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Abstract: The organic-rich shale of the Upper Cretaceous Qingshankou Formation is an important
hydrocarbon source rock in Northeast China. In this study, taking the lacustrine shale in the Qing-
shankou Formation as an example, geochemical analysis, including total organic carbon (TOC),
Rock-Eval pyrolysis, maceral compositions, X-ray diffraction (XRD), and biomarker analyses, were
carried out on twenty-four shale samples to evaluate the geochemistry and environmental features of
this shales. The Qingshankou lacustrine shales contains mainly Type I/II1 organic matter and is oil
prone, with a good to excellent source rock. Vitrinite reflectance and Rock-Eval pyrolysis parameters
show that the Qingshankou lacustrine shales is mainly in the mature stage and within the oil window.
Biomarker composition of the shales provide evidence that the Qingshankou lacustrine shales was
formed in a reductive sedimentary environment with relatively high salinity water. The organic
matter came from a mixture of plankton, bacterial and land plants.

Keywords: geochemical features; paleoenvironment; shale oil; Qingshankou Formation; Changling
sag; Songliao Basin

1. Introduction

With the constant increase in energy demand and exhaustion of conventional oil and
gas resources, unconventional energy resources have drawn wide attention. Due to very
low production, shale oil was not taken seriously in the past. Nevertheless, following the
successful commercial development of shale gas in North America, shale oil exploration
developed rapidly worldwide [1].

Shale oil refers to oil accumulating in shale layers or interlayers (sandstone, dolomite,
limestone, and tuff) associated with shale [2]. It forms a type of self-sourcing reservoir and
exists in an adsorption state or in a free state, existing in micro- and nano-scaled pores and
fractures [3]. This leads to common issues such as low production and fast decline during
the development of shale oil, making it difficult to develop and be economically viable on a
large scale. Natural or artificial fracture is a main factor controlling the high production of
shale oil.

Shale oil resources are widespread throughout China, such as the Middle Permian
Lucaogou Formation in Santanghu Basin in northwest China, the Paleogene Shahejie For-
mation in various depressions in the Bohai Bay Basin, the Upper Cretaceous Qingshankou
and Nenjiang formations in Songliao Basin in northeast China, the Eocene Hetaoyuan
Formation in Biyang Depression Nanxiang Basin in the middle eastern part of China, and
the Cenozoic Qianjiang Formation of the Jianghan Basin [2,4–8].

As a source rock, organic-rich shale plays a vital role in the process of hydrocarbon
generation [9,10]. Hydrocarbon generation potentials are affected by the quality of source
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rock to a large extent. Sedimentary environment and preservation conditions control the
abundance, type, and thermal evolution of organic matter. Organic matter maceral, vitrinite
reflectance, total organic matter (TOC), rock pyrolysis parameters, element contents, and
molecular geochemical parameters are often used to evaluate the hydrocarbon generation
potential of shale.

Different from marine shale, lacustrine shale layers are often strongly heterogeneous,
as continental faulted lake basins often have gone through complex tectonic evolution
during geologic history and have large scale fault systems [11,12]. To evaluate oil and gas
resource potentials accurately, it is necessary to examine the geochemical and sedimentary
environment features of the region of interest in detail.

Numerous studies have focused on the organic–inorganic characteristics, origin, and
accumulation of organic matter within Cretaceous black shales [13–16]. However, these
studies are mainly concentrated in the northern region of the basin, lacking systematic
research in the southern region of the basin. Therefore, based on a series of geochem-
ical and biomarker analysis experiments, the goal of this study was to present a more
comprehensive understanding of the chemistry of the region in addition to sedimentary
environment information in order to provide useful information for the prediction of shale
oil’s “sweet spot”.

2. Geologic Setting

Located in northeastern China, Songliao Basin is a continental sedimentary basin
formed in the Mesozoic–Cenozoic era. Structurally, it consists of six first order structural
units: central depression, west slope, southwest uplift, southeast uplift, northeast uplift,
and north subduction zone (Figure 1).

