
Citation: Matveeva, A.; Bychkov, A.

How to Train an Artificial Neural

Network to Predict Higher Heating

Values of Biofuel. Energies 2022, 15,

7083. https://doi.org/10.3390/

en15197083

Academic Editors: Suchithra

Thangalazhy-Gopakumar,

Sushil Adhikari and R. Vinu

Received: 20 August 2022

Accepted: 23 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

How to Train an Artificial Neural Network to Predict Higher
Heating Values of Biofuel
Anna Matveeva 1 and Aleksey Bychkov 1,2,*

1 Institute of Solid State Chemistry and Mechanochemistry, 18 Kutateladze Str., 630090 Novosibirsk, Russia
2 Department of Business, Novosibirsk State Technical University, 20 Karl Marx Ave.,

630073 Novosibirsk, Russia
* Correspondence: bychkov.a.l@gmail.com

Abstract: Plant biomass is one of the most promising and easy-to-use sources of renewable energy.
Direct determination of higher heating values of fuel in an adiabatic calorimeter is too expensive and
time-consuming to be used as a routine analysis. Indirect calculation of higher heating values using
the data from the ultimate and proximate analyses is a more rapid and less equipment-intensive
method. This study assessed the fitting performance of a multilayer perceptron as an artificial
neural network for estimating higher heating values of biomass. The analysis was conducted
using a specially gathered large and heterogeneous dataset (720 biomass samples) that included the
experimental data of ultimate and proximate analysis on grass plants, peat, husks and shells, organic
residues, municipal solid wastes, sludge, straw, and untreated wood. The quantity and preprocessing
of data (namely, rejection of dependent and noisy variables; dataset centralization) were shown to
make a major contribution to prediction accuracy improvement. In particular, it was demonstrated
that 550 samples are sufficient to ensure convergence of the algorithm; carbon and hydrogen contents
are sufficient ultimate analysis data; and volatile matters can be excluded from proximate analysis.
The minimal required complexity of neural network is ~50 neurons.

Keywords: biofuel; higher heating values; ultimate analysis; proximate analysis; artificial neural
network; machine learning

1. Introduction

Studies addressing energy production from plant biomass are still relevant today [1–3].
The optimal sources of plant biomass suitable for biofuel production are selected and the
processes of treatment and combustion of biomass fuel, both individually and in blends
with coal of different grades, are optimized in these works [4–6]. In this connection, the
analysis methods making it possible to determine the thermophysical properties of the
feedstock and fuel obtained from it are being mastered. Fuel combustion in an adiabatic
calorimeter is the most accurate method for determining the heating values of solid fuels.
However, procedures for predicting higher heating values (HHVs) based on the data from
proximate and ultimate analyses are currently being developed for the cases when the
aforementioned method is infeasible. More than 150 empirical correlation equations [6–11]
for calculating the heating values of various lignocellulosic feedstocks are known today.
The correlations obtained for one type of biomass, however, may fail to provide accurate
results when the heating value is calculated for a different type of biomass. There are very
few universal equations, and finding these equations and refining their coefficients is a
rather labor-intensive task [11,12].

Due to the advances in mathematical methods, the past years have witnessed an
upsurge of interest in using self-training artificial neural networks (ANNs) to handle large
datasets. When a representative initial data set (the training set) is available for a researcher,
the artificial neural network can reveal an implicit dependence that can yield an appreciably

Energies 2022, 15, 7083. https://doi.org/10.3390/en15197083 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15197083
https://doi.org/10.3390/en15197083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-0928-3644
https://orcid.org/0000-0002-8951-5005
https://doi.org/10.3390/en15197083
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15197083?type=check_update&version=1

Energies 2022, 15, 7083 2 of 13

accurate result for other input data (the test set) [13]. Studies showing the potential of the
artificial neural network model in predicting the heating values based on the data from
proximal and ultimate analysis have been published [14–17]. They compared the results of
predictions made using the conventional correlation equations and neural networks, and
analyzed the efficiency of logistics, combustion, pyrolysis, and torrefaction of coal/biomass
blends [18–20].

Unfortunately, it must be admitted that some of the available publications do not take
into account such important methodological aspects as the size and homogeneity of the
training set. It occurs quite often that the size of the initial data set used for training the
artificial neural network is rather small (~100, very rarely over 200–300), and there are only
minor differences between these data [21–24]. When this approach is used, the algorithm
yields expectedly good results, but the same problem as the one related to the empirical
models emerges: the applicability of the algorithm trained using a homogeneous and
narrowly specialized set for predicting the heating values of other biomass types (e.g., the
biomass with higher lignin or ash contents).

Furthermore, it is known that aside from training, the neural network also requires
hyperparameter tuning (i.e., optimization of the set of parameters determining its operation
algorithm). This means that a single training cycle is not sufficient: many iterations need
to be performed, the results of training for the testing set need to be compared each time,
and hyperparameters need to be varied. No clear algorithm for such iterative tuning
exists today. Researchers make their own decisions on which hyperparameters should
be changed and in which order it needs to be done to yield the optimal results through
trial and error. Unlike in the pioneer studies focusing on this topic [25], the authors of
papers on the practical use of ANNs [26] often report neither the resulting optimal values
of hyperparameters nor the network trained using the optimal hyperparameters, so their
results cannot be reproduced.

This article attempts to solve both these problems. Indeed, since there are quite a
few publications on using ANNs to predict HHVs based on the data from ultimate or
proximate analysis, we place special emphasis on the fact that ANN is a complex tool
requiring pre-tuning rather than simply stating that the ANN can be efficient for solving
the problem. Furthermore, it was important to demonstrate the significant role played
by the quantity of input data in prediction accuracy. In other words, this study aimed to
demonstrate the process of tuning the artificial neural network to predict higher heating
values of biomass when analyzing a large and extremely heterogeneous dataset, as well
as to compare the results obtained using an ANN with those obtained using the universal
empirical formulas.

2. Materials and Methods
2.1. Data Collection

A dataset collected from the open Phyllis2 database (the database containing informa-
tion on compositions of biomass, macro- and microalgae, feedstocks for biogas production,
biochar and torrefied biomass) [27], published reviews [7,28,29], and authors’ own data
obtained earlier [12] were used in this study.

When collecting the data, it was taken into account that each individual sample (type
of biomass) needs to be simultaneously described using the following parameters: the
measured higher heating value, and the data from ultimate analysis (carbon, hydrogen, and
nitrogen contents) and proximate analysis (ash content, volatile matter, and fixed carbon).
All the data were provided on a dry matter basis. The proximate analysis was confined to
carbon, hydrogen, and nitrogen contents, so such elements as oxygen, sulfur, chlorine, and
phosphorus could be omitted from consideration, as it is difficult to accurately measure
their contents in the routine mode.

An important feature of the ANN is its generalization ability (i.e., its ability to ad-
equately respond to the outliers in the training data). In this connection, the collected

Energies 2022, 15, 7083 3 of 13

data were not subjected to any statistical processing aimed at making the dataset more
homogeneous or narrow.

For illustrative purposes, all the samples were categorized into groups according to
the classification used in the Phyllis2 database (Table 1). The full dataset is provided in the
Supplementary File “Initial Dataset.xls”.

Table 1. Ultimate, proximate and HHV values (minimum–average–maximum values) used for the
construction of ANN.

