Path Planning for UAV Based on Improved PRM
Abstract
:1. Introduction
2. Related Works
3. Establishment of Model
4. Approach for Path Planning
4.1. Traditional PRM Algorithm
4.2. Improved GA
4.3. Improved PRM
4.3.1. Optimize Sampling Space
4.3.2. Optimizing Corner Path
- R = a; %R is a parameter in function B; let us set the radius of the fillet to an initial value.
- R’ = b;%Adjust by increasing or decreasing b meters each time; avoid path contact with obstacles.
- %If the height of the processed path is completely higher than the height of the obstacle, the radius of the rounded corner is reduced until it is close to the obstacle
- while B(path) > map %The function B is to B-spline the resulting path.
- R = R − R’;
- if B(path) < map
- R = R + R’;
- end
- end
- %If the height of the processed path is not exactly higher than the height of the obstacle, increase the radius of the fillet until it just exceeds the obstacle
- while B(path) < map
- R = R + R’;
- end
- path’ = function B(path); %path’ is the path that we need to get to.
4.3.3. Path Planning Considering Energy Consumption
4.4. Flowchart of IPRM
5. Simulation Experiment and Result
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.K. Flight path planning of agriculture UAV based on improved artificial potential field method. In Proceedings of the 30th Chinese Control and Decision Conference, Shenyang, China, 9–11 June 2018; pp. 1526–1530. [Google Scholar]
- Nikolakopoulos, K.G.; Soura, K.; Koukouvelas, I.K.; Argyropoulosa, N.G. UAV vs. classical aerial photogrammetry for archaeological studies. J. Archaeol. Sci. Rep. 2017, 14, 758–773. [Google Scholar] [CrossRef]
- Pádua, L.; Adão, T.; Hruška, J.; Marques, P.; Sousa, A.; Morais, R.; Lourenco, J.M.; Sousa, J.J.; Peres, E. UAS-based photogrammetry of cultural heritage sites: A case study addressing Chapel of Espírito Santo and photogrammetric software comparison. In Proceedings of the International Conference on Geoinformatics and Data Analysis, Prague, Czechoslovakia, 20–22 April 2018; pp. 72–76. [Google Scholar]
- Calleja, J.F.; Pagés, O.R.; Díaz-Álvarez, N.; Peón, J.; Gutiérrez, N.; Martín-Hernández, E.; Relea, A.C.; Melendi, D.R.; Álvarez, P.F. Detection of buried archaeological remains with the combined use of satellite multispectral data and UAV data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 555–573. [Google Scholar] [CrossRef]
- Lipovský, P.; Draganová, K.; Novotňák, J.; Szőke, Z.; Fil’ko, M. Indoor mapping of magnetic fields using UAV equipped with fluxgate magnetometer. Sensors 2021, 21, 4191. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Zhang, X.; Xie, W.; Zheng, Y. Automatic detection of near-surface targets for unmanned aerial vehicle (UAV) magnetic survey. Remote Sens. 2020, 12, 452. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Kumar, N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Comput. Commun. 2020, 149, 270–299. [Google Scholar] [CrossRef]
- Kumar, A.; Pant, S.; Ram, M. System reliability optimization using gray wolf optimizer algorithm. Qual. Reliab. Eng. Int. 2017, 33, 1327–1335. [Google Scholar] [CrossRef]
- Huang, G.; Cai, Y.; Liu, J.; Qi, Y.; Liu, X. A novel hybrid discrete grey wolf optimizer algorithm for multi-UAV path planning. J. Intell. Robot. Syst. 2021, 103, 49. [Google Scholar] [CrossRef]
- Zhang, S.; Pu, J.; Si, Y.; Sun, L. Path planning for mobile robot using an enhanced ant colony optimization and path geometric optimization. Int. J. Adv. Robot. Syst. 2021, 18, 1–15. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, J.; Li, Z.; Huang, J. Smooth path planning of mobile robot based on improved ant colony algorithm. J. Robot. 2021, 2021, 4109821. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, J.; Zhu, Z.; Yang, D.; Wu, J. Tangent navigated robot path planning strategy using particle swarm optimized artificial potential field. Optik 2018, 158, 639–651. [Google Scholar] [CrossRef]
- Fu, Y.; Ding, M.; Zhou, C. Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV. IEEE Trans. Syst. Man Cybern. -Part A: Syst. Hum. 2011, 42, 511–526. [Google Scholar] [CrossRef]
- Fransen, K.; Eekelen, J. Efficient path planning for automated guided vehicles using A* algorithm incorporating turning costs in search heuristic. Int. J. Prod. Res. 2021, 1–19. [Google Scholar] [CrossRef]
- Tang, G.; Tang, C.; Claramunt, C.; Hu, X.; Zhou, P. Geometric a-star algorithm: An improved a-star algorithm for AGV path planning in a port environment. IEEE Access 2021, 99, 59196–59210. [Google Scholar] [CrossRef]
