent random weights, the string, and the ith objective
function. In this study, the weights considered are random weights, which provide multiple
non-dominated solutions in the feasible search space, and in order to pick the best solution
in the non-dominated solutions, the DMM is used. For the evaluation of the weighting
factors, the selection procedure is used with random weights to search for Pareto optimal
solutions in the feasible search area by utilizing various search directions. The following
are the steps used for the implementation of the MOGA for the proposed tri-objective
day-ahead scheduling problem:

1. Initialization: Initializing the proposed tri-objective function using Equations (8)–(10), the
upper/lower limits for defining the feasible area, the size of the population, and the
total iterations.

2. Evaluation: Calculating the proposed tri-objective function using Equations (8)–(10).
3. Selection: Applying the MOGA selection feature, combining the tri-objective problem

with the scaler fitness function.
4. Implementation: The following are the implementation steps:

a. Rank assigned to each particle using Equation (14).
b. To each solution in the feasible search space, assigning the row fitness function,

which helps in finding the average of solutions to find the rank 1 solutions.
c. Applying crossover and mutation to create new strings.
e. Checking the condition: satisfied?
f. If yes, then converge to the optimal solution.
g. If no, then go back to Step 1.

5. Termination test: The Pareto set solution is determined in Phase 1, and the optimal
solution is picked in Phase 2. The DMM is applied to pick the optimal solution. The
MOGA flowchart is shown in Figure 1. The computational time and number of itera-
tions of the MOGA for the proposed case studies are shown in Table 1. The proposed
technique for the scheduling problem was implemented using MATLAB 2021a.

Table 1. Computational time and max number of iterations of the MOGA for the proposed
case studies.

Case Studies Number of Iterations Computational Time

Case Study 1 100 45
Case Study 2 100 40
Case Study 3 100 60
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Start
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      x  x  x

                     x  

f2
X = Dominated

       Solutions

0 = Non-dominated

Solutions

End

Yes

No

DMM for finding best solutions

Apply

f1

Figure 1. MOGA flowchart.

3.2. Decision-Making Mechanism

Decision-making is important to choose the optimal solution amongst the Pareto set
solution while considering multi-objective optimization in the SG. Different methods and
tools can be used such as the analytical hierarchy process (AHP), the technique for order
preference by similarity to ideal solution (TOPSIS), the fuzzy approach, and the Knee
set for finding the optimal solutions. In this study, the best solution amongst the Pareto
set solution/non-dominated solutions was picked through the DMM. In this mechanism,
the ideal point is considered, and based on the distance from that ideal point, the best
solution is obtained. The best solution sample used in the proposed scenario using the
decision-making mechanism is modeled in Equations (16)–(18), respectively.

κN
m =

FN
max − FN(m)

FN
max − FN

min (16)

Pideal = [min κ1
m κ2

m κ3
m............... κN

m] (17)

min D(m) =

√√√√∣∣∣∣∣
[
κ1

1 −min κ1
1]2 + [κ1

1 −min κ2
2]2+

........... + [κN
m −min κN

m]2

∣∣∣∣∣ (18)



Energies 2022, 15, 6900 8 of 14

where FN
min and FN

max indicate the minimum and maximum value of the Nth objective
functions and κN

m and F(m) indicate the mth solution of the Nth objective functions and the
objective function value in the mth solution, respectively. The MOGA and decision-making
mechanism implementation steps are shown in Figure 2.

Step 2

Multi objective optimization problem

Minimize f1, f2, f3

Subject to

Constraints

Optimzer

MOGA Algorithm

Non dominated Solutions

.
..

. ..
f1

f2

. Non dominated

solutions

Decision making 

mechanism .. ..
.

.
f1

f2

. Non dominated

solutions

Best solution . Best solution

Decision maker

Best solution

Step 1: Optimization phase

Step 2: Decision making phase

Step 1

Figure 2. MOGA and decision-making mechanism implementation steps.

4. Numerical and Simulation Results

A new DSM strategy is adopted for solving the scheduling problem in SG using DERs.
For the proposed study, wind speed (hourly) is shown in Figure 3 and the speed limits for
WTs in different operational regions were considered as 3 m/s, 10 m/s, and 15 m/s. The
economic and technical data of the ESSs are illustrated in Table 2, and the technical data of
the DGs are illustrated in Table 3. The demand for electricity is shown in Figure 4. Four
case studies are adopted for solving the scheduling problem of SG using the H-DRPs and
DERs as follows:

Basic case study: Optimization without consideration of the DERs and H-DRPs.
Case Study 1: First and second objective optimization.
Case Study 2: First and third objective optimization.
Case Study 3: Tri-objective simultaneous optimization.

The aim of the proposed case studies was to optimize the objective functions with and
without the involvement of the DERs and H-DRPs in order to visualize the impact of the
proposed DSM strategy. These case studies are discussed in detail as follows.

0 5 10 15 20 25

Time (h)

2

4

6

8

10

12

W
in

d
 s

p
e

e
d

 (
m

/s
)

Figure 3. Computational time and number of iterations of the MOGA for each case study.
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Table 2. Economic and technical data (ESSs).

Parameters Numerical Values

ESSs-discharging (Pmin) 0.45 MW
ESSs-charging (Pmax) 0.45 MW

ESSs-charging (efficiency) 92%
ESSs-discharging (efficiency) 96%

ESSs-SOC (max) 100%
ESSs-SOC (min) 15%

ESSs operational cost USD 20

Table 3. DGs’ technical data.