The tectonic evolution of the basin can be divided into three stages: fault depression,
depression, and structural inversion. The depositional period of the Lower Cretaceous
Huoshiling, Shahezi, and Yingcheng formations was the fault depression stage of the
lake basin. The depositional period of the Lower Cretaceous Denglouku Formation is
the transition stage between fault depression and depression. The depositional period of
the Lower Cretaceous Quantou Formation and Upper Cretaceous Qingshankou, Yaojia,
Nengjiang, Sifangtai, and Mingshui formations is the depression stage of the lake basin. In
the initial depositional stage of the Upper Cretaceous Qingshankou Formation, the climate
was warm and humid, the lake water was deep, and the lake basin expanded rapidly.
Consequently, a succession of black/gray mudstone interbedded with gray siltstone and
ostracoda-bearing limestone developed. The Qingshankou Formation is divided into three
members, Qing 1, Qing 2, and Qing 3, from the bottom up. The depositional period of
Qing 1 was the largest lake transgression period, when a set of deep-lake black shale with
Type I and II 1 organic matter and good hydrocarbon generation potential deposited [17].
The study area, Jilin oilfield, is located in the southern part of Songliao Basin next to
the Daqing oilfield to the north, where the target layer series, Cretaceous Qingshankou
Formation, has massive lacustrine shale development.
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Figure 1. (a) Location of Songliao Basin in China; (b) six tectonic units of Songliao Basin; (c) location 
of the study area in Songliao Basin; (d) stratigraphic column and lithology of the Qingshankou For-
mation in Songliao Basin. (Adapted from Ref. [6,18]) 
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3.2. Experimental Methods 
The device for the TOC test was a C-744 carbon sulfur analyzer, and the experiment 

process follows GB/T 19145-2003 “Test of TOC in sedimentary rocks”. Before the experi-
ment, the samples were ground into a hundred mesh in agate mortar, and diluted hydro-
chloric acid was then added to react with the sample to remove inorganic carbonates. The 
remaining sample was washed with water and dried, and then calcined to obtain CO2 and 
SO2; finally, the TOC and total sulfur content were tested using a thermal conductivity 
detector. The device for the pyrolysis experiment was a French Rock-Eval-6plus source 
rock analyzer, and the experimental process was followed by GB/T 18602-2012 “Rock Py-
rolysis Analysis”. The XRD experimental instrument was a D8 discovery X-ray diffrac-
tometer, and the experiment process was followed by SY/T 5163-2010. The saturated hy-
drocarbon chromatography-mass spectrometry experiment adopted extraction under 
room temperature methods. The shale sample was soaked in dichloromethane solution 
and then set aside for 12 h, after which the extraction fluid was analyzed by an HP7890 
chromatograph. The experiment process abided by SY/T 5779-2008: “Analytical method 
of hydrocarbons in petroleum and sediment by chromatography”. 

4. Results and Discussion 
4.1. Mineral Compositions and Lithofacies Classification 

The mineral composition determined by XRD of lacustrine shale in Qingshankou 
Formation comprised mainly quartz, feldspar, and clay (Figure 2, Table 1). The content of 

Figure 1. (a) Location of Songliao Basin in China; (b) six tectonic units of Songliao Basin; (c) location
of the study area in Songliao Basin; (d) stratigraphic column and lithology of the Qingshankou
Formation in Songliao Basin (Adapted from Refs. [6,18]).

3. Samples and Experiments Methods
3.1. Samples

A total of twenty-four shale samples for experiments were taken from the Upper
Cretaceous Qingshankou Formation in Changling sag, southern Songliao Basin (Figure 1).

3.2. Experimental Methods

The device for the TOC test was a C-744 carbon sulfur analyzer, and the experiment
process follows GB/T 19145-2003 “Test of TOC in sedimentary rocks”. Before the ex-
periment, the samples were ground into a hundred mesh in agate mortar, and diluted
hydrochloric acid was then added to react with the sample to remove inorganic carbonates.
The remaining sample was washed with water and dried, and then calcined to obtain CO2
and SO2; finally, the TOC and total sulfur content were tested using a thermal conductivity
detector. The device for the pyrolysis experiment was a French Rock-Eval-6plus source rock
analyzer, and the experimental process was followed by GB/T 18602-2012 “Rock Pyrolysis
Analysis”. The XRD experimental instrument was a D8 discovery X-ray diffractometer,
and the experiment process was followed by SY/T 5163-2010. The saturated hydrocarbon
chromatography-mass spectrometry experiment adopted extraction under room temper-
ature methods. The shale sample was soaked in dichloromethane solution and then set
aside for 12 h, after which the extraction fluid was analyzed by an HP7890 chromatograph.
The experiment process abided by SY/T 5779-2008: “Analytical method of hydrocarbons in
petroleum and sediment by chromatography”.

