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Abstract: Building Information Modeling (BIM), as an auxiliary design platform, is increasingly
adopted in construction projects. However, it is not widely applied in the collaborative design of zero
energy buildings (ZEBs), due to the cross-discipline and complex features of ZEB projects and lack of
research on the procedure and method of collaborative design in this field. This paper introduces a
BIM-based collaborative design method for ZEBs. From the perspective of the technical requirements
of ZEBs, the study elaborates the application of a BIM-based collaborative design method among
specialists from different disciplines in passive design, renewable energy utilization and active design.
The feasibility of this method is verified by the actual design and construction of the T&A House in
Solar Decathlon China (SDC) competition. The research results show that the BIM-based collaborative
design method can facilitate the completion of a construction project and achieve the expected goal
of zero energy consumption in ZEBs.
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1. Introduction

The energy issue is a major challenge facing the world today. The construction in-
dustry accounts for nearly 41% of the total global energy consumption and has surpassed
transportation as the world’s largest energy-consuming industry [1]. In China, the energy
consumption in the building process was 1 billion tce in 2018, accounting for 21.7% of the
total national energy consumption, of which residential energy consumption accounted for
81% [2]. This figure is expected to double by 2050 as a result of China’s economic develop-
ment and rapid urbanization [3]. In view of this situation, improving building performance
is a possible solution to reduce building energy consumption. Zero energy buildings (ZEBs)
have significant advantages in terms of energy conservation and consumption reduction
by improving the utilization efficiency of renewable energy [4]. Studies have shown that
ZEBs can save 60% to 75% of energy compared to traditional buildings [5]. Therefore, ZEBs
are of great significance for reducing the energy consumption of Chinese buildings.

In China, the relevant practical research on ZEBs started relatively late. However,
with the promotion of national policies and the demonstration effect of pilot projects, ZEBs
have developed rapidly since 2017, showing an increasing trend year by year [6]. As of
the beginning of 2022, the under-construction and constructed area of nearly zero energy
buildings has exceeded 12 million m2 [7]. With the announcement of the dual carbon goals
of China, ZEBs have gradually become an important way for the construction industry to
reduce energy consumption and carbon emissions [8].

The development of ZEBs in China benefits from the policies and standards issued
by the national and local governments [9], the excellent demonstration projects, solid
theoretical research in other countries and the domestic exploration of ZEB design [10].
Against this backdrop, the Solar Decathlon China (SDC) was introduced to China in 2011,
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which is affiliated with the Solar Decathlon (SD) sponsored by the U.S. Department of
Energy since 2002. In 2021, the third SDC competition was held in Zhangbei County,
Zhangjiakou City, China, aiming at the three propositions of “sustainable development,
intelligent interconnection, and healthy living”. Candidates are encouraged to design and
construct solar-energy-powered ecological houses with demonstration effect and promotion
value [11]. The case of T&A House in this study is a jointly designed ZEB by China
University of Mining and Technology and AGH University of Science and Technology in
Krakow, Poland. It has entered the final stage competition of SDC in 2021 for its excellent
performance in zero energy consumption.

2. Literature Review

Building Information Modeling (BIM) can be applied in accurate modeling [12], en-
velope optimization [13], energy performance simulation [14,15], renewable energy uti-
lization [16], building performance evaluation [17–19], smart management [20], etc. It
has demonstrated great benefits in assisting the design of ZEBs in terms of saving time,
improving coordination, reducing costs and reducing load on information exchange [21,22].
However, most studies on BIM-assisted ZEB projects focus on the design optimization of
some stages [23] rather than the whole process from site design to energy simulation. In
addition, most research on ZEBs is devoted to the evaluation and optimization of existing
cases [24], so it is difficult to follow up the entire design stages of the project with BIM. The
SDC competition requires the participating teams to build a low-energy green house within
the specified time, providing ideal conditions for the application of BIM in the design and
construction stages of ZEBs. Therefore, under the requirements of the SDC competition,
this research uses BIM to carry out cross-discipline collaboration in designing a T&A House.
After field construction, a T&A House that may achieve zero energy consumption is finally
completed.

Owing to its comprehensiveness, the design of a ZEB project demands cross-disciplinary
collaboration from a spectrum of fields including architecture, electricity, energy, the envi-
ronment and so on. Jassawalla and Sashittal defined collaboration as people with different
interests coming together to achieve a common goal through interaction, information shar-
ing and coordination of activities, where various professionals collaborate on a common
goal [25]. BIM is a modern platform enabling the collaboration of multiple disciplines on
the same construction projects. Due to its potential ability to improve efficiency in design,
procurement, prefabrication, construction and post-construction stages, BIM is being ac-
cepted by the construction industry [26,27] and is increasingly used in ZEB projects [28].
BIM provides a collaboration platform with which members in a ZEB project can exchange
and update information about the model so as to facilitate decision-making.

In the collaborative design of ZEBs, BIM exerts multiple advantages. In terms of
improving work efficiency, the application of BIM can significantly improve construction
quality and efficiency [29]. Effective implementation of BIM can enhance high-level collab-
oration in a multidisciplinary work environment [30]. Research has shown that improved
collaboration among project participants can increase the efficiency and effective outcomes
of a project [31]. BIM can automate the process of modeling, increase the accuracy of
construction documents and improve communication between all parties in the design and
construction process [32]. These characteristics have greatly influenced the way architects
and structural engineers work. In terms of reducing costs, Azhar et al. used data obtained
from 10 specific case studies to demonstrate that BIM could improve collaboration and
has the potential to reduce costs, increase profits and improve efficiency [33]. Bryde et al.
assembled data from 35 case studies in the literature and concluded that cost reduction
was one of the main benefits of BIM, in addition to improved project delivery time, quality,
coordination and collaboration among different stakeholders [34]. In terms of reducing
energy consumption, Hindavi et al. optimized the energy performance of a single-story
urban house in a poor area in India by 13%, which was achieved by simulating the energy
consumption in eight directions and seven masonry combinations of the house in BIM [35].
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Previous research reveals that BIM-based collaboration can save the economic and
time cost of ZEB projects and optimize energy structure and building performance through
simulation. However, in practical application, some problems still exist in real collaboration
in BIM-based ZEB projects.