Type of Biomass Number of Samples HHV, MJ/kg
Ultimate Analysis Proximate Analysis

Carbon, % Hydrogen, % Nitrogen, % Ash, % VM, % FC, %

Fossil fuel/peat 11 19.57–21.97–24.60 49.90–53.50–55.20 5.30–5.60–5.90 0.80–1.43–2.00 2.70–4.20–7.50 67.5–71.10–77.40 18.40–25.40–28.50
Grass plant 101 8.89–18.51–21.58 19.12–46.66–51.76 2.00–5.80–8.66 0.18–0.73–4.22 0.90–5.30–48.70 47.70–76.69–92.55 3.60–17.20–26.56

Husk/shell/peat 89 13.31–19.79–25.73 31.44–48.93–58.93 4.30–5.90–9.18 0.02–0.76–3.03 0.40–3.30–23.37 38.80–73.86–84.90 8.69–20.62–37.90
Manure 18 4.22–14.69–19.35 12.96–35.75–49.01 1.45–4.70–6.14 0.69–2.63–6.32 9.80–23.48–73.52 21.33–62.12–70.27 5.15–13.58–23.22

Marine biomass (algae) 11 17.57–23.84–26.36 41.20–51.40–54.75 5.60–6.83–7.52 6.66–10.76–12.72 2.52–5.94–27.66 59.86–79.51–82.97 12.35–14.09–17.22
Organic residue 108 6.34–18.30–26.87 19.70–45.10–65.54 2.44–5.87–8.52 0.01–0.91–12.42 0.10–6.38–64.00 29.30–74.09–94.47 2.00–15.49–38.41
RDF and MSW 23 15.54–20.48–29.69 38.69–46.42–62.60 5.33–6.50–13.81 0.20–0.70–2.01 7.77–13.01–34.45 58.56–74.08–87.07 0.47–10.19–22.53

Sludge 34 7.19–12.09–17.80 22.90–28.75–39.30 2.21–4.24–5.80 0.09–3.61–5.95 24.39–44.08–63.57 26.42–51.75–62.70 1.21–6.80–14.11
Straw 82 14.49–17.94–20.30 34.60–45.49–48.70 3.93–5.60–6.61 0.01–0.64–2.47 1.36–6.57–24.36 61.10–75.29–87.20 5.20–17.78–26.65

Untreated wood 243 12.67–19.57–22.78 32.69–49.38–57.75 3.32–5.95–8.65 0.02–0.29–2.81 0.10–1.53–39.37 46.50–81.37–94.73 5.07–16.67–34.71
Total 720 4.22–18.99–29.69 12.96–47.59–65.54 1.45–5.85–13.81 0.01–0.60–12.72 0.10–4.19–73.52 21.33–76.88–94.73 0.47–16.94–38.41

2.2. Artificial Neural Network Architecture and Evaluation

A software environment where both dataset parameters and hyperparameters of the
ANN can be appreciably easily set and varied is needed to work with an ANN. Many
existing studies predicting the HHVs of the biomass were performed using the MatLab and
Python environments [14,16,17,24]. The Python environment stands out, as it is affordable,
popular, and easy to use (also being friendly for novice users). Thus, the scikit-learn library
contains the algorithm of a full-connected perceptron MLP Regressor implemented as a
function with a set of user-defined hyperparameters, which is used in most studies, and
integrated algorithms for data preprocessing.

Figure 1 shows the general schematic diagram for MLP-ANN. The ANN with an
arbitrary number of parameters of the input data, two hidden layers (each layer having
an arbitrary number of neurons), and a single output value is shown here. Each neuron is
shown as two components: the first component sums up all the inputs, while the second
one calculates the response function from this sum and sends the new value to all the
neurons at the next layer. The relationships between the ith and the jth elements imply
that the transmitted value is multiplied by the coefficient wij, which is individual for each
relationship. ANN variants having several (1 to 6) hidden layers, as well as a varied set of
input parameters and neural response function, will be used further in this study.

Energies 2022, 15, x FOR PEER REVIEW 4 of 14

Figure 1. The schematic diagram for MLP-ANN.

3. Results and Discussion
3.1. Scoring and Rules

Before discussing neural network tuning, one should choose the outcome assessment
criterion. There may be some particular cases where a criterion selected by a certain user
of the ANN is important for him/her (e.g., it is extremely undesirable that the predicted
HHV is higher than the true one, while underestimation is permissible and less critical.)
The mean absolute error (MAE) and mean squared error (MSE) of the prediction are used
most commonly nowadays. MAE is less sensitive to the large number of outliers in the
dataset than MSE. However, according to the Cramér’s theorem, MSE is the optimal vali-
dation criterion between the data and the model for a random error in Gaussian distribu-
tion [30]. Since the absolute MSE value is linked to the preprocessing method, the normal-
ized MSE (R2 criterion, or the “proportion of explained set”) is used frequently (1): 𝑅ଶ = 1 − ∑(௬ି௬ೝ)మ∑(௬ି௬ೌ)మ , (1)

where 𝑦 is the true HHV of the ith sample; 𝑦ௗ is the neural network prediction for
the same sample; 𝑦 is the mean HHV in the entire dataset. In this study, we use the
MSE criterion as a built-in method for error estimation during neural network training, as
well as the R2 criterion for iterative tuning of hyperparameters.

The key logical components of an artificial neural network, according to the order of
their effect on the output provided by the algorithm, as follows:
1. Training set;
2. The ANN architecture (the number of neurons and the number of layers);
3. Neural response function;
4. The solver algorithm.

Since the ANN searches for hidden regularities in inputs instead of providing addi-
tional information, its output primarily depends on the inputs. Next, the feasibility of
searching for hidden regularities is determined by the complexity of the neural network,
so the ANN architecture was ranked second. The third component is neural response
function, which determines the functional properties of ANN and training-related com-
ponents. Indeed, if the more important components are properly implemented, all that is
left to do is properly train the neural network.

It is safe to say that all the components listed above except the first one are mathe-
matically independent. This assumption and the corresponding arranging of ANN com-
ponents according to their importance makes it possible to propose the following tuning
algorithm. First, some initial values for all hyperparameters are set, and the optimal value
for the most important hyperparameter is then found. In the following step, the next hy-
perparameter is varied and optimized, and so on. Let us discuss each tuning step in the
suggested order of ANN components.

Figure 1. The schematic diagram for MLP-ANN.

3. Results and Discussion
3.1. Scoring and Rules

Before discussing neural network tuning, one should choose the outcome assessment
criterion. There may be some particular cases where a criterion selected by a certain user of
the ANN is important for him/her (e.g., it is extremely undesirable that the predicted HHV
is higher than the true one, while underestimation is permissible and less critical.) The
mean absolute error (MAE) and mean squared error (MSE) of the prediction are used most

Energies 2022, 15, 7083 4 of 13

commonly nowadays. MAE is less sensitive to the large number of outliers in the dataset
than MSE. However, according to the Cramér’s theorem, MSE is the optimal validation
criterion between the data and the model for a random error in Gaussian distribution [30].
Since the absolute MSE value is linked to the preprocessing method, the normalized MSE
(R2 criterion, or the “proportion of explained set”) is used frequently (1):

R2 = 1 −
∑
(

yi − ypred i

)2

∑(yi − ymean)
2 , (1)

where yi is the true HHV of the ith sample; ypred i is the neural network prediction for the
same sample; ymean is the mean HHV in the entire dataset. In this study, we use the MSE
criterion as a built-in method for error estimation during neural network training, as well
as the R2 criterion for iterative tuning of hyperparameters.