4. Results and Discussion
4.1. Mineral Compositions and Lithofacies Classification

The mineral composition determined by XRD of lacustrine shale in Qingshankou
Formation comprised mainly quartz, feldspar, and clay (Figure 2, Table 1). The content
of quartz was between 23.6 and 41.0%, with an average of 31.9%. The feldspar content
was between 12.4 and 30.2%, with an average of 19.3%. The clay mineral content was
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the highest, ranging from 23.3 to 42.4%, with an average of 35.8%. Clay minerals were
mainly illite, with a relative average content of 76.0%, followed by a mixed layer of illite–
smectite (with a relative average content of 16.3%) and a small amount of chlorite (with
a relative average content of 7.7%). The average content of other minerals was less than
10%. According to the average content, they are calcite (5.8%), pyrite (3.9%), iron dolomite
(2.5%), and siderite (0.8%).
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Figure 2. Histograms of the mineral composition of Qingshankou lacustrine shale samples. (a) Whole
rock mineral compositions; (b) Clay mineral compositions.

Based on the ternary graph of the content of the siliceous minerals (quartz and
feldspar), carbonate minerals, and clay minerals [19–21], it was demonstrated that Qing-
shankou shales can mainly be classified into two types: argillaceous/siliceous mixed shale
lithofacies (M-2) and clay-rich siliceous shale lithofacies (S-3) (Figure 3, Table 1).

Table 1. Mineralogical compositions and lithofacies of Qingshankou Formation shales.

Sample
ID Depth Quartz Feldspar Calcite Iron

Dolomite Siderite Pyrite Clay Illite Chlorite Mixted
Layer (I/S) Lithology

1 1971.2 27.7 18 9.7 3.3 5.5 35.8 74 7 19 M-2
2 1976.9 32.9 17 3.1 4.4 2.1 5.2 35.3 85 2 13 M-2
3 1979.6 30.6 19.3 2.4 2.5 2.3 6.2 36.7 80 7 13 M-2
4 1982.2 27.9 16.5 4.7 2.7 2.6 5.3 40.2 81 6 13 M-2
5 1984.3 30.4 19.2 1.2 1.5 4.7 5.2 37.9 70 9 21 M-2
6 2001.8 31.3 25 5.7 5.1 5.4 27.5 67 7 26 S-3
7 2003.7 23.6 23.5 0.3 20.7 3.1 28.8 61 12 27 M-2
8 2009.7 26.9 25.3 2.7 16.5 1.2 4.1 23.3 75 8 17 S-2
9 2011.9 33.5 20.1 7.7 4.7 34 86 3 11 S-3

10 2014.6 33.4 21.7 4.5 5 35.4 61 15 24 S-3
11 2016.2 34.1 28.5 2.9 3.8 30.7 77 7 16 S-3
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Table 1. Cont.

Sample
ID Depth Quartz Feldspar Calcite Iron

Dolomite Siderite Pyrite Clay Illite Chlorite Mixted
Layer (I/S) Lithology

12 2017.8 33.7 16 2.9 5 42.4 66 12 22 M-2
13 2025.5 30 30.2 7.3 1.1 3 28.4 72 10 18 S-3
14 2030.5 32.3 18.3 3.7 1 4.3 40.4 70 11 19 S-3
15 2033.3 30.9 18.5 13.7 0.4 2.1 34.4 79 7 14 M-2
16 2035.6 30 14.2 10.9 5.8 1.7 37.5 74 9 17 M-2
17 2038.0 30.9 19.7 9 3.1 37.2 77 5 18 S-3
18 2042.8 34.5 15.7 5 3.6 41.3 88 4 8 S-3
19 2044.3 34.2 13.6 18.2 2.9 31.1 83 6 11 M-2
20 2046.5 34.3 20.7 2.4 0.2 3.7 38.7 77 7 16 S-3
21 2048.2 35 12.4 9.6 1.9 41.1 87 4 9 M-2
22 2051.3 33.5 20.1 4.5 3.7 38.2 76 8 16 S-3
23 2055.0 32.8 17.4 2.6 5.3 41.9 90 2 8 S-3
24 2062.6 41 12.9 4.5 0.6 41 68 16 16 S-3
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Figure 3. Classification of shale lithofacies in the study area (Adapted from Refs. [19–21]). S: Siliceous
shale lithofacies; S-1: Carbonate-rich siliceous shale lithofacies; S-2: Mixed siliceous shale lithofacies;
S-3: Clay-rich siliceous shale lithofacies; M: Mixed shale lithofacies; M-1: Calcareous/siliceous mixed
shale lithofacies; M-2: Argillaceous/siliceous mixed shale lithofacies; M-3: Argillaceous/calcareous
mixed shale lithofacies; CM: Argillaceous shale lithofacies; CM-1: Silica-rich argillaceous shale lithofa-
cies; CM-2: Mixed argillaceous shale lithofacies; CM-3: Carbonate-rich argillaceous shale lithofacies.