An enhanced integration of BIM software does not always guarantee a high level
of collaboration [36] because BIM users from different professions may possess different
thinking styles, and their operating proficiency with BIM may also vary greatly. As a result,
in real applications of BIM in ZEB projects, a wide range of risks, including misunder-
standings, data-misinterpretation, increased reworking [37] and poor collaboration, are
affecting project implementation [38]. Besides technical professionals, decision makers
such as house-owners and contractors also reject the application of BIM for ZEBs, as the
benefits of BIM have not been verified and quantified in previous studies, and there is a
lack of metrics to support its incorporation into their workflows [39]. Existing literature and
practical implementations do not demonstrate clearly why BIM facilitates collaboration in
ZEB projects and why collaboration is crucial for the successful construction of ZEBs [40].
In addition, e-documents generated in the BIM-based management process are easier to
forge than paper versions [40], and so legal disputes such as liability and copyright may
arise.

In conclusion, BIM-based collaboration is difficult to achieve in ZEB projects, mainly
due to the following three reasons. First, BIM standards and data exchange formats
are complex, which, in turn, affects the data transmission efficiency in BIM applications.
Second, BIM users may be slow to adjust to this new platform and have misunderstandings
of data and insufficient understanding of their roles and responsibilities in ZEB projects.
Third, there is not sufficient quantitative research and real cases to which to refer, and
differences between BIM-based collaboration and non-BIM-based collaboration are still
unclear, so the BIM collaborative process for ZEBs is not mature.

The SDC competition, however, provides ideal conditions for the application of BIM
in ZEB projects and a good research environment for collaborative design as well. Guided
by cross-disciplinary teachers, students, as mainstays of design and construction, all have
the same goal, clear division of labor and a certain foundation in the operation of BIM
software, which has created favorable conditions for BIM-based collaboration on ZEBs. On
this basis, this study explores the BIM-based collaborative design method of ZEBs, with
which we build a T&A House that fulfills the residential functions, is expected to achieve
zero-energy consumption and provides a reliable case for related research.

Though this research describes a new method and has tested its feasibility, there is
insufficient data to quantitatively support how well this project is completed compared
with other projects. As the SDC competition has not officially entered the final stage, the
relevant monitoring data of the building performance is not yet fully collected. We will fill
this gap in the follow-up research.

3. T&A House’s Technical Strategies to Achieve Zero Energy Consumption

The design team of T&A House is from China University of Mining and Technology
in Xuzhou, China, and AGH University of Science and Technology in Krakow, Poland.
Participants from China University of Mining and Technology are teachers and students
from seven majors, including architecture, environmental design, electrical engineering,
energy and power engineering, environmental engineering, engineering management and
civil engineering, while those from the AGH University of Science and Technology mainly
contribute to the energy optimization of the project.

With respect to the design framework, the team refers to the SDC competition eval-
uation system and the zero energy evaluation standard (GB/T51350-2019) [41] and im-
plements the requirements of both in establishing a zero energy residential optimization
system. The SDC competition evaluation system includes 5 aspects—architectural design,
energy, environmental comfort, social economy and design strategy—and on this basis,
they are extended to cover 10 evaluation indexes (Table 1). With respect to the technology
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of ZEB, passive design and active design are two main technical measures (Figure 1). In
the design process, specialists from different disciplines collaborate on the BIM platform to
propose specific design strategies for active and passive design, which can meet the SDC
evaluation requirements and achieve the final target of zero energy consumption.

Table 1. Evaluation indices of the third SDC competition.

Contest Sub-contest
Number Contest Name Available

Points
Sub-Contest

Name
Available

Points
Contest or

Sub-Contest Type

1 n/a Architecture 100 n/a n/a Juried

2 n/a Engineering 100 n/a n/a Juried

3 n/a Energy 100 n/a n/a Juried

4 n/a Communications 100 n/a n/a Juried

5 n/a Market
Potentials 100 n/a n/a Juried

6

6-1 Indoor
Environment 100 Humidity 25 Measured |

Monitored

6-2 CO2 level 25 Measured |
Monitored

6-3 PM2.5 level 25 Measured |
Monitored

6-4 Lighting 25 Measured | Task

7
7-1

Renewable
Heating &
Cooling

100 Space 60 Measured |
Monitored

7-2 Hot water 40 Measured | Task

8

8-1 Home life 100 Refrigerator 15 Measured |
Monitored

8-2 Freezer 15 Measured |
Monitored

8-3 Clothes Washer 20 Measured | Task

8-4 Clothes Drying 20 Measured | Task

8-5 Dinner Party 20 Measured | Task

8-6 Movie Night 10 Measured | Task

9

9-1 Interactive
Experience 100 Media 25 Measured | Task

9-2 Theme Activity 25 Measured | Task

9-3 Into SDC House 25 Measured | Task

9-4 Into SDC
Community 25 Measured | Task

10

10-1 Energy
Self-sufficiency 100 Net-Zero 50 Measured |

Monitored

10-2 Off-grid 50 Measured |
Monitored
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Figure 1. T&A House’s technical measures.

Passive design mainly aims at an energy-saving effect in four aspects: creating good
lighting and ventilation conditions, creating a beautiful and suitable landscape environment,
improving the performance of the envelope structure and reducing the cooling and heating
load. To reduce the dependence on traditional energy systems and initially achieve low
energy consumption through the shape design and space utilization of the building itself,
the design team proposes a series of architectural design practices, including optimizing the
building orientation, controlling the shape coefficient (the ratio of the external surface area
of a building in contact with the outdoor atmosphere to the volume it encloses [42]), guiding
good natural lighting, enhancing natural ventilation, improving the thermal insulation
performance of the envelope structure, assisting the convection of indoor/outdoor hot/cold
airflow and setting buffer space for heat storage and release.

The active design, through the selection of mechanical energy-saving equipment, aims
at reducing energy consumption in four aspects: heating and cooling, thermal cycle, water
source recovery and intelligent control. Active technical measures focus on efficient energy-
saving appliances such as fresh air integrated machines, air conditioning systems, cooling
and heating ceilings, floor heating, rainwater recycling and intelligent lighting. Active
design is based on passive design to further optimize the indoor living environment and
improve energy-saving effects and smart home experience. In terms of renewable energy
utilization, T&A House achieves energy balance by using technologies that integrate a
solar photovoltaic, solar thermal energy and house photovoltaic system to meet the needs
of indoor electricity, hot water and heating. Integrated zero energy technology and the
intelligent control system of T&A House are shown in Figure 2.
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4. Collaborative Design Method for T&A House
4.1. Collaboration-Oriented Passive Design

Zhangjiakou City (from 113◦50′ E to 116◦30′ E and 39◦30′ N to 42◦10′ N), where the
project is located, belongs to the cold region in China. It features a temperate continental
monsoon climate with four distinct seasons. The southeast wind prevails in summer,
while the northwest wind, the dominant wind direction in this city, prevails in winter.
The relationship between its climate and the choice of zero energy technologies is here
described from the aspects of temperature, humidity, sunshine and wind conditions.