The key logical components of an artificial neural network, according to the order of
their effect on the output provided by the algorithm, as follows:

1. Training set;
2. The ANN architecture (the number of neurons and the number of layers);
3. Neural response function;
4. The solver algorithm.

Since the ANN searches for hidden regularities in inputs instead of providing addi-
tional information, its output primarily depends on the inputs. Next, the feasibility of
searching for hidden regularities is determined by the complexity of the neural network, so
the ANN architecture was ranked second. The third component is neural response func-
tion, which determines the functional properties of ANN and training-related components.
Indeed, if the more important components are properly implemented, all that is left to do
is properly train the neural network.

It is safe to say that all the components listed above except the first one are mathemati-
cally independent. This assumption and the corresponding arranging of ANN components
according to their importance makes it possible to propose the following tuning algorithm.
First, some initial values for all hyperparameters are set, and the optimal value for the most
important hyperparameter is then found. In the following step, the next hyperparameter is
varied and optimized, and so on. Let us discuss each tuning step in the suggested order of
ANN components.

3.2. Preprocessing of the Inputs for Predicting the HHVs

As already mentioned, the ANN outputs primarily depend on inputs. Therefore,
the user’s main concern is to prepare these data to ensure proper performance of the
neural network.

Parameters (features) of inputs correlated most strongly with the target parameter
HHV identified at the first step. In our case, each sample is characterized by six param-
eters: three ultimate analysis parameters (carbon, hydrogen, and nitrogen contents) and
three proximate analysis parameters (ash content, volatile matter, and fixed carbon).

Pearson’s correlation coefficients (Table 2) show that nitrogen content is weakly corre-
lated with HHV, probably due to the high error of determining nitrogen content. In the
ideal case, ANN is supposed to filter the noisy data, but it is quite possible that prediction
accuracy will be worsened because of the input noise caused by other “negative factors”
(e.g., significant sample heterogeneity or experimental errors).

Furthermore, it is clear that parameters determined by proximate analysis are not
independent. Thus, the volatile matter was calculated arithmetically by subtracting the
weights of ash and fixed carbon from the initial sample weight. Using all three proximate
analysis parameters for ANN training artificially overestimates their weights, so it would
be more correct to use only two of them for calculations.

Energies 2022, 15, 7083 5 of 13

Table 2. Pearson’s correlation coefficients between sample parameters. Here, C, H, and N are the
features of ultimate analysis: carbon, hydrogen, and nitrogen, respectively. The features of proximate
analysis are denoted as Ash—ash; VM—volatile matter; and FC—fixed carbon.

C H N Ash VM FC HHV

C 1 0.61395 −0.09708 −0.86872 0.72001 0.48792 0.90531
H 0.61395 1 −0.00773 −0.58941 0.59749 0.12217 0.66756
N −0.09708 −0.00773 1 0.14893 −0.13275 −0.06766 −0.00673

Ash −0.86872 −0.58941 0.14893 1 −0.87962 −0.46699 −0.78388
VM 0.72001 0.59749 −0.13275 −0.87962 1 −0.00681 0.65963
FC 0.48792 0.12217 −0.06766 −0.46699 −0.00681 1 0.42134

HHV 0.90531 0.66756 −0.00673 −0.78388 0.65963 0.42134 1

Let us consider the results of comparing the following data:

- The individual data from ultimate analysis (Set 1);
- The individual data from proximate analysis (Set 2);
- A combination of the data from ultimate and proximate analyses (Set 3);
- A combination of the data from ultimate and proximate analyses, except for nitrogen

content and volatile matter (Set 4).

According to standard practice, each dataset is divided into the training and test sets at
a 3:1 ratio; i.e., the training set contains 540 samples, while the test set contains 180 samples.
Randomization is mandatorily performed prior to this division (Figure 2).

Energies 2022, 15, x FOR PEER REVIEW 6 of 14

(a) (b)

Figure 2. HHV before (a) and after (b) randomization.

The next step of data preprocessing involved normalization (2) and centralization (3)
of the input dataset. Both procedures ensure the heterogeneity of input parameters, so the
ANN takes them into account to an equal extent. 𝑋௦ௗ = 𝑥 − 𝑥. 𝑚𝑖𝑛𝑥. 𝑚𝑎𝑥 − 𝑥. 𝑚𝑖𝑛 (𝑚𝑖𝑛 − 𝑚𝑎𝑥) + 𝑚𝑎𝑥, (2)

where x.max and x.min are the maximal and minimal values of the input parameter x be-
fore scaling, respectively; max and min are the user-defined maximal and minimal Xscaled
values after scaling, respectively (we used max = 1 and min = −1). 𝑋௦ௗ = 𝑥 − 𝑥. 𝑚𝑒𝑎𝑛𝑥. 𝑠𝑡𝑑 , (3)

where x.mean is the mean value in the sample and x.std is the standard deviation of the
mean value in the sample.

Figures 3 and 4 and Table 3 show the results of comparing the efficiencies of ANN
performance for the four variants of inputs and two variants of their preprocessing.

(a) (b) (c)

Figure 3. The initial (a), normalized (b), and centralized (c) values of training sample parameters.

Figure 2. HHV before (a) and after (b) randomization.

The next step of data preprocessing involved normalization (2) and centralization (3)
of the input dataset. Both procedures ensure the heterogeneity of input parameters, so the
ANN takes them into account to an equal extent.

Xscaled =
x − x.min

x.max − x.min
(min − max) + max, (2)

where x.max and x.min are the maximal and minimal values of the input parameter x before
scaling, respectively; max and min are the user-defined maximal and minimal Xscaled values
after scaling, respectively (we used max = 1 and min = −1).

Xscaled =
x − x.mean

x.std
, (3)

where x.mean is the mean value in the sample and x.std is the standard deviation of the
mean value in the sample.

Energies 2022, 15, 7083 6 of 13

Figures 3 and 4 and Table 3 show the results of comparing the efficiencies of ANN
performance for the four variants of inputs and two variants of their preprocessing.

Energies 2022, 15, x FOR PEER REVIEW 6 of 14

(a) (b)

Figure 2. HHV before (a) and after (b) randomization.

The next step of data preprocessing involved normalization (2) and centralization (3)
of the input dataset. Both procedures ensure the heterogeneity of input parameters, so the
ANN takes them into account to an equal extent. 𝑋௦ௗ = 𝑥 − 𝑥. 𝑚𝑖𝑛𝑥. 𝑚𝑎𝑥 − 𝑥. 𝑚𝑖𝑛 (𝑚𝑖𝑛 − 𝑚𝑎𝑥) + 𝑚𝑎𝑥, (2)

where x.max and x.min are the maximal and minimal values of the input parameter x be-
fore scaling, respectively; max and min are the user-defined maximal and minimal Xscaled
values after scaling, respectively (we used max = 1 and min = −1). 𝑋௦ௗ = 𝑥 − 𝑥. 𝑚𝑒𝑎𝑛𝑥. 𝑠𝑡𝑑 , (3)

where x.mean is the mean value in the sample and x.std is the standard deviation of the
mean value in the sample.

Figures 3 and 4 and Table 3 show the results of comparing the efficiencies of ANN
performance for the four variants of inputs and two variants of their preprocessing.

