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Abstract: An innovative method to improve the efficiency of a single-phase electric-grid 125 kVA,
50 Hz shell type and distribution transformer is presented. The diamagnetism characteristic of a bulk
high-temperature superconductor (HTS), designed in a specific dimension, is used to construct a
magnetic shield around the air gaps that form between the core joints and among the coils of the
transformer. Consequently, the shielded flux engages the core area and increases the flux density in
the core, resulting in an increase in the output power, and hence an improved transformer efficiency.
The transformer was designed and simulated using advanced electromagnetic software. Simulation
results indicate that the width and thickness of the HTS material, as its precise location placed on
the air gaps around the core and the coils, can be a substantial factor in generating a magnetic
shield that results in an efficiency improvement, superior compared to conventional transformers.
The most enhanced performance was received for HTS thickness of 2.6 mm, around 2.4% output
power improvement compared with a conventional transformer model. In a transformer of this type
that efficiency improvement can lead to great energy savings, around 10,000 kWh for half a year of
working under load.

Keywords: distribution transformer; Bulk HTS; single-phase; high-efficiency transformer; magnetic
shielding

1. Introduction

Due to the increasing demand for electric power, an improvement in the efficiency
of power transformers is becoming more necessary. Any improvement in the efficiency
of these transformers, even the most minor, can lead to a significant energy saving and
operation cost reduction. For this reason, great efforts are being made in order to minimize
all kinds of losses [1,2].

Leakage flux is one of the transformer losses that causes voltage drops in both primary
and secondary winding and hence directly affects the transformer efficiency. This loss is
defined as all the flux that is scattered in the air gaps around the transformer’s conducting
coils and not participating in the energy transfer process. Although leakage flux can
be effective as a short circuit limiter, it is mostly considered as the loss that effects the
transformer operation under the secondary voltage load drop [3]. In addition to that,
leakage flux is defined as a part of the losses known as stray loss.

Stray losses, mainly caused by leakage flux from winding, are not a direct power loss,
but ones that are created from the interaction with the construction and surrounding ele-
ments of the transformer. This interaction causes eddy currents that raises the temperature
of the transformer, and in extreme cases of rapid load changes, can damage the insulation of
the transformer elements [4]. The higher the power of the transformer is, the intensity of the
leakage flux will be higher and will grow rapidly [5]. Inefficient design of the transformer
structure for leakage flux reduction, can roughly affect transformer performances [6,7].
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There are several methods to reduce leakage flux in transformers. Among them is the
reduction of the coil size and the minimization of the air gaps between them [8]. Locating
the transformer coils as adjacently as possible improves the coupling and reduces the
leakage flux that can fringe out the air gaps [9]. Other methods use magnetic shunts that
prevent from the leakage flux reaching undesirable areas [10].

One of the promising developments for loss reduction in electrical devices is super-
conductor technology. Among them are the superconducting transformers [11]. High-
temperature superconductors (HTS) have a highly applied orientation, thanks to their
ability to work at 77 K [12–16]. Superconductor bulk materials proved to be efficient in
creating magnetic shields for high-frequency transformers [17].

The magnetic shielding properties of the bulk tube HTS were studied at low AC fre-
quency in an axial magnetic field to show the dependence of the thickness and dimensions
of bulk tube HTS on magnetic field shielding. The HTS bulk tube was found to be effective
in shielding an axial induction [18].

In this paper we investigate the possibility of improving the efficiency of a distribution
single-phase shell type transformer by shielding the leakage flux, using bulk HTS material.
By performing advanced electromagnetic simulations, optimizing the superconducting
material dimensions over the transformer air gaps, we obtained an optimal design of a bulk
superconducting shielded transformer (BSST). The design of both single-phase shell-type
transformers, conventional and BSST, is presented in Section 2. Section 3 summarizes the
design simulation results of the two models and presents the comparison between them.

2. Transformers Design
2.1. The Conventional Transformer Model Design

In order to examine the magnetic flux shielding effect generated by the HTS material
on the efficiency of a transformer, a conventional model of a distribution single-phase step-
down, shell-type transformer was designed. A distribution transformer is a transformer
that by most industry standards is power rated up to 500 kVA for single-phase and up
to 5000 kVA for three-phase transformer. This transformer takes voltage from a primary
distribution circuit and “steps down” the voltage to a secondary distribution circuit or
consumers service [19]. The model was simulated through Ansys Maxwell software in
transient mode in order to measure the induced voltages and currents in the transformer’s
windings and to examine the flux density in the core. The model consists of a shell type E-I
shape magnetic core and two high and low voltage copper windings that wind around the
central limb, surrounded by air in room temperature. The schema of the transformer core
dimension is presented in Figure 1.
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‘W’ is the core width, ‘H’ is the core height, ‘hw’ is the window height, ‘Ww’ is the
window width, ‘a’ is the width of the outer limb and b is the core depth. The core parameters
were optimized for the following power-grid transformer specifications: 125 kVA power
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rate, step down voltage ratio of 6.6/0.4 kV, volts per turn of 10 V, and frequency of 50 Hz.
Other specifications determined for the core and winding calculation are: 2 amp/mm2