(1) Temperature

According to the data of a typical meteorological year in Zhangjiakou City, the average
temperature is the highest in July (with the highest temperature not more than 29 ◦C) and
the lowest in January (with the highest temperature below zero). More than 145 days in
Zhangjiakou City have a daily average temperature below 5 ◦C (Figure 3). Therefore, ther-
mal insulation in winter should be the primary focus following the passive design strategies
of ZEB, including improving the thermal insulation performance of the building envelope,
enhancing the air tightness of the building and controlling the energy consumption from
the aspects of thermal insulation and heating.
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(2) Humidity

The average annual rainfall in Zhangjiakou is 403.6 mm, which is comparatively low
in amount and mainly in summer. July takes the lead in the average rainfall and the number
of rainy days. In contrast, it is the driest in spring, with the average humidity in April and
May being only 38% (Figure 4). Considering the above condition, improving the indoor
humidity in spring will improve indoor comfort and hygiene.
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and rainy days in Zhangjiakou City, China; (b) average humidity in Zhangjiakou City, China.

(3) Sunshine

Zhangjiakou City receives an average of more than 9 sun-hours per day and reaches
more than 12 sun-hours in 7 months of a year. The annual solar radiation in Zhangjiakou
City is considered very high by importing the meteorological data of Zhangjiakou City into
Weather Tool (Figure 5), which makes solar energy one of the most promising renewable
energy sources in power generation and heating.
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(4) Wind conditions

The northwest wind from Siberia prevails in Zhangjiakou City in winter, and the
average wind speed in spring and autumn is very swift and can reach up to 3 m/s in
April. In contrast, wind speed in summer is much slower. Under the prevailing northwest
wind, air tightness measures should be taken in this region to prevent cold air penetration,
which demands careful consideration of building structure and envelope materials in the
preliminary designing stage. (Figure 6).
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Prior to the design, architectural designers use ECOTECT(See Supplementary Materi-
als) to analyze the climate of Zhangjiakou City and propose passive strategies for achieving
zero energy consumption (Figure 7). The simulation analysis reveals that this design can
minimize energy consumption by enhancing the heat storage capacity of the envelope
structure and optimizing ventilation to cool down the house at night. The application of
passive solar energy for heating has a certain effect throughout the year, of which the use
of solar energy for heating in April, May, September and October has the greatest effect. In
summer, direct and indirect evaporative cooling systems have certain effects, which are
most significant in July and August. Furthermore, according to the psychrometric chart
analysis, the passive design should focus on cold prevention and heat preservation in
winter, where the design effect of passive solar heat gain and heat storage capacity of the
envelope can be maximized. These measures need to be highlighted in design.
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4.2. Collaborative Design in the Scheme Generation Stage

The design of a ZEB is a process of collaboration of various specialties. In the passive
design stage, architectural designers first pin down the goal of the optimal performance of
a ZEB and chose the generation of the housing shape as the main line. Then, they carry out
architectural design and passive performance-based design supported by specialties from
environmental design, electrical engineering, energy and power engineering and environ-
mental engineering. In fulfilling the energy performance and environmental comfort, the
specific collaborative operation methods of each discipline are shown in Table 2.

Table 2. Collaborative design in the preliminary design stage.

Leading Discipline Collaborative Content Collaborative Detail Disciplines in
Collaboration

Zero Energy
Consumption Target

Architecture

Site environment
design

Site planning, device
pre-placed location,

landscape design, base
design

Environmental
engineering, Structure

Reasonable layout of
site improve the quality

of the microclimate
environment

Architectural
orientation and shape

design

Solar PV system,
arrangement and

installation position of
heat collector

Energy & power
engineering, Electricity

Improving the
electricity produtivity
by using renewable

energy, and integrated
design of energy use
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Table 2. Cont.

Leading Discipline Collaborative Content Collaborative Detail Disciplines in
Collaboration

Zero Energy
Consumption Target

Architecture

Plane layout of
functional area

Arrangement of
modifiable modules,
division of modules

Indoor structure

Energy-saving-
oriented layout,
improved living

comfort, modular
design that facilitating

construction

Performance based
design

Performance, air
tightness and

window/wall ratio of
envelope structure

Structure

Reducing heat load per
unit area, reducing

energy consumption
and exhibiting local

geographical features

4.2.1. Collaborative Passive Design in the Stage of Environment Planning

In the stage of passive design, specialists from architecture and environmental engi-
neering cooperate in the design of passive landscapes of the site. When dealing with waste
treatment and rainwater utilization, they integrate the concept of the sponge courtyard
(whose theory and concept are borrowed from those of Sponge City in [43]) into the site
design.

In planning the site for storing water treatment equipment, environmental engineering
specialists propose a set of water treatment schemes with small size, low energy consump-
tion and eco-friendly features. Most of the water treatment equipment required in water
processing is properly set in the northern part of the site and buried underground. The
environmental engineering specialists provide the exact number and size of the equipment
to the architecture specialists, who adjust and optimize the building plan in combination
with the residential area and landscape design.

The terrace landscape in front of the house adopts the sponge courtyard, which com-
bines the rainwater circulation system proposed by environmental engineering specialists.
The multi-layer structure of the sponge courtyard can purify rainwater for landscape plant
irrigation. In addition, the northwest area of the site is designed as a multi-stage subsurface
constructed wetland, which can improve the phosphorus removal rate, ensure the water
treatment effect and enhance the ornamental value. The final site design scheme is shown
in Figure 8.
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4.2.2. Collaborative Passive Design in the Stage of Shape Design

As the first step in the shape design, the orientation of the ZEB is determined by
importing the climate data of Zhangjiakou City into Weather Tool of ECOTECT for analysis.
The best orientation of thermal radiation is obtained as it will be conducive to the winter
heating of the ZEB and the acquisition of more solar energy by photovoltaic (PV) modules
and hence is used as the reference for the orientation of main rooms and the inclination of
PV roof.