(a) (b) (c)

Figure 3. The initial (a), normalized (b), and centralized (c) values of training sample parameters. Figure 3. The initial (a), normalized (b), and centralized (c) values of training sample parameters.

Energies 2022, 15, x FOR PEER REVIEW 7 of 14

(a) (b)

Figure 4. The effect of the number of iterations (a) and preprocessing (b) on prediction accuracy of
the ANN model.

Table 3. Prediction accuracy of the ANN model for different types of dataset preprocessing.

Used Parameters
Without Processing After Normalization After Centralization

R2 Number of Iterations R2 Number of Iterations R2 Number of Iterations
Set 1 ultimate analysis 0.8604 300 0.8192 40 0.8738 100
Set 2 proximate analysis 0.2922 200 0.3347 40 0.3151 100
Set 3 Set 1 + Set 2 0.8192 280 0.7997 40 0.8946 220
Set 4 Set 3—N—VM 0.8591 460 0.8200 40 0.9012 240

One can see that dataset normalization is more likely to worsen the prediction accu-
racy of ANN, while centralization consistently improves it. Moreover, normalization and
centralization have different effects on the convergence rate: whereas algorithm conver-
gence for the initial dataset requires up to 460 iterations, the normalized and centralized
datasets require 40 and 100–240 iterations to converge, respectively.

As expected, prediction of HHV based on the data from proximate analysis (Set 2)
was inaccurate for the initial dataset being so heterogeneous in terms of the analyzed ob-
jects. However, prediction accuracy was significantly improved by using its combination
with the data from ultimate analysis (Set 3). Furthermore, the results proved the assump-
tion that rejecting noisy and dependent variables from consideration will improve the
prediction accuracy. The best results were obtained for the dataset (Set 4) where the data
on nitrogen content and volatile matter were rejected. In this connection, the data from
this dataset (Set 4) will be used for further work.

3.3. ANN Architecture Tuning
The ANN architecture needs to be well balanced; it should be appreciably complex

to be able to detect hidden regularities, but not too intricate so that overfitting is avoided.
The fully connected multilayer perceptron used in this study allows one to vary the num-
ber of layers and the number of neurons per layer.

The architecture was gradually made more intricate. First, the number of neurons for
a single-layer ANN was varied. This procedure was then repeated for the ANN having a
larger number of layers. The occurrence of overfitting was the key optimization criterion.
It is generally believed that a sign of overfitting is that the neural system starts providing
inaccurate predictions for the test set. This was not observed in our case, so another sign
of overfitting occurrence was used (the instant when prediction using the training set is
much more accurate than the prediction provided by the same neural network for the test
set). Figure 5 shows the diagrams for the prediction error as a function of the number of
neurons per layer for the ANN with 1–6 hidden layers.

Figure 4. The effect of the number of iterations (a) and preprocessing (b) on prediction accuracy of
the ANN model.

Table 3. Prediction accuracy of the ANN model for different types of dataset preprocessing.

Used Parameters
Without Processing After Normalization After Centralization

R2 Number of Iterations R2 Number of Iterations R2 Number of Iterations

Set 1 ultimate analysis 0.8604 300 0.8192 40 0.8738 100
Set 2 proximate analysis 0.2922 200 0.3347 40 0.3151 100
Set 3 Set 1 + Set 2 0.8192 280 0.7997 40 0.8946 220
Set 4 Set 3—N—VM 0.8591 460 0.8200 40 0.9012 240

One can see that dataset normalization is more likely to worsen the prediction accuracy
of ANN, while centralization consistently improves it. Moreover, normalization and cen-
tralization have different effects on the convergence rate: whereas algorithm convergence
for the initial dataset requires up to 460 iterations, the normalized and centralized datasets
require 40 and 100–240 iterations to converge, respectively.

As expected, prediction of HHV based on the data from proximate analysis (Set 2) was
inaccurate for the initial dataset being so heterogeneous in terms of the analyzed objects.
However, prediction accuracy was significantly improved by using its combination with
the data from ultimate analysis (Set 3). Furthermore, the results proved the assumption that
rejecting noisy and dependent variables from consideration will improve the prediction
accuracy. The best results were obtained for the dataset (Set 4) where the data on nitrogen
content and volatile matter were rejected. In this connection, the data from this dataset
(Set 4) will be used for further work.

Energies 2022, 15, 7083 7 of 13

3.3. ANN Architecture Tuning

The ANN architecture needs to be well balanced; it should be appreciably complex to
be able to detect hidden regularities, but not too intricate so that overfitting is avoided. The
fully connected multilayer perceptron used in this study allows one to vary the number of
layers and the number of neurons per layer.

The architecture was gradually made more intricate. First, the number of neurons for
a single-layer ANN was varied. This procedure was then repeated for the ANN having a
larger number of layers. The occurrence of overfitting was the key optimization criterion.
It is generally believed that a sign of overfitting is that the neural system starts providing
inaccurate predictions for the test set. This was not observed in our case, so another sign
of overfitting occurrence was used (the instant when prediction using the training set is
much more accurate than the prediction provided by the same neural network for the test
set). Figure 5 shows the diagrams for the prediction error as a function of the number of
neurons per layer for the ANN with 1–6 hidden layers.

Energies 2022, 15, x FOR PEER REVIEW 8 of 14

(a) (b) (c)

(d) (e) (f)

Figure 5. Determining the optimal architecture from the perspective of overfitting: MSE as a func-
tion of the number of neurons per layer for the training and test sets. Panels (a–f) indicates different
ANN architectures—1, 2, 3, 4, 5 or 6 hidden layers, correspondingly.

One can see that overfitting occurs earlier as the number of layers increases. It is in-
teresting to note that the single-layer perceptron (1D ANN) differs from the multilayer
ones in terms of the optimal number of neurons. This number is 250 for the 1D ANN and
approximately 40–50 for the multilayer ones. It can easily be checked that distribution of
neurons over layers is not important for the multilayer perceptron. An attempt to redis-
tribute 50 neurons between the two layers demonstrated that except for the extreme cases
(up to 5 neurons in one layer and 45 neurons in the other layer), neural configuration in
the layers does not significantly affect prediction accuracy (Figure 6a). Convergence is
attained in 300 iterations, regardless of the architecture (Figure 6b).

The final decision regarding the single-layer ANN architecture was made on the ba-
sis of Figure 6c. Indeed, the two-layer ANN architecture (25 and 25 neurons per layer),
although being optimal in terms of overfitting, does not provide prediction accuracy
higher than 0.9. The 2D-ANN reaches R2 > 0.9 only after overfitting. For the 1D-ANN ar-
chitecture, R2 > 0.9 is reached already when there are 50 neurons per layer, while its over-
fitting occurs when the neuron number is 250. The 3D-ANN provides an overly significant
dispersion of R2.

(a) (b) (c)

Figure 5. Determining the optimal architecture from the perspective of overfitting: MSE as a function
of the number of neurons per layer for the training and test sets. Panels (a–f) indicates different ANN
architectures—1, 2, 3, 4, 5 or 6 hidden layers, correspondingly.

