Static Concentrator Photovoltaics Module for Electric Vehicle Applications Based on Compound Parabolic Concentrator
Abstract
:1. Introduction
2. Concept of Static Concentrator Photovoltaics Module for Electric Vehicles
3. System Design and Simulation Results
3.1. System Design
3.2. Optical Efficiency
3.3. System Performance and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trends and Developments in Electric Vehicle Markets. Available online: https://www.iea.org/reports/global-ev-outlook-2021/trends-and-developments-in-electric-vehicle-markets (accessed on 30 July 2022).
- Lu, E.; Wang, N.; Zheng, W.; Wang, X.; Lei, X.; Zhu, Z.; Gong, Z. Data-Driven Electricity Price Risk Assessment for Spot Market. Int. Trans. Electr. Energy Syst. 2022, 9453879. [Google Scholar] [CrossRef]
- Yang, L.; Sun, Q.; Zhang, N.; Li, Y. Indirect Multi-Energy Transactions of Energy Internet with Deep Reinforcement Learning Approach. IEEE Trans. Power Syst. 2022, 37, 4067–4077. [Google Scholar] [CrossRef]
- Huyndai, E.V. Available online: https://www.pv-magazine.com/2019/07/25/hyundai-enters-the-solar-car-race-with-new-sonata/ (accessed on 7 February 2022).
- Average Car Travel Distance. Available online: https://www.numbeo.com/traffic/country_result.jsp?country=South+Korea (accessed on 7 February 2022).
- Lightyear Car. Available online: https://lightyear.one/ (accessed on 30 July 2021).
- Vu, N.H.; Pham, T.T.; Shin, S. Flat Concentrator Photovoltaic System for Automotive Applications. Sol. Energy 2019, 190, 246–254. [Google Scholar] [CrossRef]
- Sato, D.; Lee, K.H.; Araki, K.; Masuda, T.; Yamaguchi, M.; Yamada, N. Design of Low-Concentration Static III-V/Si Partial CPV Module with 27.3% Annual Efficiency for Car-Roof Application. Prog. Photovolt. Res. Appl. 2019, 27, 501–510. [Google Scholar] [CrossRef]
- Tian, M.; Su, Y.; Zheng, H.; Pei, G.; Li, G.; Riffat, S. A Review on the Recent Research Progress in the Compound Parabolic Concentrator (CPC) for Solar Energy Applications. Renew. Sustain. Energy Rev. 2018, 82, 1272–1296. [Google Scholar] [CrossRef]
- Bellos, E.; Korres, D.; Tzivanidis, C.; Antonopoulos, K.A. Design, Simulation and Optimization of a Compound Parabolic Collector. Sustain. Energy Technol. Assess. 2016, 16, 53–63. [Google Scholar] [CrossRef]
- Sellami, N.; Mallick, T.K. Optical Efficiency Study of PV Crossed Compound Parabolic Concentrator. Appl. Energy 2013, 102, 868–876. [Google Scholar] [CrossRef]
- Vu, H.; Tien, T.Q.; Park, J.; Cho, M.; Vu, N.H.; Shin, S. Waveguide Concentrator Photovoltaic with Spectral Splitting for Dual Land Use. Energies 2022, 15, 2217. [Google Scholar] [CrossRef]
- Page, J. The Role of Solar-Radiation Climatology in the Design of Photovoltaic Systems. Pract. Handb. Photovolt. 2012, 573–643. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Solar Energy Engineering: Processes and Systems: Second Edition; Academic Press: Cambridge, MA, USA, 2014; pp. 1–819. [Google Scholar] [CrossRef]
- Fraunhofer Institute for Solar Energy Systems; PSE Projects GmbH Photovoltaics Report—2022—Fraunhofer ISE. 2022. Available online: https://www.ise.fraunhofer.de/conte%0Ant/dam/ise/d (accessed on 30 July 2022).