In the shape design of T&A House, the architectural designers adopt the compact lay-
out based on the existing residential form in the new rural area of Zhangjiakou City, which
is designed to actively respond to the local climatic characteristics (Figure 9). According
to the prevailing wind direction, the northern side of the house is raised to counteract the
impact of the northwest wind. A rectangular hole on the top of the raised house is opened
to achieve the chimney effect for ventilation. In order to mitigate the adverse effects of the
compact layout on the lighting and ventilation of the internal space, an atrium is placed
in the middle of the house, which serves the functions of lighting and heating, rainwater
collection, purification and reuse and microclimate regulation. A sloped roof is considered
for the layout of PV panels and the integration of the PV system into buildings.
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4.2.3. Collaboration Passive Design in the Stage of Functional Areas Layout Design

In designing the overall shape of the house, the architectural designers provide the
layout design of functional areas and make corresponding adjustments to optimize the
shape. As Zhangjiakou City is situated in the cold area of China, the compact layout can
reduce the shape coefficient of the building and ensure better thermal comfort. Combined
with the design of architectural shape and the analysis of ventilation and lighting, the
prototype with a central courtyard is adopted. Considering the climate in Zhangjiakou
City, the main principles for the layout of T&A House (Figure 10) are as follows: locating
the main living space in the south and east, the secondary living space in the north, the
auxiliary space in the northwest corner and the courtyard in the middle.
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Another factor that affects the location of functional areas is the modular scale. Since
the SDC competition requires the construction of a ZEB within 21 days, the building should
be prefabricated in modules. In order to ensure the reasonable module division of the house,
the structure specialists put forward the column grid size requirements when determining
the column grid layout. Room width is used to define the column grid. Finally, four types
of modules are shortlisted to divide different functional areas (Figure 11a). According to
the final shape of the house, three independent slope modules are created for the northern
raised part to meet the stability and safety requirements of the sloped roof. Next, the
structural specialists establish a preliminary BIM model of the structure (Figure 11b) based
on load and internal force and then design and select materials for the frame structure and
form of connection of the modules.
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4.2.4. Collaboration Design Process of Passive Design in the Stage of Performance-Based
Design

The performance-based design of T&A House is implemented to improve the indoor
comfort, mainly from the following three aspects: creating a passive design of the building
facade to reduce building energy consumption, improving the performance of the envelope
to reduce the heat load per unit area and using environmentally friendly and energy-saving
materials with regional characteristics.

As the south and east facades of the house can harness solar energy for lighting and
heating, while the west and north facades need to be designed to resist northwest wind
and preserve heat, the architectural designers implement different designs for the four
facades (Figure 12). The SST wall (a variant and optimized form of the Trombe wall) is
adopted in the south facade to regulate the convection by opening and closing the top and
bottom vents of the exterior wall to maintain a more comfortable indoor airflow. The east
facade is equipped with the solar panel wall, another variant of the Trombe wall. The north
facade adopts the thermal insulation perforated plate. The facade of the equipment room
on the northwest side adopts the thermal insulation and wind resistance board, which
contributes to heat preservation in winter. A wooden grid and colored thin-film PV system
are arranged on the west side of the parking space on the west facade, which can be used
as a small charging station because of its good power generation effect in low light.
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In addition to different forms of facade design to reduce residential energy consump-
tion, the location and size of windows on the facade are also one of the important aspects
affecting energy consumption. Under the restriction of natural lighting, natural ventilation
and other factors, the ECOTECT software is used to simulate and analyze the impact of
different windows on the indoor environment to determine the range of window limits.
After optimizing and adjusting the effect of the windows, ECOTECT software simulates
and verifies the indoor natural lighting and ventilation under different window opening
types, as shown in Tables 3 and 4.
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Table 3. Natural lighting simulation.

Natural Lighting Simulation Analysis

Window form
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walls, roofs and floors and reduce the heat load per unit area. According to the common 
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Conclusion

When south/north-facing windows are open, the
southeast wind will flow through the rooms from

the north to the south and gain stack effect for
indoor ventilation.

West-facing windows
meet the ventilation
requiremeents of the
auxiliary areas in the

west part of the house
and do not disturb the
convection in the east.

After opening
east-facing windows,
convection in the east

part of the house is
disturbed, so these

windows only serve the
function of lighting but

not for ventilation.

Under the existing facade modeling, architectural and structural specialists work
together on the construction plan to improve the thermal insulation performance of exterior
walls, roofs and floors and reduce the heat load per unit area. According to the common
practice of external insulation in cold regions and the characteristics of module prefabrica-
tion, this scheme adopts a layer of 100 mm thick rock wool insulation board and oriented
strand board (OSB) when prefabricating the frame, coupled with a layer of 100 mm thick
extruded polystyrene board (XPS) and OSB during construction on site. The thick wall
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structure not only ensures the thermal insulation needs of the buildings but also enhances
the sound insulation performance. The specific construction measures of the envelope
structure are shown in Figure 13.
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4.3. Collaborative Design of Renewable Energy Utilization

After the formation of the preliminary building shape, the electrical engineering
specialists and the energy and power engineering specialists put forward the design ideas
of the PV system and collector system according to the heating requirements of ZEB. Their
suggestions for the modification of residential form according to the design requirements
of the PV system and collector system provide conditions for the use of renewable energy.
Specific collaborative design methods are shown in Figure 14.
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The collector system designers calculate that the required roof collector area is about
90 m2, which can meet the all-day indoor heating demand and domestic hot water supply
in winter. For the selection of a collector, the designers propose a new type of tubular
collector, which not only saves the collector area but also increases the effective collector
surface and improves the collector efficiency. The designers simulate the collector tube
with Fluent(See Supplementary Materials) and preliminarily select the heat pipe material.

Architectural designers modify the roof shape of the house according to the area
requirements and the form of the tubular collector provided by the collector system de-
signers. Due to the large volume of the collector tube, the first design adjustment is to
decompose the volume of the collector tube into three discrete volumes, which are arranged
in different positions of the roof in a woven shape to adapt to the building shape. However,
the collector designers consider that this decentralized arrangement would greatly increase
the heat loss of the collector tube and increase the difficulty of construction and installation,
so they reject it. The second plan is to arrange the collector tube in the middle of the roof as
a whole and connect the roof horizontal tube and the vertical tube through a section of arc
tube. In order to avoid the overlapping of adjacent horizontal tubes and leave space for
snow sliding, the collector designers calculate the minimum spacing according to the solar
altitude angle and obtain the minimum spacing (40 mm) between two adjacent horizontal
tubes. The designers calculate the volume of the heat storage water tank according to the
area and performance of the collector tube and arrange it in series in the raised wind tower
on the north side of the building. The arrangement can ensure that the working medium
from the underground heat collecting tube can quickly reach the heat storage water tank
after being heated, thereby reducing the heat loss along the way. This arrangement can
basically realize the design effect of the integrated tubular collector in the building.

After determining the orientation and conceptual shape of the building, the designers
in charge of the PV power generation system in electrical discipline begin to join the design.
They propose firstly that the orientation of the PV modules should be consistent with the
building orientation (south-facing), so that the PV modules can absorb more solar energy.
Secondly, the inclined PV modules have higher energy efficiency than the horizontal PV
modules. Thirdly, PV modules can be integrated in the prefabricated frame. Finally, the
installation method of the single-sided inclined PV panel (inclination angle of 45◦) installed
directly on the roof slope is put forward.