One can see that overfitting occurs earlier as the number of layers increases. It is
interesting to note that the single-layer perceptron (1D ANN) differs from the multilayer
ones in terms of the optimal number of neurons. This number is 250 for the 1D ANN and
approximately 40–50 for the multilayer ones. It can easily be checked that distribution
of neurons over layers is not important for the multilayer perceptron. An attempt to
redistribute 50 neurons between the two layers demonstrated that except for the extreme
cases (up to 5 neurons in one layer and 45 neurons in the other layer), neural configuration
in the layers does not significantly affect prediction accuracy (Figure 6a). Convergence is
attained in 300 iterations, regardless of the architecture (Figure 6b).

Energies 2022, 15, 7083 8 of 13

Energies 2022, 15, x FOR PEER REVIEW 8 of 14

(a) (b) (c)

(d) (e) (f)

Figure 5. Determining the optimal architecture from the perspective of overfitting: MSE as a func-
tion of the number of neurons per layer for the training and test sets. Panels (a–f) indicates different
ANN architectures—1, 2, 3, 4, 5 or 6 hidden layers, correspondingly.

One can see that overfitting occurs earlier as the number of layers increases. It is in-
teresting to note that the single-layer perceptron (1D ANN) differs from the multilayer
ones in terms of the optimal number of neurons. This number is 250 for the 1D ANN and
approximately 40–50 for the multilayer ones. It can easily be checked that distribution of
neurons over layers is not important for the multilayer perceptron. An attempt to redis-
tribute 50 neurons between the two layers demonstrated that except for the extreme cases
(up to 5 neurons in one layer and 45 neurons in the other layer), neural configuration in
the layers does not significantly affect prediction accuracy (Figure 6a). Convergence is
attained in 300 iterations, regardless of the architecture (Figure 6b).

The final decision regarding the single-layer ANN architecture was made on the ba-
sis of Figure 6c. Indeed, the two-layer ANN architecture (25 and 25 neurons per layer),
although being optimal in terms of overfitting, does not provide prediction accuracy
higher than 0.9. The 2D-ANN reaches R2 > 0.9 only after overfitting. For the 1D-ANN ar-
chitecture, R2 > 0.9 is reached already when there are 50 neurons per layer, while its over-
fitting occurs when the neuron number is 250. The 3D-ANN provides an overly significant
dispersion of R2.

(a) (b) (c)

Figure 6. Determining the optimal architecture: (a) R2 as a function of distribution of 50 neurons over
layers in the two-layer network; (b) R2 as a function of the number of iterations for the single-layer,
two-layer, and three-layer ANN architecture with the optimal number of neurons; (c) R2 as a function
of the number of neurons per layer for the single-layer, two-layer, and three-layer ANN architecture.
Green line indicates level R2 = 0.9.

The final decision regarding the single-layer ANN architecture was made on the
basis of Figure 6c. Indeed, the two-layer ANN architecture (25 and 25 neurons per layer),
although being optimal in terms of overfitting, does not provide prediction accuracy higher
than 0.9. The 2D-ANN reaches R2 > 0.9 only after overfitting. For the 1D-ANN architecture,
R2 > 0.9 is reached already when there are 50 neurons per layer, while its overfitting occurs
when the neuron number is 250. The 3D-ANN provides an overly significant dispersion
of R2.

3.4. Choosing the Activation Function

Activation functions determining the response of individual neurons depending on
the magnitude of input values play a crucial role in ANN tuning. The most commonly
used functions are as follows: (4) no-op activation (useful to implement linear bottleneck),
(5) logistic sigmoid, (6) hyperbolic, and (7) rectified linear unit function.

f(x) = x (4)

f(x) = 1/(1 + exp(−x)) (5)

f(x) = tanh(x) (6)

f(x) = max(0, x) (7)

Table 4 lists the results of testing the selected activation functions for the analyzed
dataset. The rectified linear unit function yields the best result; in combination with the
good results of using the no-op activation function, this demonstrates that HVV prediction
is a nearly regression problem [31].

Table 4. Comparison of the effectiveness of activation functions.

No-Op Activation Logistic Sigmoid Hyperbolic Rectified Linear Unit

0.86225 0.8479 0.8357 0.9012

3.5. Optimizing the Operation of the Solver Algorithm

Neural networks are trained using the error back-propagation algorithm. Random
state sets the values to arbitrary initial coefficients before the operation; the prediction error
σ0 (the difference between the value predicted by ANN and the true value of the target
parameter) is then calculated for each sample of the training set (in our case, it is the HHV

Energies 2022, 15, 7083 9 of 13

value). Next, the prediction error is calculated for each successive neuron; summing up is
performed for the neurons of the previous layer (error backpropagation takes place).

σj = ∑ wold
kj σk, where σ0 = y − ypred (8)

The initial coefficient values are then varied according to the selected rule. In the
stochastic gradient descent without regularization, this rule is formulated as follows:

wnew
ij = wold

ij + λ × σj ×
d f (z)

dz
zold

j (9)

where f(z) is the neural network activation function; λ is the learning rate; zold
j is the value

at the input of the jth neuron at the previous training step.
Today, the conventional gradient descent method is almost never used in its non-

modified form. Its numerous modifications aim to eliminate the major drawbacks of the
method. For example, the stochasticity of training is eliminated by using mini batches: in
this variant, the coefficients are adjusted after analyzing a small batch of samples rather than
each individual sample. The size of this batch depends on the batch size parameter. Still,
the coefficients can be too large or too small at a certain training stage (the so-called “neural
burnout”). This phenomenon is eliminated by using regularization, when the attempts to
change the previous coefficient values are smoothened with a certain efficiency α.

Deeper modifications to the conventional algorithm of stochastic gradient descent
“sgd” are implemented in the analyzed MLP Regressor as two separate variants of solver
algorithms: “adam” and “lbfgs”. Each of these is characterized by its own specific adjust-
ments and scope of application. The most commonly used solver “adam” works fairly well
on relatively large datasets (with thousands of training samples or more) in terms of both
training time and validation score. For small datasets, however, “lbfgs” can converge faster
and perform better. Indeed, the next R2 values are obtained for all solvers and then an
Adaptive Moment Estimation is selected (Table 5).

Table 5. Comparison of solvers’ efficiencies.

Algorithm Features of the Algorithm
Outputs of the Algorithm for Different Types of

ANN Architecture

1D ANN (100 Neurons) 2D ANN (25 and 25 Neurons)

“sgd” Basic stochastic gradient descent 0.85176 0.81938

“lbfgs”
Quasi-Newton limited-memory

Broyden–Fletcher–Goldfarb–Shanno algorithm;
for small datasets

0.60501 0.48802

“adam” Adaptive Moment Estimation; for large datasets 0.90123 0.89721

Figures 7 and 8 show the regularization procedure. Figure 8a shows that in our case,
regularization reduces the stochasticity: the smaller the regularization parameter (α), the
smaller the dispersion of R2 values depending on this parameter. The value α = 0.0001 was
used by default, but we used α = 0.00001 for further calculations based on Figure 8a.

Figure 8b shows the results of tuning the mini batch size. One can see that it is actually
more efficient to use mini batches rather than individual samples for training the algorithm.
Mini batches containing 150–400 samples can be used to ensure stable performance of
the algorithm. It seems that when analyzing such a dataset with heterogeneous absolute
parameters, the ANN needs to analyze most of the dataset (or the entire dataset if it
is appreciably small) in order to properly assess the problem. With allowance for the
aforementioned arguments, a batch size value of 200 was used for further work.