current density, a 1.1 T flux density in the core, a 0.33 window space factor, and a stacking
factor of 0.9. The ratio between the core depth and central limb width is b/2a = 2.5. The
design optimization results yield the following core dimensions: W = 0.495 m, H = 0.46 m,
b = 0.3375 m, and a = 0.0675 m. Table 1 summarize the transformer main technical data.

Table 1. The transformer main technical data.

Parameter Value

Type 1 phase Shell
kVA 125

Frequency 50 Hz
HV Volts 6600
LV Volts 400

Table 2 summarizes the transformer’s material parameters involved in the simulation. µr
is the relative permeability, which varies non-linearly in a magnetic flux density range
values (B) of 1.5 to 2.5 T for magnetic field strength values (H) of 0 to 3× 105 A/m. PL is the
power density of the core loss model; it varies non-linearly in the range of 0 to 0.5 W/m3,
for the magnetic flux density range of 0 to 1 T. Kh is the hysteresis loss coefficient, Kc is the
eddy current loss coefficient, Ke is the magnetic and electric operating condition coefficient,
and ρ is the mass density.

Table 2. Material parameters of the transformer model.

Parameter Value

µr variable
Kh 28.91
Kc 0.599
Ke 2.887
ρ 7872 kg/m3

PL variable

Figure 2a,b, respectively, show the half symmetric views of the simulated model. The
two E-I core parts (the two green parts in Figure 2) were separated with a 1 mm air gap.
The primary copper winding, i.e., the orange part in Figure 2, was separated from the
secondary winding, i.e., the pink part in Figure 2, through a 1 mm air gap. In addition, the
secondary copper winding was separated from the transformer core with a 1 mm air gap.

The emphasis of this work is on the improvement of the transformer efficiency. The
efficiency of a transformer is described using the following equation [20]:

η =
Pout

Pout + Pf e + Pcu
(1)

where η is the transformer efficiency, Pout is the output power, i.e., the multiplication of the
output voltage and current, measured in the secondary winding, and Pf e and Pcu are the
losses of the transformer core and winding, respectively. Equation (1) demonstrates that,
in order to improve the efficiency of a transformer, one should improve the transformer
output power, considering changes in the sum of losses.
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view (b).

For AC excitation, it is known that the maximum induced voltage in the N-turns
windings is proportional to the maximum flux density in the core, as described in the
following Equation (2) [20]:

Emax =
√

2π f NAcBmax (2)

where Emax is the maximum induced voltage in the winding, f is the frequency of the
voltage source, N is the number of turns of winding, Ac is the central limb cross section
area and Bmax is the maximum flux density in the core. According to Equation (2), in order
to improve or maximize the induced voltage, one should maximize the flux density in the
transformer core.

Figure 3a,b, respectively, show the flux density surface and vector representations of
the conventional transformer’s core model in Ansys Maxwell simulator. Simulation results
indicate a relatively uniform flux density pattern distributed through the core. The highest
flux density magnitude in the central limb is in the range of ~1–1.1 T (the bar yellow range),
which corresponds with the transformer original design.
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Figure 4 shows the spatial scattering magnitude of the leakage flux density that leaks
out from the air gaps around the core of the conventional model. This flux density leaks
out from the air gaps, is in the magnitude range of ~0.1–0.2 T (the bar blue range).
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Figure 4. The spatial scattering magnitude of flux density leaking out from the air gaps around the
transformer core.

For this study, a shell type transformer was chosen because its structure is very
suitable for the placement of material layers in the transformer’s air gaps around the core
and coil, intended to produce the magnetic shielding effect, as detailed in the next section.
In addition, this shell type configuration is with high potential to reduce the amount of
leakage flux in comparison to other types of transformer construction, and accordingly, a
higher efficiency. For any other power transformers, or any other three-phase transformer,
new research is required to adjust the thickness, location and the geometry of the PEC
layers to the specific location of the transformer air gaps.