4.2. Organic Geochemical Characteristics
4.2.1. Organic Matter Abundance

Parameters commonly used to evaluate the abundance of organic matter in source
rocks include TOC and (S1 + S2) [22,23].

According to a TOC of less than 0.5%, 0.5–1%, 1–2% and greater than 2%, and (S1 +
S2) of less than 3 mg/g, 3–6 mg/g, 6–20 mg/g, and greater than 20 mg/g, shale can be
classified into four grades: poor, average, good, and excellent [24,25]. As shown in Table 2,
TOC range from 1.40% to 2.78% (2.01% on average), S1 range from 1.22 mg/g to 2.85 mg/g
(2.06 mg/g on average), S2 range from 5.56 mg/g to 13.42 mg/g (10.25 mg/g on average),
and S1 + S2 range from 7.11 mg/g to 15.79 mg/g (12.30 mg/g on average). Figure 4 shows
the cross-plot of TOC vs. (S1 + S2). It can be seen from Figure 4 that all shale samples fall in
the zones of “good” and “excellent”.
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Table 2. Statistics of geochemical biomarker parameters of the Qingshankou lacustrine shales.

Sample ID Depth TOC S1 S2 S1 + S2 S1/(S1 + S2) HI OI Tmax Ro CPI C27st% C28st% C29st% (G/C30H) (Pr/Ph) Ph/nC18 Pr/nC17

1 1971.2 1.94 1.57 13.42 14.99 0.10 693 0.64 446 1.01 1.14 27.78 19.88 52.34 0.34 0.89 0.10 0.10
2 1976.9 1.40 1.43 8.17 9.60 0.15 584 0.57 447 1.03 1.10 28.54 21.20 50.26 0.37 0.96 0.10 0.10
3 1979.6 1.78 1.96 12.76 14.72 0.13 718 0.69 448 1.05 1.09 30.71 21.48 47.81 0.34 0.99 0.10 0.11
4 1982.2 1.82 1.82 10.54 12.36 0.15 580 0.57 447 1.08 1.09 26.52 28.13 45.34 0.56 0.77 0.10 0.01
5 1984.3 1.79 1.76 9.79 11.55 0.15 547 0.54 445 1.07 1.09 29.72 23.97 46.32 0.50 0.88 0.12 0.10
6 2001.8 1.46 2.13 7.42 9.55 0.22 510 0.54 440 1.04 1.11 30.31 25.01 44.68 0.45 1.15 0.14 0.18
7 2003.7 2.66 1.83 12.67 14.50 0.13 476 0.45 453 1.07 1.11 31.61 23.90 44.49 0.49 0.94 0.14 0.15
8 2009.7 1.48 2.27 7.08 9.35 0.24 478 0.53 445 1.01 1.10 29.95 23.42 46.62 0.51 0.71 0.20 0.16
9 2011.9 1.66 1.55 5.56 7.11 0.22 335 0.36 451 1.08 1.12 29.94 23.32 46.74 0.43 1.32 0.21 0.26