By analyzing and calculating the amount of solar radiation in Zhangjiakou City and the
maximum daily power consumption of households in the new countryside of Zhangjiakou
City, the PV system designers determine that the PV power generation system of T&A
House should adopt a non-dispatchable grid-connected power generation plan. With this
guideline, they select PV modules, inverters, meters and other components. For the PV
system of T&A House, the team first connects 10 pieces of 330 W PV modules in series,
then connects these two modules in parallel and finally connects 20 PV modules to the
inverter. PV system designers send this result to architectural designers. On the basis of
the roof inclination of the northwest equipment room, the architectural designers extend
the inclined roof eastward to form a completely inclined design of the northern roof. This
inclined plane can hold 24 pieces of 300 W PV modules, which meets the requirements of
PV module layout without destroying the collector tube layout and forms the building PV
integrated design. The PV system designers establish the PV system model with the BIM
building model, and the inverter and distribution box are placed in the equipment room
(Figure 15). The optimization process of collectors and PV panels is revealed in Figure 16.
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4.4. Collaboration-Oriented Active Design

The energy consumption of residential buildings is mainly from heating, cooling, hot
water, lighting, etc. In the design of T&A House, in addition to the use of passive design
to reduce building energy consumption, the use of active technology is also a critical part.
Active design reduces energy consumption by increasing the energy efficiency of systems
and equipment. The design of active equipment requires the collaboration of various
disciplines, and the specific collaboration methods are shown in Table 5.

Table 5. The collaboration-oriented active design in the refining design stage.

Disciplines in
Collaboration Field of Collaboration Collaborative Detail Disciplines in

Collaboration
Net Zero Energy

Target

Energy and Power

Radiator system Roof form and
installation method

Architectural design
Structural design

Using solar energy
resources to improve

electricity productivity

Central control system - - -

HVAC system Roof form and
installation method

Interior design
Structural design

Reduce energy
consumption
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Table 5. Cont.

Disciplines in
Collaboration Field of Collaboration Collaborative Detail Disciplines in

Collaboration
Net Zero Energy

Target

Environmental
engineering Water treatment system

Photovoltaic panel
cleaning,

rainwater/sewage
treatment system,

water supply/drainage
system

Interior design
Electrical engineering

Energy and Power

Reduce emissions and
energy consumption

Electrical engineering Intelligent control
system

Sewage treatment
system, heat collector
system, space division

and layout

Interior
Environmental

engineering
Energy and Power

Improve comfort and
intelligence of the

house

4.4.1. Collaboration in Designing Thermal System

The thermal system is important but rather complex in the design of ZEB. After
considering the climate data of Zhangjiakou City, the requirements of SDC competition
and relevant design specifications, the energy and power engineering specialists finally
selected the solar water source HP system from five alternative schemes. This thermal
system mainly includes three parts: the heat collector system, central control unit and
heating, ventilation and air conditioning (HVAC) system.

The heat collector system, as an active solar energy utilization system, can avoid the
use of electric energy for heating, thereby reducing energy consumption and improving
the efficiency of energy use. The working principle of the heat collector system is shown in
Figure 17. In summer, cold water collected at night from the roof sprinkler is supplemented
to the cold water storage tank and circulates through the thermal system. In winter, hot
water obtained from the heat collector is pumped through the thermal system for residential
heating.
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In the preliminary design stage, the heat collector system designers collaborated with
the architectural designers to optimize the roof form of the house in terms of collector size,
preliminary selection and arrangement. In the refining stage, their priority was to refine
the size, composition materials, installation and connection methods of the collector. By
using Fluent, the collector designers obtained the influence of wall thickness, pipe diameter,
insulation layer thickness, different materials and ambient temperature changes on the
insulation performance of collector tubes. By using WORKBENCH(See Supplementary
Materials) to analyze and compare variables, they further verified the calculation results
and finalized the material scheme. The total size of the horizontal row of collector tubes on
the roof is 5100 mm × 1620 mm. According to the relevant parameter information in the
BIM model of the collector, the structural designers calculate the uniform load, moment
of inertia and allowable deformation of the collector tube. In order to meet the stiffness
requirements of the horizontal tube, the structural designers set seven collector supports
on the roof to hold the casing, with a maximum interval of 2.7 m. The vertical pipe of the
collector tube is made of stainless steel to achieve the required rigidity and strength with
no supporting structure being provided. The 90◦ elbow is selected to smoothly connect the
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horizontal tube and the vertical tube, which can not only reduce the flow resistance but
also has a certain aesthetic value to meet the integration requirements of the collector tube
and the building shape. The BIM model of the collector system is shown in Figure 18, and
specifications of the heat collector tube are shown in Table 6.
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Table 6. Specifications of heat collector tube.

Item Specifications

Name Evacuated tube solar collectors

Thermal conductivity Ethylene glycol

Number of collectors 30

Height of vertical tubes 4 m

Insulation material Glass wool

Outer glass tube Grade B borosilicate glass

Absorption coating Si-Ti-NO/Cu

Diameter of the collector 58 mm

Vacuum degree ≤5 × 10−4 Pa

After the heat collector area and system performance are determined by the collector
system designers, the designers responsible for the central control unit of the thermal system
calculate the volume of the storage water tank and select other equipment components
in the system, such as compressors, condensers, evaporators, throttling mechanisms and
auxiliary equipment. After this step, the central control unit designers build models in
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Revit(See Supplementary Materials) (Figure 19) for connecting the solar collector with the
indoor terminal equipment so that the water can circulate in the collector tube, the water
tank and the HVAC equipment and transmit the energy obtained by the solar collector
to the indoor equipment for heating. During this design process, the central control unit
designers constantly coordinate with the designers of the collector system and HVAC
system to modify the design of the entire thermal system.

Energies 2022, 15, x FOR PEER REVIEW 20 of 31 
 

 

Thermal conductivity Ethylene glycol 
Number of collectors 30 

Height of vertical tubes 4 m 
Insulation material Glass wool 

Outer glass tube Grade B borosilicate glass 
Absorption coating Si-Ti-NO/Cu 

Diameter of the collector  58 mm 
Vacuum degree ≤5 × 10−4 Pa 

After the heat collector area and system performance are determined by the collector 
system designers, the designers responsible for the central control unit of the thermal sys-
tem calculate the volume of the storage water tank and select other equipment compo-
nents in the system, such as compressors, condensers, evaporators, throttling mechanisms 
and auxiliary equipment. After this step, the central control unit designers build models 
in Revit(See Supplementary Material) (Figure 19) for connecting the solar collector with 
the indoor terminal equipment so that the water can circulate in the collector tube, the 
water tank and the HVAC equipment and transmit the energy obtained by the solar col-
lector to the indoor equipment for heating. During this design process, the central control 
unit designers constantly coordinate with the designers of the collector system and HVAC 
system to modify the design of the entire thermal system. 