Energies 2022, 15, 7083 10 of 13

Energies 2022, 15, x FOR PEER REVIEW 10 of 14

Deeper modifications to the conventional algorithm of stochastic gradient descent
“sgd” are implemented in the analyzed MLP Regressor as two separate variants of solver
algorithms: “adam” and “lbfgs”. Each of these is characterized by its own specific adjust-
ments and scope of application. The most commonly used solver “adam” works fairly
well on relatively large datasets (with thousands of training samples or more) in terms of
both training time and validation score. For small datasets, however, “lbfgs” can converge
faster and perform better. Indeed, the next R2 values are obtained for all solvers and then
an Adaptive Moment Estimation is selected (Table 5).

Table 5. Comparison of solvers’ efficiencies.

Algorithm Features of the Algorithm
Outputs of the Algorithm for Different Types of ANN

Architecture
1D ANN (100 Neurons) 2D ANN (25 and 25 Neurons)

“sgd” Basic stochastic gradient descent 0.85176 0.81938

“lbfgs”
Quasi-Newton limited-memory Broyden–

Fletcher–Goldfarb–Shanno algorithm; for small
datasets

0.60501 0.48802

“adam” Adaptive Moment Estimation; for large datasets 0.90123 0.89721

Figures 7 and 8 show the regularization procedure. Figure 8a shows that in our case,
regularization reduces the stochasticity: the smaller the regularization parameter (α), the
smaller the dispersion of R2 values depending on this parameter. The value α = 0.0001 was
used by default, but we used α = 0.00001 for further calculations based on Figure 8a.

(a) (b) (c)

Figure 7. Optimization of the initial learning rate: (a) learning rate between 0 and 0.01, (b) learning
rate between 0.01 and 0.1, (c) learning rate between 0.1 and 1.

(a) (b) (c)

Figure 8. Regularization (a) and tuning of the batch size (b) and dataset size (number of samples),
(c).

Figure 7. Optimization of the initial learning rate: (a) learning rate between 0 and 0.01, (b) learning
rate between 0.01 and 0.1, (c) learning rate between 0.1 and 1.

Energies 2022, 15, x FOR PEER REVIEW 10 of 14

Deeper modifications to the conventional algorithm of stochastic gradient descent
“sgd” are implemented in the analyzed MLP Regressor as two separate variants of solver
algorithms: “adam” and “lbfgs”. Each of these is characterized by its own specific adjust-
ments and scope of application. The most commonly used solver “adam” works fairly
well on relatively large datasets (with thousands of training samples or more) in terms of
both training time and validation score. For small datasets, however, “lbfgs” can converge
faster and perform better. Indeed, the next R2 values are obtained for all solvers and then
an Adaptive Moment Estimation is selected (Table 5).

Table 5. Comparison of solvers’ efficiencies.

Algorithm Features of the Algorithm
Outputs of the Algorithm for Different Types of ANN

Architecture
1D ANN (100 Neurons) 2D ANN (25 and 25 Neurons)

“sgd” Basic stochastic gradient descent 0.85176 0.81938

“lbfgs”
Quasi-Newton limited-memory Broyden–

Fletcher–Goldfarb–Shanno algorithm; for small
datasets

0.60501 0.48802

“adam” Adaptive Moment Estimation; for large datasets 0.90123 0.89721

Figures 7 and 8 show the regularization procedure. Figure 8a shows that in our case,
regularization reduces the stochasticity: the smaller the regularization parameter (α), the
smaller the dispersion of R2 values depending on this parameter. The value α = 0.0001 was
used by default, but we used α = 0.00001 for further calculations based on Figure 8a.

(a) (b) (c)

Figure 7. Optimization of the initial learning rate: (a) learning rate between 0 and 0.01, (b) learning
rate between 0.01 and 0.1, (c) learning rate between 0.1 and 1.

(a) (b) (c)

Figure 8. Regularization (a) and tuning of the batch size (b) and dataset size (number of samples),
(c).

Figure 8. Regularization (a) and tuning of the batch size (b) and dataset size (number of samples) (c).

The adam algorithm was not tuned with respect to specific parameters; however, it is
worth mentioning that this tuning negligibly improves the R2 value. The full set of tuning
parameters is presented in the Supplementary File “CHN-for-paper”. Sample size was the
most critical parameter for the problem being discussed: only the datasets containing more
than 550 samples ensure stable performance of the algorithm (Figure 8c). This result agrees
with the simple rules of thumb. One rule of thumb is that the sample size needs to be 50 to
1000 times larger than the number of prediction classes (which, in the choice modelling
context, is the choice set size) [32,33]. Another rule of thumb is that the sample size needs
to be 10 to 100 times larger than the number of the features (which, in the choice modelling
context, is the number of attributes) [34–36].

The applied approach to tuning ANN hyperparameters, which took into account the a
priori considerations about neural network performance, significantly accelerates tuning
compared to the conventional non–a priori searching approaches. Indeed, there are two
simple approaches to searching for the optimal set of hyperparameters: the search with a
specified increment over the entire hyperspace (GridSearchCV) or the search across the set
number of arbitrary combinations of hyperparameters (RandomizedSearchCV). Both these
examples have a computational complexity proportional to Pm, where P is the number of
hyperparameters and m is the number of permissible values for each of them. The approach
proposed is characterized by a computational complexity of ~ P × m; furthermore, it is
sufficiently intuitive for the user.

3.6. Comparing the Prediction Accuracies Ensured Using ANN and the Empirical Formulas

In order to compare the accuracy of predictions made using the MLP Regressor and the
existing empirical models, Equations (10) and (11) from [12] were used, since the greatest
applicability for separate samples has been demonstrated for these equations:

Q = 0.4373·C − 1.6701 (10)

Q = 0.00355·C2 − 0.232·C − 2.230·H + 0.0512·C·H + 0.131·N + 20.600 (11)

Energies 2022, 15, 7083 11 of 13

Two alternative approaches were employed to evaluate the final performance of ANN.
Both these approaches are used to eliminate the effect of ANN re-adaptation to a specific
test sample. One of them, k-fold cross-validation, involves determining the scoring criteria
for several variants of subdivision of the original dataset into the training and test sets. The
benefit of this method is that it allows one to determine not only the average generalization
performance but also the prediction model stability [37–39]. For our problem, this approach
yields R2 = 0.880 ± 0.025. An alternative method is calculating the ANN prediction for
the entire dataset being used. For our problem, this method yields R2 = 0.884. In other
words, both these approaches yield identical (within the error) estimations of the final
performance of ANN. The advantage of the second approach is that it allows one to easily
and rather promptly compare the ANN predictions to those obtained using empirical
formulas. Indeed, one can see in Figure 9 that the ANN has a much better prediction ability.

Energies 2022, 15, x FOR PEER REVIEW 12 of 14

(a) (b) (c)

Figure 9. Comparison of the prediction achieved using: (a) ANN; (b) empirical Equation (10); (c)
empirical Equation (11).

4. Conclusions
Hence, the fully connected perceptron used for the analyzed set characterized by

very significant heterogeneity but an appreciably large size allows one to reach R2 = 0.880
± 0.025. Our final suggestion for the ANN structure is as follows: perceptron with 100
neurons at hidden layer, rectangular unit function (relu) as activation function, and adap-
tive moment estimation (adam) as the training algorithm. (The full set of tuning parame-
ters is presented in the Supplementary)

It turned out for our problem that data quantity and data preprocessing (namely,
rejection of dependent variables and noisy values, as well as sample centralizing) make a
major contribution to prediction accuracy improvement. The proposed tuning algorithm
allows one to reduce time expenditure: from the power-law dependence of the number of
permissible values of each hyperparameter to a dependence that is a result of multiplica-
tion by this value.