Diesel Generator Unit Value

DG-1 Pmin (MW) 0
Pmax (MW) 0.70

Min up-time MU (h) 2
Min down-time MD (h) 2

Ramp-up RU (MW) 0.04
Ramp-down RD (MW) 0.04

DG-2 Pmin (MW) 0
Pmax (MW) 0.75

Min up-time MU (h) 2
Min down-time MD (h) 2

Ramp-up RU (MW) 0.05
Ramp-down RD (MW) 0.05

DG-1 Pmin (MW) 0
Pmax (MW) 0.85

Min up-time MU (h) 1.5
Min down-time MD (h) 1.5

Ramp-up RU (MW) 0.02
Ramp-down RD (MW) 0.08

0

2

4

6

8

10

12

D
e

m
a

n
d

 (
M

W
)

0 5 10 15 20 25

Time (h)

Figure 4. Electricity demand.

Basic case study:

In this case, the involvement of the DERs and H-DRPs was not considered, and the
system response resulted in high cost and emissions.

Case Study 1:

In this case, the first and second objectives’ simultaneous optimization was modeled
using the MOGA technique considering the DERs and H-DRPs, as shown in Figure 5. By
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curtailing curtailable loads, which is the second objective, it directly impacted the first
objective function. There was a total of 15 non-dominated solutions, and the optimal
solution was picked from the non-dominated solutions through the DMM, which was
the sixth solution in the feasible search space. The operational cost of the DERs (ESSs
(charging/discharging), DGs, UG) was reduced as compared to the basic case study by
charging 0.77% and discharging 0.03%, 3.5%, and 0.05%. Moreover, the pollution emission
of the DGs and UG was reduced by 2.1% and 14.5%, respectively.

1000 2000 3000 4000 5000 6000 7000 8000

f2

60,000

62,000

64,000

66,000

68,000

70,000

f1

Pareto set

Optimal Solution

Optimal solution

Figure 5. Simultaneous optimization of (F1, F2).

Case Study 2:

In this case, the first and third objectives’ simultaneous optimization was modeled
using the MOGA technique considering the DERs and H-DRPs, as shown in Figure 6.
By minimizing the deviation between the WTs’ output power and demand, which is the
third objective, it directly impacted the first objective function. There was a total of 14
non-dominated solutions, and the optimal solution was picked from the non-dominated
solutions through the DMM, which was fifth solution in the feasible search space. The cost
and emissions were minimized by 2% and 14%, respectively.

77 77.2 77.4 77.6 77.8 78 78.2

f3

57,300

57,400

57,500

57,600

57,700

57,800

f1

Pareto set

Optimal solution

Optimal solution

Figure 6. Simultaneous optimization of (F1, F3).

Case Study 3:

In this case, the first, second, and third objectives’ simultaneous optimization was
modeled using the MOGA technique considering the DERs and H-DRPs, as shown in
Figure 7. By minimizing the load curtailment cost and minimizing the deviation between
the WTs’ output power and demand, it directly impacted the first objective function. There
was a total of 12 non-dominated solutions, and the optimal solution was picked from the
non-dominated solutions through the DMM, which was the sixth solution in the feasible
search space. Besides, considering the first and second objectives, the operating cost of the
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proposed system and emission generated by the DERs were minimized by 2.8% and 13%
using the MOGA as compared to Case Study 1. Moreover, considering the first and third
objective, the operating cost of the proposed system and emissions generated by the DERs
were minimized by 2.5% and 13.5% using the MOGA as compared to Case Study 2. The
power scheduling of the proposed DERs iss shown in Figure 8.
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Figure 7. Tri-objective simultaneous optimization of (F1, F2, F3).
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5. Conclusions

A new DSM strategy was adopted for the day-ahead SG scheduling problem using
distributed energy resources. This problem was solved in four different case studies. The
simulation results show that, in the basic case study, the involvement of the DERs and
H-DRPs was not considered, and the system response resulted in high cost and emissions.
In Case Study 1, the operational cost of the DERs (ESSs (charging/discharging), DGs,
UG) was reduced as compared to the basic case study by 0.77%, 0.03%, 3.5%, and 0.05%.
Moreover, the pollution emission of the DGs and UG was reduced by 2.1% and 14.5%. In
Case Study 2, the operating cost of the proposed system and pollution emission generated
from the different DERs were minimized by 2% and 14% as compared to Case Study 1.
Finally, in Case Study 3, the tri-objective optimization problem was solved simultaneously
using the MOGA, considering the first and second objectives, and the operating cost of
the proposed system and emissions generated due to the DERs were minimized by 2.8%
and 13% using the MOGA as compared to Case Study 1. Moreover, considering the first
and third objective, the operating cost and emissions were minimized using the MOGA as
compared to Case Study 2 by 2.5% and 13.5%, respectively.
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Nomenclature

Ck
op ESS’s operational cost

Csd, Csu Start-up and shut-down cost
EmDG DGs’ pollution emission
EmUG UG’s pollution emission
PESSs ESS’s power generation
PDG DGs’ power generation
PUG UG’s power generation
ρsc Probability of s scenario
γon On-time of DGs
γo f f Off-time of DGs
SOC State of charge
PW T WTs’ power
λESSs−charge ESSs’ charge
λESSs−discharge ESSs’ discharge
β, y, φ Emission factors
F1, F2, F3 Objective functions
γσ Wind speed prediction scale parameters
PR WTs’ rated power
P(VW) Total power of WTs
Vc_i Cut-in speed
Vr Rated speed
Vc_o Cut-off speed
VW Wind speed
MU Min up-time
MD Min down-time
WPV Total power generation of PVs
RU Ramp-up time
RD Ramp-down time
Dn Responsive users’ demand
Dnr Non-responsive users’ demand
sc Scenario indices
h, H Time indices
b, B EES’s indices
nr, NR Non-responsive users’ indices
n, N Responsive users’ indices
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