 
Figure 19. BIM model of central control unit system. 

4.4.2. Coordination in Designing HVAC System 
In HVAC system design, the energy and power engineering specialists who take the 

leading role need to produce the BIM of the HVAC system, collaborate with the designers 
of the collector system and central control system from the same discipline and cooperate 
with designers from other disciplines. 

Figure 19. BIM model of central control unit system.

4.4.2. Coordination in Designing HVAC System

In HVAC system design, the energy and power engineering specialists who take the
leading role need to produce the BIM of the HVAC system, collaborate with the designers
of the collector system and central control system from the same discipline and cooperate
with designers from other disciplines.

Based on the refinement of the specific composition and heat transfer coefficient of
the envelope structure by the architectural and structural specialists, HVAC designers
calculate the heat input from the building envelope, the solar radiation through the external
windows and the heat dissipation generated by indoor equipment, lighting systems, human
movement, etc. According to the obtained initial cooling and heating load of T&A House,
it is determined that T&A House should adopt a floor heating system in winter, radiant
cooling ceiling system in summer and independent indoor fresh air system in winter and
summer.

Low-temperature hot water in the floor heating system is regulated by the central con-
trol unit to provide heat uniformly by heat radiation and convection. The heat dissipation
area is about 105 m2, including the master bedroom, the secondary bedroom, the large
open space and the dining room. Considering the climatic characteristics and heating needs
of Zhangjiakou City, the indoor temperature of T&A House in winter is set to 20 ◦C and
the humidity to 50% to meet the design standards and energy consumption requirements.
As regards the layout of floor heating, rather than accommodating the traditional room
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layout, the heating region is divided into seven parts according to the division of the house
modules. Each floor heating module has an independent water inlet and return pipe, which
can be controlled separately according to actual needs.

The air conditioning system, composed of an independent fresh air system and radiant
cooling ceiling panels, can avoid moisture condensation on the radiant ceiling, save energy
from the ventilator and improve the cooling effect of the ceiling by 15~20%.

Before the design and selection of a fresh air system, the designers calculate the fresh
air volume and exhaust air volume according to the relevant specifications and further
calculate the fresh air load, moisture load and sensible load. According to the calculation
results, the cooling and dehumidification configuration scheme of the fresh air system is
selected.

The heat transfer of the radiant cooling ceiling and the required area are calculated,
and the results suggest that the thin pipe of the radiant cooling ceiling should be embedded
into the gypsum radiant panels. After completing the design of the floor heating system,
fresh air system and radiant cooling ceiling, the design of the HVAC system is basically
completed. The BIM model is shown in Figure 20.
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4.4.3. Coordination in Designing Water Treatment System

The water treatment system of T&A House mainly includes two parts: the water
supply/drainage system and the rainwater/sewage treatment system. The above two
parts are inseparable in the design and are jointly completed by environmental engineering
designers and architectural, indoor and electrical specialists.

Rainwater is treated in T&A House in two ways: natural filtration and purification
and recycling. The first method is mainly realized through rainwater gardens, which are
mainly combined with site design in the preliminary design stage to achieve functional
and aesthetic synergy. The second method—recycling—is achieved by collecting rainwater
on the roof. It is the environmental engineering designers who recommend that the
architectural and structural designers use the roof slope to collect rainwater so as to reduce
the use of equipment and save energy. After confirming the inclined roof scheme, the
structural designers tilt the roof of the south module slightly to the north to guide the
rainwater to the rainwater collecting head arranged on the west side of the rainwater
channel.
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For the treatment of domestic sewage from toilets, kitchen and laundry, besides the
set of equipment used in rainwater treatment, septic tank, purification tank and lifting
pump are added. Therefore, rainwater and sewage system designers need to constantly
coordinate and communicate with designers from other disciplines to confirm the size,
quantity and layout of structures to avoid repeated design and collision during model
design (Figure 21).
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The water supply and drainage system of T&A House is the responsibility of the water
supply and drainage specialists from environmental engineering. Through comparative
analysis of the advantages and disadvantages of different water supply types and the
water demand of T&A House, the plan of using the municipal water supply system and
tank water supply was selected. Water from the municipal water supply system is mainly
used in washing and showering, while the supply from the water tank, mainly the treated
rainwater, is used for the cleaning of toilets, garages and PV panels. After communicating
with the PV system designers, the water supply and drainage specialists determined that
the water tank should be located on the roof and placed higher than the PV panels, which
by gravity can avoid the use of power. The water tank is equipped with an automatic
control system. When the water tank cannot meet the demand, it can be supplemented
by the municipal pipe network. Through the calculation and verification of the hydraulic
capacity from municipal water supply system and waste of the water supply network, the
water pressure can meet the daily water supply demand of T&A House.

4.4.4. Coordination in Designing Intelligent Control System

The hardware components of the intelligent control system in T&A House include sen-
sors for induction detection, a tablet computer for core control and WIFI for real-time moni-
toring. In terms of software, the design and program selection of three monitoring modules
of indoor environment, sewage treatment and temperature control are selected through
Matlab (See Supplementary Materials) simulation. The design of intelligent systems re-
quires the collaboration of electrical engineering specialists with indoor, environmental
engineering, energy and power engineering specialists.

In terms of indoor environmental monitoring, according to the requirements of the
SDC competition and the ZEB, indoor temperature and humidity, CO2 concentration and
PM2.5 are monitored. Before the intelligent control designers design the specific monitoring
system, interior specialists should provide space division and furniture layout, on the basis
of which the hardware can be selected. According to the floor plan, three I/O modules and
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four sensors are selected to monitor the master bedroom, the secondary bedroom and the
public area. I/O devices in Kingview software are set up by intelligent control designers
to complete the hardware connection of monitoring modules and set relevant parameter
variables.

The monitoring of a sewage treatment system requires the cooperation of intelligent
control designers and sewage treatment designers. Based on the detailed water treatment
process and component size provided by the water treatment specialists, the intelligent
control designers monitor the level of the reservoir, lifting shaft and roof water tank in
the process. According to the monitoring results, the intelligent controllers select the
type and quantity of the monitoring hardware and connect the monitoring system to the
corresponding process of the water treatment system to realize the intelligent monitoring
of the water treatment system.