10 2014.6 2.06 2.18 11.66 13.84 0.16 566 0.56 447 1.07 1.12 32.52 22.26 45.22 0.48 1.21 0.15 0.19
11 2016.2 2.78 2.14 12.08 14.22 0.15 435 0.43 454 1.08 1.11 29.69 23.26 47.05 0.48 1.07 0.19 0.21
12 2017.8 1.99 2.07 10.36 12.43 0.17 522 0.52 443 1.08 1.12 29.87 22.85 47.28 0.37 1.13 0.19 0.21
13 2025.5 2.05 2.41 9.10 11.51 0.21 444 0.47 446 1.07 1.17 28.58 25.43 45.98 0.38 1.05 0.20 0.22
14 2030.5 2.02 2.14 10.49 12.63 0.17 519 0.52 449 1.10 1.12 32.10 21.74 46.16 0.31 0.78 0.18 0.16
15 2033.3 2.33 2.42 9.64 12.06 0.20 414 0.43 450 1.07 1.10 29.48 21.71 48.80 0.39 1.09 0.18 0.20
16 2035.6 2.03 2.82 9.06 11.88 0.24 446 0.49 435 1.09 1.11 30.67 22.16 47.17 0.37 1.22 0.20 0.24
17 2038.0 2.38 2.16 10.46 12.62 0.17 440 0.44 453 1.05 1.10 29.89 22.44 47.67 0.35 1.28 0.14 0.17
18 2042.8 2.20 2.85 11.71 14.56 0.20 533 0.55 452 1.07 1.08 35.17 23.14 41.69 0.39 0.97 0.17 0.16
19 2044.3 1.66 1.70 8.41 10.11 0.17 508 0.51 452 1.11 1.09 31.23 22.13 46.65 0.34 1.13 0.11 0.13
20 2046.5 2.00 1.83 11.07 12.90 0.14 554 0.54 451 1.12 1.10 27.54 24.11 48.35 0.37 1.14 0.14 0.17
21 2048.2 2.11 2.11 12.48 14.59 0.14 593 0.57 452 1.05 1.14 32.71 21.87 45.42 0.36 0.91 0.12 0.11
22 2051.3 2.38 2.52 11.79 14.31 0.18 496 0.50 452 1.10 1.20 33.23 21.99 44.79 0.33 1.11 0.12 0.14
23 2055.0 1.55 1.22 6.90 8.12 0.15 445 0.43 451 1.07 1.17 32.01 21.56 46.43 0.34 1.13 0.11 0.13
24 2062.6 2.68 2.44 13.35 15.79 0.15 498 0.49 459 1.06 1.17 33.20 22.24 44.56 0.43 1.05 0.12 0.12

Tmax = temperature at which maximum hydrocarbon generation (◦C); TOC = total organic carbon (weight percent wt% of the whole rock); S1 = volatile hydrocarbon content (mg
hydrocarbon/g rock); S2 = remaining hydrocarbon content (mg hydrocarbon/g rock); HI = hydrogen index (mg S2/g TOC); OI = oxygen index (mg S3/g TOC).
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Figure 4. Diagram of TOC vs. (S1 + S2) (Adapted from Ref. [24]).

4.2.2. Types of Organic Matter

The type of organic matter determines the oil prone or gas prone of source rock [23].
Rock-Eval pyrolysis parameters can be used to evaluate the types of organic matter in
shale. Nevertheless, Rock-Eval pyrolysis parameters may be affected in some cases due to
mineralogical compositions and certain kerogens [26–32]. Therefore, it is necessary to use a
variety of experimental parameters to study the types of organic matter.

The HI vs. Tmax diagram shows that the organic matter in the Qingshankou lacustrine
shales is types I and II1, suggesting an oil prone of organic matter (Figure 5).

The S2 vs. TOC diagram can also be used to identify organic matter types [33]. The
slope of the S2-TOC curve denotes the hydrogen index HI (HI = S2/TOC). An HI of less
than 50 mg/g, 50–200 mg/g, 200–300 mg/g, 300–600 mg/g, and greater than 600 mg/g
denotes Type I (continental, oil prone), II (marine, oil prone), II/III (oil and gas prone),
III (gas prone), and IV (dry gas prone) [34]. According to the above standard, the shale
samples from the Qingshankou Formation mainly comprise Type II and partial Type I
kerogen, indicating that they have oil-generation potentials (Figure 6).