2.2. The HTS Bulk Transformer Model Design

Following the spatial leaking of leakage flux observed in the conventional model
simulations, we designed an improved new model, based on bulk superconductor material
that shields the leakage flux that leaks through the air gaps.

In a superconducting state, the material has two unique properties, zero DC resistivity,
0 Ω, and perfect diamagnetism, χ = −1. Perfect diamagnetism is the material’s ability to
reject magnetic and electrical fields, known as the Meissner effect. Depending on magnetic
field (Bc), current (Ic), or critical temperature (Tc), this effect maybe reversible [20].

Superconducting materials with Tc below 30 K are usually characterized as type I su-
perconductors, while superconducting materials with Tc above that value are characterized
as type II superconductors. Type I and type II superconductors share similar properties and
characteristics, the difference between the two types is their reaction to external magnetic
fields. Type I superconductors have a low critical magnetic field (typically in the range
of 0.0000049 T to 1 T). Type II superconductors come with a high critical magnetic field
(typically greater than 1 T) [21]. The material referred for this study is the YBa2Cu3O7 HTS
bulk, a type II superconductor material, also known as YBCO or Y-123, with a threshold
temperature around 92 K. YBCO is a ceramic layer of Yttrium and Barium combined with
copper-oxide. It is possible to obtain critical magnetic fields of 4 T, on the surface of an
YBCO bulk at 77 K (liquid nitrogen boiling point), and up to 17 T at 29 K [22,23].

The HTS YBCO bulk material was chosen for several reasons: its ability to be in a
superconducting state at relatively high temperature (attractive for industrial devices), the
YBCO bulk is relatively thick and its thickness can be changed as needed, and its ability
to handle large magnetic fields, a necessary matter for the transformer type designed in
this study.
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Figure 5 shows the transformer model with the cladding of a bulk superconductor
material over the air gaps between the two core parts and on the sides between the core
and the secondary copper winding. In order to simulate the superconducting effects of the
YBCO bulk material used for the magnetic shielding, we used a perfect electric conductor
(PEC) material [24–30].
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Figure 5. Transformer model with cladding of HTS bulk material over air gaps (the BSST model).

Figure 6a,b, respectively, show the flux density surface and vector representations
in the core of the BSST model. In this model, the maximum flux density magnitude is
concentrated in the central limb in the range of ~0.94–1.57 T (Green Range), higher flux
density magnitude values than that observed in the conventional transformer (Figure 3).
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Figure 6. Flux density in the surface of the core of the BSST model (a) and its flux density vector
representation (b).

3. Results

Figures 7 and 8, respectively, show the root mean square (RMS) values of the induced
voltage and current in the primary and secondary copper windings of the conventional
model (without the pec). Simulation is performed for each model over 0.5 s, with time
steps of 0.002 s. The RMS value of the primary copper winding induced voltage (red line)
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is 5.6870 kV and the RMS value of the secondary copper winding induced voltage (green
line) is 0.3331 kV (Figure 7).
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Figure 7. The RMS values of the induced voltages of the conventional transformer primary (red line)
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The RMS value of the primary copper winding current (red line) is 21.3186 A and
the RMS value of the secondary copper winding induced current (green line) is 335.177 A
(Figure 8).
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secondary (green line) copper windings.

Figures 9 and 10, respectively, show the RMS values of the induced voltage and current,
in the primary and secondary copper windings, in the most efficient, 2.6 mm thick PEC,
BSST model. The RMS value of the primary copper winding induced voltage (red line)
in this model is 5.7202 kV and the RMS value of the secondary copper winding induced
voltage (green line) is 0.3344 kV (Figure 9).
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The RMS value of the primary copper winding current (red line) is 21.8303 A and the
RMS value of the secondary copper winding current (green line) is 341.8864 A (Figure 10).
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windings currents.

From the values of the induced voltage (Figure 9) and current (Figure 10), one can
calculate the BSST model output power, resulting in ~2.4% output power improvement
compared to that of the conventional model. Improving 125 kVA transformer output power
by around 2.4% improves the power consumption by 2.68 kW, up to 10,000 kWh for half a
year of working under load.

Table 3 shows the results obtained following an optimization process. During this
process different values of PEC dimensions (thickness and width) were simulated. The
table mainly focused on the performance of the transformer for different thickness of PEC.
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Table 3. Simulation results for different PEC dimensions and conventional transformer models.