As with other ANNs, our ANN guarantees work only within the range where it was
trained. However, it is a very wide range; it is the widest among other ranges reported
previously. We consider ANN rather than any other machine learning approach because
we would like to change the focus of discussion from small datasets and hidden hyperpa-
rameter optimization to step-by-step demonstration of hyperparameter tuning. ANN is
convenient for such consideration. Other machine learning approaches were excluded
due to reasonable restrictions on the scope of the article.

Supplementary Materials: The following supporting information can be downloaded at:
www.mdpi.com/xxx/s1.

Author Contributions: Conceptualization, A.B.; methodology, A.B. and A.M.; validation, A.M.; for-
mal analysis, A.M.; resources, A.B.; data curation, A.B. and A.M.; writing—original draft prepara-
tion, A.B. and A.M.; writing—review and editing, A.B.; visualization, A.M.; supervision, A.B. All
authors have read and agreed to the published version of the manuscript.

Funding: The collection of raw data was supported by the Russian Science Foundation (project No.
21-13-00046). The mathematical analysis was supported by the state assignment to the Institute of
Solid State Chemistry and Mechanochemistry SB RAS (No. FWUS-2021-0005).

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Anastasia Krokhina, a student at Novosibirsk State Univer-
sity, for her help in processing the primary data.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 9. Comparison of the prediction achieved using: (a) ANN; (b) empirical Equation (10);
(c) empirical Equation (11).

4. Conclusions

Hence, the fully connected perceptron used for the analyzed set characterized by very
significant heterogeneity but an appreciably large size allows one to reach R2 = 0.880 ± 0.025.
Our final suggestion for the ANN structure is as follows: perceptron with 100 neurons at
hidden layer, rectangular unit function (relu) as activation function, and adaptive moment
estimation (adam) as the training algorithm. (The full set of tuning parameters is presented
in the Supplementary)

It turned out for our problem that data quantity and data preprocessing (namely,
rejection of dependent variables and noisy values, as well as sample centralizing) make a
major contribution to prediction accuracy improvement. The proposed tuning algorithm
allows one to reduce time expenditure: from the power-law dependence of the number of
permissible values of each hyperparameter to a dependence that is a result of multiplication
by this value.

As with other ANNs, our ANN guarantees work only within the range where it was
trained. However, it is a very wide range; it is the widest among other ranges reported
previously. We consider ANN rather than any other machine learning approach because
we would like to change the focus of discussion from small datasets and hidden hyperpa-
rameter optimization to step-by-step demonstration of hyperparameter tuning. ANN is
convenient for such consideration. Other machine learning approaches were excluded due
to reasonable restrictions on the scope of the article.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15197083/s1.

Author Contributions: Conceptualization, A.B.; methodology, A.B. and A.M.; validation, A.M.; for-
mal analysis, A.M.; resources, A.B.; data curation, A.B. and A.M.; writing—original draft preparation,
A.B. and A.M.; writing—review and editing, A.B.; visualization, A.M.; supervision, A.B. All authors
have read and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/en15197083/s1
https://www.mdpi.com/article/10.3390/en15197083/s1

Energies 2022, 15, 7083 12 of 13

Funding: The collection of raw data was supported by the Russian Science Foundation (project No.
21-13-00046). The mathematical analysis was supported by the state assignment to the Institute of
Solid State Chemistry and Mechanochemistry SB RAS (No. FWUS-2021-0005).

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Anastasia Krokhina, a student at Novosibirsk State University,
for her help in processing the primary data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dafnomilis, I.; Hoefnagels, R.; Pratama, Y.W.; Schott, D.L.; Lodewijks, G.; Junginger, M. Review of solid and liquid biofuel

demand and supply in Northwest Europe towards 2030—A comparison of national and regional projections. Renew. Sustain.
Energy Rev. 2017, 78, 31–45. [CrossRef]

2. Mandley, S.; Daioglou, V.; Junginger, H.; van Vuuren, D.; Wicke, B. EU bioenergy development to 2050. Renew. Sustain. Energy
Rev. 2020, 127, 109858. [CrossRef]

3. Titova, E.S. Biofuel Application as a Factor of Sustainable Development Ensuring: The Case of Russia. Energies 2019, 12, 3948.
[CrossRef]

4. Proskurina, S.; Junginger, M.; Heinimö, J.; Tekinel, B.; Vakkilainen, E. Global biomass trade for energy—Part 2: Production and
trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels Bioprod.
Biorefining 2019, 13, 371–387. [CrossRef]

5. Pradhan, P.; Mahajani, S.M.; Arora, A. Production and utilization of fuel pellets from biomass: A review. Fuel Process. Technol.
2018, 181, 215–232. [CrossRef]

6. Kim, J.-H.; Jung, S.; Lin, K.-Y.A.; Rinklebe, J.; Kwon, E.E. Comparative study on carbon dioxide-cofed catalytic pyrolysis of grass
and woody biomass. Bioresour. Technol. 2021, 323, 124633. [CrossRef]

7. Yin, C.Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 2011, 90, 1128–1132.
[CrossRef]

8. Vargas-Moreno, J.; Callejón-Ferre, A.; Pérez-Alonso, J.; Velázquez-Martí, B. A review of the mathematical models for predicting
the heating value of biomass. Renew. Sustain. Energy Rev. 2012, 16, 3065–3083. [CrossRef]

9. Qian, C.; Li, Q.; Zhang, Z.; Wang, X.; Hu, J.; Cao, W. Prediction of higher heating values of biochar from proximate and ultimate
analysis. Fuel 2020, 265, 116925. [CrossRef]

10. Górnicki, K.; Kaleta, A.; Winiczenko, R. Prediction of higher heating value of oat grain and straw biomass. E3S Web Conf. 2020,
154, 01003. [CrossRef]

11. Maksimuk, Y.; Antonava, Z.; Krouk, V.; Korsakova, A.; Kursevich, V. Prediction of higher heating value based on elemental
composition for lignin and other fuels. Fuel 2019, 263, 116727. [CrossRef]

12. Bychkov, A.L.; Denkin, A.I.; Tikhova, V.; Lomovsky, O. Prediction of higher heating values of plant biomass from ultimate
analysis data. J. Therm. Anal. Calorim. 2017, 130, 1399–1405. [CrossRef]

13. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 1989, 2, 303–314. [CrossRef]
14. Xing, J.; Luo, K.; Wang, H.; Gao, Z.; Fan, J. A comprehensive study on estimating higher heating value of biomass from proximate

and ultimate analysis with machine learning approaches. Energy 2019, 188, 116077. [CrossRef]
15. Obafemi, O.; Stephen, A.; Ajayi, O.; Nkosinathi, M. A survey of artificial neural network-based prediction models for thermal

properties of biomass. Procedia Manuf. 2019, 33, 184–191. [CrossRef]
16. Estiati, I.; Freire, F.B.; Freire, J.T.; Aguado, R.; Olazar, M. Fitting performance of artificial neural networks and empirical

correlations to estimate higher heating values of biomass. Fuel 2016, 180, 377–383. [CrossRef]
17. Uzun, H.; Yıldız, Z.; Goldfarb, J.L.; Ceylan, S. Improved prediction of higher heating value of biomass using an artificial neural

network model based on proximate analysis. Bioresour. Technol. 2017, 234, 122–130. [CrossRef]
18. Cao, H.; Xin, Y.; Yuan, Q. Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine

intelligent approach. Bioresour. Technol. 2016, 202, 158–164. [CrossRef]
19. Ozonoh, M.; Oboirien, B.O.; Daramola, M.O. Optimization of process variables during torrefaction of coal/biomass/waste tyre

blends: Application of artificial neural network & response surface methodology. Biomass Bioenergy 2020, 143, 105808. [CrossRef]
20. Goettsch, D.; Castillo-Villar, K.K.; Aranguren, M. Machine-learning methods to select potential depot locations for the supply

chain of biomass co-firing. Energies 2020, 13, 6554. [CrossRef]
21. Li, H.; Xu, Q.; Xiao, K. Predicting the higher heating value of syngas pyrolyzed from sewage sludge using an artificial neural

network. Environ. Sci. Pollut. Res. 2020, 27, 785–797. [CrossRef] [PubMed]
22. Olatunji, O.O.; Akinlabi, S.; Madushele, N.; Adedeji, P.A.; Felix, I. Multilayer perceptron artificial neural network for the prediction

of heating value of municipal solid waste. AIMS Energy 2019, 7, 944–956. [CrossRef]
23. Dashti, A.; Noushabadi, A.S.; Raji, M.; Razmi, A.; Ceylan, S.; Mohammadi, A.H. Estimation of biomass higher heating value

(HHV) based on the proximate analysis: Smart modeling and correlation. Fuel 2019, 257, 115931. [CrossRef]

http://doi.org/10.1016/j.rser.2017.04.108
http://doi.org/10.1016/j.rser.2020.109858
http://doi.org/10.3390/en12203948
http://doi.org/10.1002/bbb.1858
http://doi.org/10.1016/j.fuproc.2018.09.021
http://doi.org/10.1016/j.biortech.2020.124633
http://doi.org/10.1016/j.fuel.2010.11.031
http://doi.org/10.1016/j.rser.2012.02.054
http://doi.org/10.1016/j.fuel.2019.116925
http://doi.org/10.1051/e3sconf/202015401003
http://doi.org/10.1016/j.fuel.2019.116727
http://doi.org/10.1007/s10973-017-6350-0
http://doi.org/10.1007/BF02551274
http://doi.org/10.1016/j.energy.2019.116077
http://doi.org/10.1016/j.promfg.2019.04.103
http://doi.org/10.1016/j.fuel.2016.04.051
http://doi.org/10.1016/j.biortech.2017.03.015
http://doi.org/10.1016/j.biortech.2015.12.024
http://doi.org/10.1016/j.biombioe.2020.105808
http://doi.org/10.3390/en13246554
http://doi.org/10.1007/s11356-019-06885-2
http://www.ncbi.nlm.nih.gov/pubmed/31811605
http://doi.org/10.3934/energy.2019.6.944
http://doi.org/10.1016/j.fuel.2019.115931

Energies 2022, 15, 7083 13 of 13

24. Elmaz, F.; Büyükçakır, B.; Yücel, Ö.; Mutlu, A.Y. Classification of solid fuels with machine learning. Fuel 2020, 266, 117066.
[CrossRef]

25. Akkaya, E.; Demir, A. Predicting the heating value of municipal solid waste-based materials: An artificial neural network model.
Energy Sources Part A Recover. Util. Environ. Eff. 2010, 32, 1777–1783. [CrossRef]

26. Abidoye, L.K.; Mahdi, F.M. Novel linear and nonlinear equations for the higher heating values of municipal solid wastes and the
implications of carbon to energy ratios. J. Energy Technol. Policy 2014, 4, 14–27.

27. Phyllis2, Database for (Treated) Biomass, Algae, Feedstocks for Biogas Production and Biochar. TNO Biobased and Circular
Technologies. Available online: https://phyllis.nl (accessed on 20 July 2022).

28. Parikh, J.; Channiwala, S.A.; Ghosal, G.K. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 2005, 84,
487–494. [CrossRef]

29. Krishnan, R.; Hauchhum, L.; Gupta, R.; Pattanayak, S. Prediction of equations for higher heating values of biomass using
proximate and ultimate analysis. In Proceedings of the 2nd International Conference on Power, Energy and Environment:
Towards Smart Technology (ICEPE), Shillong, India, 1–2 June 2018. [CrossRef]

30. Myung, I.J. Tutorial on Maximum Likelihood Estimation. J. Math. Psychol. 2003, 47, 90–100. [CrossRef]
31. Holzmüller, D.; Steinwart, I. Training two-layer ReLU networks with gradient descent is inconsistent. arXiv 2020, arXiv:2002.04861.

[CrossRef]
32. Cho, J.; Lee, K.; Shin, E.; Choy, G.; Do, S. How much data is needed to train a medical image deep learning system to achieve

necessary high accuracy? arXiv 2015, arXiv:1511.06348. Available online: https://arxiv.org/pdf/1511.06348.pdf (accessed on
20 July 2022).

33. Cireşan, D.C.; Meier, U.; Schmidhuber, J. Transfer learning for Latin and Chinese characters with deep neural networks. In
Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012.
[CrossRef]

34. Jain, A.K.; Chandrasekaran, B. 39 Dimensionality and sample size considerations in pattern recognition practice. In Handbook of
Statistics; Elsevier: Amsterdam, The Netherlands, 2001; Volume 2, pp. 835–855. [CrossRef]

35. Kavzoglu, T.; Mather, P.M. The use of backpropagating artificial neural networks in land cover classification. Int. J. Remote Sens.
2003, 24, 4907–4938. [CrossRef]

36. Raudys, S.J.; Jain, A.K. Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Trans.
Pattern Anal. Mach. Intell. 1991, 13, 252–264. [CrossRef]

37. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the
14th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995.

38. Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans.
Pattern Anal. Mach. Intell. 2009, 32, 569–575. [CrossRef]

39. Bengio, Y.; Grandvalet, Y. No unbiased estimator of the variance of k-fold cross-validation. J. Mach. Learn. 2004, 5, 1089–1105.

http://doi.org/10.1016/j.fuel.2020.117066
http://doi.org/10.1080/15567030902882950
https://phyllis.nl
http://doi.org/10.1016/j.fuel.2004.10.010
http://doi.org/10.1109/epetsg.2018.8658984
http://doi.org/10.1016/S0022-2496(02)00028-7
http://doi.org/10.48550/arXiv.2002.04861
https://arxiv.org/pdf/1511.06348.pdf
http://doi.org/10.1109/IJCNN.2012.6252544
http://doi.org/10.1016/S0169-7161(82)02042-2
http://doi.org/10.1080/0143116031000114851
http://doi.org/10.1109/34.75512
http://doi.org/10.1109/TPAMI.2009.187

	Introduction
	Materials and Methods
	Data Collection
	Artificial Neural Network Architecture and Evaluation

	Results and Discussion
	Scoring and Rules
	Preprocessing of the Inputs for Predicting the HHVs
	ANN Architecture Tuning
	Choosing the Activation Function
	Optimizing the Operation of the Solver Algorithm
	Comparing the Prediction Accuracies Ensured Using ANN and the Empirical Formulas

	Conclusions
	References