The maceral composition of the shale samples can also be applied to the determination
of kerogen types [35,36]. The compositions of the organic macerals of the Qingshankou
lacustrine shales are shown in Figure 7 and Table 3. The ternary diagram of maceral groups
indicates that the sapropelinite is the dominant component, which is favorable for oil
generation, with the range from 80.6 to 88.9 vol %, and averaged 85.4 vol %, followed
by vitrinite (5.0–12.4 vol %; average: 7.5 vol %) and inertinite (3.1–11.2 vol %; average:
5.9 vol %), the abundance of the liptinite is very low (1.0–1.7 vol %, average: 1.2 vol %).
The type index of organic matter (TI) can be used to distinguish organic matter type. All
samples fall into the type I (two samples) and II1 (seventeen samples) category.
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Table 3. Composition of organic macerals of the Qingshankou lacustrine shales.

Sample ID Depth
(m)

Sapropelinite
(%)

Liptinite
(%)

Vitrinite
(%)

Inertinite
(%) TI Type

1 1971.18 81.3 1.3 9.3 8.0 67.0 II1
2 1976.86 81.4 1.4 10.0 7.1 67.5 II1
3 1979.55 87.1 1.1 6.5 5.4 77.4 II1
4 1982.21 84.8 1.0 7.1 7.1 73.0 II1
5 1984.25 86.5 1.0 8.3 4.2 76.6 II1
6 2001.83 87.9 1.1 5.5 5.5 78.8 II1
7 2003.73 83.5 1.0 12.4 3.1 71.6 II1
8 2009.67 86.4 1.7 6.8 5.1 77.1 II1
9 2011.9 87.5 1.3 6.3 5.0 78.4 II1
10 2014.61 86.2 1.7 6.9 5.2 76.7 II1
11 2016.19 87.2 1.1 6.4 5.3 77.7 II1
12 2017.79 88.8 1.3 5.0 5.0 80.6 I
15 2033.26 88.9 1.1 6.7 3.3 81.1 I
16 2035.55 86.7 1.1 6.7 5.6 76.7 II1
17 2038.03 88.2 1.2 5.9 4.7 79.7 II1
18 2042.78 81.6 1.3 9.2 7.9 67.4 II1
20 2046.54 80.6 1.0 7.1 11.2 64.5 II1
22 2051.29 83.7 1.1 7.6 7.6 70.9 II1
24 2062.55 85.1 1.1 8.5 5.3 73.9 II1

The type index of organic matter (TI) = (sapropelinite × 100 + liptinite × 50-vitrinite × 75-inertinite × 100)/100.

4.2.3. Maturity

Ro and Tmax are extensively used to characterize the maturity of organic matter [23].
Ro values were measured for all twenty-four shale samples(Table 2). The shale samples
from the Qingshankou Formation had an Ro between 1.01 and 1.12 (on average 1.07),
suggesting that organic matter in Qingshankou lacustrine shales samples was in a mature
stage (Table 2). Tmax values range from 435 ◦C and 459 ◦C, and averaged 449 ◦C (Table 2,
Figure 5), indicating the thermal evolution of the Qingshankou shale samples fall in
oil window.



Energies 2022, 15, 6983 10 of 15

4.3. Paleoenvironment
4.3.1. Sources of Organic Matter

Organic matter in source rock comes from a variety of sources, including endogenous
lower organisms and allochthonous continental organic matter, which can be reflected by
biomarker combinations of hydrocarbons generated by them [23,37–40]. Specific biomarker
parameters and their combinations can be used to quantitatively reflect relative contribu-
tions of specific types of organisms.

Distribution features of chain alkanes can characterize the organic source and maturity
of organic matter [23,37]. Ratios of some normal alkanes can reflect the variations of relative
abundances of continental and aquatic organisms. Immature source rocks with organic
matter dominated by continental plants generate hydrocarbons with more molecules with
odd numbers that are particularly carbon rich in n-C27, n-C29, and n-C31. These n-alkanes
from epidermal keratinine wax were compounded by higher plants directly or from alcohol
or ester compounds with even carbon numbers losing functional groups, while n-C24 to
n-C25 originated coming from marine organic matter.