Model Type PEC Thickness
[mm]

PEC Width
[mm]

Primary Induced
Voltage [V]

Primary Induced
Current [A]

Secondary Induced
Voltage [V]

Secondary Induced
Current [A]

Primary Induced
Power [VA]

Secondary Induced
Power [VA]

Conventional - - 5687 21.3186 333.1 335.177 122,781 111,647

BSST 1 13.2 5637.9 21.3517 331.5 335.3547 120,379 111,170

BSST 2 13.2 5723.3 21.4258 335.5 336.6238 122,626 112,937

BSST 2.2 13.2 5731.3 21.8002 334.7 341.0928 124,943 114,164

BSST 2.4 13.2 5643.1 21.3379 332 335.2483 120,412 111,302

BSST 2.6 13.2 5720.2 21.8303 334.4 341.8864 124,874 114,327

BSST 2.8 13.2 5561.5 21.1708 326 329.9949 117,741 107,578

BSST 3 13.2 5591.4 21.0236 327.6 329.1144 117,551 107,818
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The PEC transformer model with the highest secondary winding output power ob-
tained for a PEC thickness of 2.6 mm, and a width of 13.2 mm.

The output power for this thickness improved in 2.4%, compared to the non-PEC
conventional model. On the contrary, for other PEC thickness values, such as 1 mm and
3 mm, the output power obtained is worse than that of a conventional transformer. These
results emphasize the importance of optimizing the dimensions of the bulk HTS shielding
material for a specific transformer.

Based on the ANSYS numerical analysis results, one can conclude that the output
power can improve or deteriorate, depending on the thickness of the PEC layer, which
creates the magnetic shielding effect. For PEC thickness values smaller than 1 mm, no
effective magnetic shielding was observed. For this reason the optimization process was
performed for PEC layers greater than that thickness value. For example, for 1 mm
thickness, the output power was deteriorated in 0.43% in relation to the conventional,
non-PEC, model. For PEC thickness values greater than 1 mm, an improved output power
trend is obtained. The maximum values on the secondary coil of the induced current,
341.88 A, and the induced voltage, 334.4 V, obtained for a PEC thickness value of 2.6 mm.
For PEC thickness values greater than 2.6 mm, as for example a thickness value of 2.8 mm,
the transformer output power was deteriorated in 3.6% in relation to the conventional
model (Table 3).

Table 4 shows a typical data of several 125 kVA rated power commercial transform-
ers and the conventional and optimized BSST models. The table refers to the different
transformer’s configuration characteristics, such as: dimensions, operating frequency, En-
vironmental temperature and the iron losses with no load. The data in the table indicate
that the dimensions of the BSST model are relatively smaller than those of the commercial
transformers, in addition, this type of transformer will have to work under cryogenic
cooling conditions [31]. Another notable issue is that the change in the iron losses between
the conventional and the BSST is negligible compared to the improvement in the output
power. In conclusion, the BSST model is the only transformer configuration, in relation to
those shown in the table, that can offer a solution to the leakage flux problem, which can
lead to great energy savings over time.

Table 4. 125 kVA rated power transformers.

Transformer Type Transformer
Configuration/Dimensions f (Hz) Cooling

Primary
Induced

Voltage [V]

Secondary
Induced

Voltage [V]

No Load
Loss (W)

CSP Auto protegido
Pole mounted
Oil-immersed

1020 × 660 × 900 cm3
50 Air/Dry 13,200 200 210

MT-DOE16-1P
Isolation Transformer

Dry type
122 × 122 × 109 cm3 60 Air/Dry 480 240 350

MT-ISX-3P Isolation
Transformer

Dry type
76 × 83.5 × 105.5 cm3 60 Air/Dry 480 400 240

Conventional Shell type
46 × 34 × 7 cm3 50 Air/Dry 5687 333 129

BSST Shell type
46 × 34 × 7 cm3 50 Cryogenic

temperature 5720 334 132

4. Conclusions

An innovative method for efficient improvement of an electric-grid transformer us-
ing the diamagnetism characteristic of a bulk HTS material was introduced. The HTS
transformer model was developed by placing bulk HTS material over the air gaps of a
conventional transformer model. Optimization process was carried out using advanced
electromagnetic simulations for different bulk HTS material dimensions, thickness and
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width. An output power improvement of around 2.4%, compared to that of the conven-
tional transformer model, obtained for width of 13.2 mm and thickness of 2.6 mm. For
part of the other PEC dimensions, tested in simulation, the PEC transformer output power
has deteriorated relative to the conventional transformer model, which emphasizes the
importance of the optimization process. Future implementations of this technology in
larger electric grid transformers than the one tested in this study can even result in greater
energy saving.
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