- American Time Use Survey Summary. Available online: https://www.bls.gov/news.release/atus.nr0.htm (accessed on 5 May 2022).
- Lisbona, E.F. Chapter IIA-2—Calibration, Testing, and Monitoring of Space Solar Cells. In Solar Cells, 2nd ed.; McEvoy, A., Castañer, L., Markvart, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 501–529. ISBN 978-0-12-386964-7. [Google Scholar]
- Kamaraki, C.; Klug, M.T.; Green, T.; Miranda Perez, L.; Case, C. Perovskite/Silicon Tandem Photovoltaics: Technological Disruption without Business Disruption. Appl. Phys. Lett. 2021, 119, 070501. [Google Scholar] [CrossRef]
- Wiesenfarth, M.; Philipps, S.P.; Bett, A.W.; Horowitz, K.; Kurtz, S. Current Status of Concentrator Photovoltaic (CPV) Technology Version 1.3; National Renewable Energy Laboratory: Golden, CO, USA, 2017; pp. 1–27. [Google Scholar]
- Hyundai Kona Electric 64 KWh. Available online: https://ev-database.org/car/1204/Hyundai-Kona-Electric-64-kWh (accessed on 8 May 2022).
Specifications | ||
---|---|---|
Module 1 | Concentration ratio | 2.25 |
Module thickness | 14 mm | |
Half-angle of acceptance | 62.3° | |
Module 2 | Concentration ratio | 4 |
Module thickness | 20 mm | |
Half-angle of acceptance | 44.7° | |
Module 3 | Concentration ratio | 6.25 |
Module thickness | 25 mm | |
Half-angle of acceptance | 35° | |
General characteristics | Module size | 100 × 100 cm |
CPC material | Acrylic | |
CPV cell type | Triple-junction (GaInP/GaInAs/Ge) | |
CPV cell diameter | 10 mm | |
Efficiency of CPV cells | 35% | |
Efficiency of PV cell | 20% |
Location | Parameter | CR = 2.25 | CR = 4 | CR = 6.25 | PV Panel |
---|---|---|---|---|---|
Solar cell | Three-junction cells with efficiency of 35% + Si cell with efficiency of 20% | Si cell with efficiency of 20% | |||
Phoenix | Power generation by CPV cells | 2.14 kWh | 1.631 kWh | 1.24 kWh | 0 |
Power generation by PV cells | 0.375 kWh | 0.568 kWh | 0.71 kWh | 1.65 kWh | |
Daily module efficiency | 30.5% | 26.7% | 23.6% | 20% | |
Seoul | Power generation by CPV cells | 1.57 kWh | 1.10 kWh | 1053 kWh | 0 |
Power generation by PV cells | 0.295 kWh | 0.482 kWh | 0.44 kWh | 1.26 kWh | |
Daily module efficiency | 29.75% | 25.15% | 23.9% | 20% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, H.; Vu, N.H.; Shin, S. Static Concentrator Photovoltaics Module for Electric Vehicle Applications Based on Compound Parabolic Concentrator. Energies 2022, 15, 6951. https://doi.org/10.3390/en15196951
Vu H, Vu NH, Shin S. Static Concentrator Photovoltaics Module for Electric Vehicle Applications Based on Compound Parabolic Concentrator. Energies. 2022; 15(19):6951. https://doi.org/10.3390/en15196951
Chicago/Turabian StyleVu, Hoang, Ngoc Hai Vu, and Seoyong Shin. 2022. "Static Concentrator Photovoltaics Module for Electric Vehicle Applications Based on Compound Parabolic Concentrator" Energies 15, no. 19: 6951. https://doi.org/10.3390/en15196951
APA StyleVu, H., Vu, N. H., & Shin, S. (2022). Static Concentrator Photovoltaics Module for Electric Vehicle Applications Based on Compound Parabolic Concentrator. Energies, 15(19), 6951. https://doi.org/10.3390/en15196951