Generally, the values of carbon preference index(CPI) decrease with a growth in
maturity, and this is attributed to the mixing of n-alkanes generated by kerogen composed
of different organism precursors and normal alkanes generated by hydrocarbon cracking
in the early diagenetic stage. Hence, a high CPI generally implies low maturity and input
from continental plants, while source rock with a CPI of around 1 have dominant marine
input and high maturity [41,42]. The shale samples have a CPI between 1.01 and 1.20
(1.11 on average, Table 2), indicating Qingshankou lacustrine shales has relatively high
organic matter maturity.

Organic matter input and sedimentary conditions have a strong impact on biomarkers
in extractions from the source rock. Since C27 sterols derive mainly from plankton, C28
sterols from phytoplankton, and C29 sterols are abundant in land plants, the relative
abundance of C27ααα(20R), C28ααα(20R) and C29ααα(20R) regular steranes is often used
to determine the dominant source of OM [38,43,44]. The Qingshankou lacustrine shale
samples have relative contents of C27, C28, and C29 regular sterane of 26.52–35.17% (30.54%
on average), 19.88–28.13% (22.88% on average), and 41.69–52.34% (46.58% on average),
respectively (Table 2). Figure 8 shows that all the shale samples fall in the plankton/bacterial
and plankton/land plant fields. Thus, the organic matter in the Qingshankou shale samples
is mainly from a mixture of plankton, bacterial and land plants.
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4.3.2. Redox Environment

Water salinity affects the flourishment of aquatic organisms such as algae and, in
turn, the input of organic matter. The water redox condition determines if the organic
matter can be preserved effectively [45–47]. Suitable water salinity is conducive to the
growth and reproduction of algae, which in turn affects the lake’s productivity. In some
cases, increased nutrient inputs and optimal redox conditions could cause algal bloom in
freshwater environments [48–50].

Under a certain salinity range, with the increase in salinity, algae growth gradually
flourished, forming higher productivity and good preservation condition. However, over
a certain salinity range, the algae are inhibited in growth and even do not develop at
all [46]. An oxidizing water body can promote the reproduction of bacteria, leading to the
massive consumption of organic matter in the sediment; on the other hand, in a reducing
environment with suitable salinity, the reproduction of bacteria is inhibited, so the organic
matter deposited can be preserved well.

Gammacerane/C30 hopane (G/C30H) is a parameter commonly used to characterize
the salinity of a sedimentary environment [37,51]. It is generally believed that G/C30H >
0.11 indicates a reducing water environment [52]. As shown in Table 2, the shale samples
from the Qingshankou Formation have G/C30H values between 0.31 and 0.65 (0.42 on
average), suggesting that Qingshankou’s lacustrine shales formed in reducing saline water
(Figure 9).
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Pristane/phytane (Pr/Ph) is a classic parameter for identifying redox conditions [53,54].
A Pr/Ph of less than 1, 1–3, and more than 3 indicates reducing, weakly reducing, and
oxidizing conditions, respectively. However, some researchers hold that organic matter
maturity affects Pr/Ph, which should be kept in mind when judging the sedimentary
environment of organic matter by Pr/Ph [55–57]. It can be seen from the diagram of Pr/Ph
vs. Tmax (Figure 10) that they have no significant correlation, which means that Pr/Ph is
not affected by the thermal evolution degrees of organic matter, thus Pr/Ph can be used
to identify the sedimentary environment. As shown in Table 2, the shale samples from
the Qingshankou Formation have Pr/Ph values between 0.71 and 1.32 (1.03 on average),
indicating that the organic matter in shale samples was formed in a reducing–weakly
reducing sedimentary environment. The Ph/n-C18 and Pr/n-C17 ratio of the saturated
hydrocarbon vary from 0.10 to 0.21 (average: 0.15) and 0.01 and 0.26 (average: 0.16),
respectively. Figure 11 shows that the Qingshankou lacustrine shales samples were from a
mixture of organic matter and formed in a semi-oxidation and semi-reduction environment
(Figure 11).
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5. Conclusions

(1) Lacustrine shale samples from the Qingshankou Formation of southern Songliao
Basin have high organic matter abundances, reaching the standard of a “good” and “ex-
cellent” source rock, types I and II kerogen, with oil-generation potential, and in a mature
stage of organic matter.

(2) The origin of the organic matter in Qingshankou shale samples were mainly from
a mixture of plankton, bacterial and land plants.

(3) The shale samples were formed in a semi-oxidation and semi-reduction environ-
ment, which is conducive to the preservation of organic matter.
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