The temperature control in T&A House has two types: passive and active. The passive
temperature control includes four modes: landscape microclimate, SST wall adjustment,
sunshine room and atrium adjustment. The active type mainly uses the intelligent tempera-
ture control system to adjust the heating and cooling temperature of mechanical equipment.
Therefore, the temperature control of T&A House needs to be coordinated and designed by
intelligent control and thermal system specialists. Intelligent control specialists monitor the
outlet water temperature of collector tubes and add intelligent three-way valves to select
different water supply routes for different water temperatures in heating and cooling cycles,
thus forming a dual-purpose system for heating and cooling. In winter, when the outlet
water temperature of the collector tube reaches 55 ◦C, hot water can be supplied directly.
When the set value is not reached, it needs to be heated to the specified temperature through
the heat exchange device. In summer, when the temperature of cold water obtained from
roof spraying is below 17 ◦C, it can be directly supplied to the radiant cooling ceiling. When
the water temperature exceeds 17 ◦C, it needs to be cooled by the heat exchange system
first and then supplied.

4.5. Functions of BIM in Collaborative Design of T&A House

The design process of T&A House involves many disciplines. In order to solve the
problem of collaboration in the design process of T&A House, a unified BIM working
platform is established to ensure timely and effective multi-disciplinary communication
and real-time sharing of model information. It can integrate the concept of zero energy
consumption and performance-based design into architectural design. The BIM-based
collaborative design of T&A House includes two aspects: multi-disciplinary interactive
collaborative modeling and energy consumption simulation and analysis.

4.5.1. Multi-Discipline Interactive Collaborative Modeling

In the design phase of T&A House, the elevation grid for the project, which serves
as the basic standard of the design modeling for all disciplines, was established in Revit
by the leader of architecture discipline. Following this, a preliminary BIM based on the
conceptual model was built by the architectural designers. The details of the conceptual
design, preliminary design and refining stage reached LOD100, LOD200 and LOD300
respectively.

Owing to the small size of T&A House and the simple overall structure, the structure
specialists could proceed with structural modeling on the BIM model provided by the
architecture specialists. Then, the model was imported into YJK (See Supplementary
Materials) software through the YJK–Revit conversion interface for structural analysis and
calculation and then reloaded into Revit to form structural analysis model automatically.
The design load and other information were added to complete the load calculation of
the structure. After that, the YJK model and the designed structure were imported into
ANSYS (See Supplementary Materials) for elastic–plastic dynamic time-history analysis
and construction simulation analysis. Finally, the models were merged in Navisworks for
professional reviewing.



Energies 2022, 15, 7185 24 of 30

The electrical engineering specialists created and refined the BIM model of the solar
PV system. After establishing the e-template, they linked the existing documents of the
architectural discipline to the current project and imported information such as elevation
and grid to ensure synchronous updating. The calculation of illuminance and load was
carried out in Revit to determine the dimensions of the inverter, distribution box and other
related equipment.

The energy and power engineering specialists were responsible for the modeling
of the collector system, thermal central control system and HVAC system in the T&A
House, including the layout of equipment, terminals, pipelines and pipeline accessories.
In this process, they made constant adjustments and refinements on the shared model
by incorporating information from other specialists. The BIM tools that the energy and
power engineering specialists used could simulate the energy consumption and estimate
the cooling and heating load according to the building size. Then, they adjusted the model
according to the calculation results to achieve the goal of zero energy consumption.

The environmental engineering specialists established a BIM model based on the one
created by the architectural designers, but they also developed a BIM project template
for their own discipline to model the rain and sewage system and the water supply and
drainage system (mainly including models of various water pipes and corresponding
valves). The selection and layout of water pumps and water tanks was completed with BIM
plug-ins. Since different disciplines collaborate in an interlinking pattern, environmental
engineering specialists can use the filter function in BIM to select all the equipment requiring
the cooperation of the environmental engineering discipline and import any changes into
the environmental engineering model with the copy/monitoring function. In this way,
when the upstream disciplines modify the model, the environmental engineering discipline
can receive the modification prompt and make relevant adjustments.

Figure 22 and Table 7 show the BIM collaborative modeling contents across disciplines.
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Table 7. Collaborative modeling contents across disciplines.

Collaborative Modeling Content

Discipline in
collaboration Modeling system Number Detail Installation position

Structure
Modular framework

system

5 100 mm × 100 mm H
beam

Setting on the strip
foundation used for

transferring roof load

6 100 mm × 100 mm H
steel tube

Pulling the stable frame and
supporting building

Electricity PV system

1 PV panels
100 mm from the roof with

the same angle as an
integrated part.

14 Film photovolataic On the top of the west
veranda

16 Inverter and
distribution box

On top of the wall of
equipment room at the

northwest corner.

Energy and power
engineering

Thermal system

15 Tubular heat collector
for cooling and heating

Horizontally on the roof in
the east-west direction.

18 Compressor,
condensing evaporator

In the equipment room at the
northwest corner.

19 4×1 cubic parallel
water tank

Underground of equipment
room.

HVAC system

2 Air supply pipe of
fresh air system In the interlayer of the ceiling

3 Fresh air system lintel Between pipe and frame
where they contact

7 Loop type floor heating
pipe

Above the frame beam and
below the floor layer

10 Fresh air inlet On top of the west wall of
equipment room

12 fresh air system
machine

In the ceiling of the kitchen
(for easy maintenance)

17 Fresh air outlet Lower half of the north wall
of equipment room

Collector system

4 Water pipe of heat
collector

In the interlayer of the
ceiling (to reduce heat loss)

8 Water storage tank
Under the north lawn (to

keep warm and stay
freeze-proof)

Environmental
engineering

Rainwater treatment
and water supply and

drainage system

9 Municipal water
supply pipe Under the ground

11 Roof water tank In the equipment room and
above the kitchen roof

13 Heat exchange water
tank

In the equipment room at the
northwest corner

20 Horizontal subsurface
wetland

At the green land in the
northwest of the house

21 Purification tank &
lifting well

Under the green land in the
northwest of the house
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4.5.2. Simulation Analysis of Energy Consumption of T&A House

During the design process of T&A House, Hongye software (HY-EP) (See Supplemen-
tary Materials) is used to simulate the main load and energy consumption. Based on the
full information model system of BIM, each discipline optimizes and adjusts its own design
according to the results of residential energy consumption simulation.

When carrying out load calculation and energy consumption simulation for T&A
House with HY-EP, the model was first simplified in Revit, with unnecessary equipment
deleted. The rooms were then divided into eight regions (master bedroom, secondary
bedroom, primary bathroom, secondary bathroom, shower room, atrium, kitchen and
public area) and simulated accordingly (Figure 23a). After that, the elevation of the rooms
was modified and confirmed. Some further configurations, such as building location and
building type, could be set when exporting the model in GBXML format (Figure 23b).
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In HY-EP, the gbXML file could be imported through the BIM interface. The spatial
data in the Revit model were synchronized to the software so that the load could be
calculated and the results could be viewed directly. Then, the air conditioning system
was established in HY-EP by specifying parameters including cold/heat source, cooling
system, fresh air system, HP system and heating system, which could be used to simulate
residential energy consumption.

The comprehensive energy consumption value is the total energy consumption from
heating, cooling, lighting, domestic hot water and elevator systems (excluding renewable
energy power generation) minus the renewable energy power generation. The simulated
energy consumption of T&A House is shown in Table 8. Compared with the official tech-
nical standard for nearly zero energy buildings in China (GB/T51350-2019) [41] which
stipulates that “ZEB is an advanced form of Nearly Zero Energy Building, which makes
full use of the renewable energy resources of the building and its surrounding areas, so that
the annual productivity of renewable energy is greater than or equal to the total energy
consumption of the building throughout the year, and the comprehensive energy consump-
tion value of Nearly Zero Energy Building should be ≤55 kWh/m2·a”, the comprehensive
energy consumption value of T&A House (52.26 kWh/m2·a) meets the requirements. The
annual power consumption of T&A House is 6961 kWh, and the annual power generation
of PV power generation system is 7820 kWh, which indicates that “the annual capacity of
renewable energy is greater than the total annual energy consumption of buildings”. In
theory, T&A House meets the standards and requirements of a ZEB. However, the software
simulation has certain limitations, and the results can only be used as reference. The real
energy consumption data were measured on site after the construction of T&A House.
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Table 8. Simulation results of energy consumption in T&A House.

T&A House Total Energy Consumption
(kWh)

Unit Area Consumption
(kWh/m2)

Heating energy consumption 1573.49 12.56

Cooling energy consumption 2399.98 19.16

Domestic hot water energy
consumption 739.28 5.90

Lighting system energy
consumption 1833.64 14.64

Equipment system energy
consumption 2124.30 16.96

5. Actual Effect of the Project

This project was completed in September 2021 in Zhangjiakou City, China. T&A House
aimed to achieve zero energy consumption, highlighting its advantages of reducing energy
consumption, improving living comfort and intelligent control and providing reference
and ideas for the design of new rural housing in Zhangjiakou City and ZEBs in China in
the future. The actual effect of the project is shown in Figure 24. On the basis of the original
scheme, the T&A House was further optimized during the construction process.
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6. Discussion and Conclusions

The experience of applying BIM to the collaborative design of ZEBs is summarized
through method research and verification in the actual design and construction of the T&A
House in the Solar Decathlon China (SDC) competition.

(1) BIM-based collaborative design can expand participants’ knowledge and facilitate
a collaborative process. Professionals who collaborate with each other should take the
initiative to acquire knowledge from other disciplines to promote collaboration. Other-
wise, due to the lack of understanding across disciplines, repeated revisions may surface
when dealing with design conflicts, such as the conflict between architectural design and
structural design. This would greatly reduce the efficiency of cooperation.

(2) The leading professionals, who can guide the collaborative process, should be
determined in each stage. In the passive design, the collaborative process is led by profes-
sionals from architectural discipline, but in active design, the collaboration is dominated by
those from other disciplines. When conflicting opinions in the collaborative process appear,
the leading professionals make the final decision. In addition, architectural professionals,
as the process-control staff, should master the overall process and the completion status of
each stage and manage the models and data of each discipline.

(3) The collaborative process should be refined to optimize collaborative design. Due
to the fact that the entire collaborative design lacks a detailed BIM collaboration flowchart



Energies 2022, 15, 7185 28 of 30

and has only a rough specification of the collaboration stages and collaboration content,
problems frequently occur in the actual design. For example, some individual disciplines
cannot keep up with the collaborative progress or modify the design multiple times. In
the collaborative design of the T&A home, the architectural designers first produce the
shape scheme and then cooperate with PV collector designers to optimize the scheme. As a
result, the architectural designers have to undertake double workload in terms of design
and refinement. The ideal procedure is that before the design of the residential shape, the
PV collector designers need to synchronize the PV panel area, installation location, collector
area and other information with the architectural designers, who can use this information
to generate the residential shape in one step.

(4) The optimization standard should be set to assist decision-making. In the col-
laborative process, architectural professionals start by providing the initial design which
will be verified by related disciplines and then receive feedback from them to refine the
design. Theoretically, this process is a loop with continued refinement followed by each
modification. Therefore, a standard (such as the Energy Consumption Index) needs to be
set to evaluate whether subsequent refinement is required.

(5) Project files should be created to store data backup. Process data should be retained
as a reference due to multi-rounds of feedback and revisions from various disciplines.
Specific project files should be created to manage these data.

This paper aims to explore the BIM-based collaborative design method of ZEBs.
Through a literature review, the advantages of BIM technology and BIM collaborative
design are expounded, and the difficulties in the collaborative design of ZEBs are pointed
out. On this basis, a BIM-based collaborative design method of ZEBs is proposed, and the
technical strategy is illustrated. Finally, the effectiveness of the method is verified in the
real case of T&A house.

Based on the literature research, this study makes the following contributions to the
BIM-based collaborative design of ZEBs.

(1) While other research adopts BIM in individual stages, this study has fully applied
BIM in every stage from preliminary design, collaborative optimization and simulation
verification to construction.

(2) Based on the analysis of the conditions and feasibility collaborative design with
BIM in other studies, this study proposes a BIM-based collaborative design method for
ZEBs. This approach not only requires a combination of passive design, active design and
renewable energy technologies but also challenges the limitations of traditional collabora-
tive design approaches. It is a complex design process that requires collaboration between
architecture, energy, electromechanical and other professional disciplines

(3) The practical value of BIM collaborative design method for ZEBs is verified in the
case of T&A House. The six disciplines of architecture, interior design, structure, energy
and power, electrical engineering and environmental engineering collaborate on BIM in the
stages of preliminary planning, scheme generation and equipment-refining and successfully
achieve better results in reducing energy consumption and improving indoor comfort in
the T&A House.
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Nomenclature

T&A House China University of Mining and Technology and Akademia
Górniczo-Hutnicza House

SDC Solar Decathlon China
BIM Building Information Modeling
SST wall Selective sun tunnel wall
LOD Level of detail
HVAC Heating, Ventilation and Air Conditioning
ZEBVMS Zero energy buildingVELUX modular system
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