- Kang, J.G.; Lim, D.W.; Choi, Y.S.; Jang, W.J.; Jung, J.W. Improved RRT-connect algorithm based on triangular inequality for robot path planning. Sensors 2021, 21, 333. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Feng, S. A novel evacuation path planning method based on improved genetic algorithm. J. Intell. Fuzzy Syst. 2022, 42, 1813–1823. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.W. An effective initialization method for genetic algorithm-based robot path planning using a directed acyclic graph. Inf. Sci. 2016, 332, 1–18. [Google Scholar] [CrossRef]
- Yu, X.; Li, C.; Zhou, J.F. A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios. Knowl. -Based Syst. 2020, 204, 106209. [Google Scholar] [CrossRef]
- Sanchez-Aguero, V.; Valera, F.; Vidal, I.; Tipantuña, C.; Hesselbach, X. Energy-aware management in multi-UAV deployments: Modelling and strategies. Sensors 2020, 20, 2791. [Google Scholar] [CrossRef]
- Li, J.; Lu, D.; Zhang, G.; Tian, J.; Pang, Y. Post-disaster unmanned aerial vehicle base station deployment method based on artificial bee colony algorithm. IEEE Access 2019, 7, 168327–168336. [Google Scholar] [CrossRef]
- Wu, X.; Yin, Y.; Xu, L.; Wu, X.; Meng, F.; Zhen, R. Multi-UAV task allocation based on improved genetic algorithm. IEEE Access 2021, 9, 100369–100379. [Google Scholar] [CrossRef]
- Palossi, D.; Furci, M.; Naldi, R.; Maronggui, A.; Marconi, L.; Benini, L. An energy-efficient parallel algorithm for real-time near-optimal uav path planning. In Proceedings of the ACM International Conference on Computing Frontiers, Como, Italy, 16–18 May 2016; pp. 392–397. [Google Scholar] [CrossRef] [Green Version]
- Cekmez, U.; Ozsiginan, M.; Sahingoz, O.K. A UAV path planning with parallel ACO algorithm on CUDA platform. In Proceedings of the 2014 International Conference on Unmanned Aircraft Systems, Orlando, FL, USA, 27–30 May 2014; pp. 347–354. [Google Scholar] [CrossRef]
- Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [Google Scholar] [CrossRef] [Green Version]
- Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path planning and trajectory planning algorithms: A general overview. Mech. Mach. Sci. 2015, 29, 3–27. [Google Scholar] [CrossRef]
- Tan, J.; Xiao, Y.; Liu, L.; Sun, J. Improved PRM algorithm for path planning of UAV. Transducer Microsyst. Technol. 2020, 39, 38–41. [Google Scholar] [CrossRef]
- Santiago, R.M.C.; Ocampo, A.L.; Ubando, A.T.; Bandala, A.A.; Dadios, E.P. Path planning for mobile robots using genetic algorithm and probabilistic roadmap. In Proceedings of the 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, Manila, Philippines, 29–30 November 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Rantanen, M.T. A connectivity-based method for enhancing sampling in probabilistic roadmap planners. J. Intell. Robot. Syst. 2011, 64, 161–178. [Google Scholar] [CrossRef]
- Boor, V.; Overmars, M.H.; Van Der Stappen, A.F. The Gaussian sampling strategy for probabilistic roadmap planners. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, MI, USA, 10–15 May 1999; pp. 1018–1023. [Google Scholar] [CrossRef]
- Chen, G.; Luo, N.; Liu, D.; Zhao, Z.; Liang, C. Path planning for manipulators based on an improved probabilistic roadmap method. Robot. Comput. -Integr. Manuf. 2021, 72, 102196. [Google Scholar] [CrossRef]
- Foo, J.L.; Knutzon, J.; Kalivarapu, V.; Oliver, J.; Winer, E. Path planning of unmanned aerial vehicles using B-splines and particle swarm optimization. J. Aerosp. Comput. Inf. Commun. 2009, 6, 271–290. [Google Scholar] [CrossRef]
- Cao, K.; Cheng, Q.; Gao, S.; Chen, Y.Q.; Chen, C.B. Improved PRM for path planning in narrow passages. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 45–50. [Google Scholar]
- Huang, S.; Tian, J.; Qiao, L.; Wang, Q.; Su, Y. Unmanned aerial vehicle path planning based on improved genetic algorithm. J. Comput. Appl. 2021, 41, 390–397. [Google Scholar] [CrossRef]
Reference | Purpose | Method |
---|---|---|
[20] | Optimizing fitness functions | Adaptive selection mutation constrained differential evolution algorithm |
[21] | Provide Internet connectivity and different network services to ground users | Betweenness centrality heuristic algorithm |
[22] | Improving network throughput in the UAV-BS signal coverage area and reducing deployment costs | UAV-artificial bee colony (U-ABC) algorithm |
[23] | Improving the efficiency of multi-UAV and reducing the loss of multi-UAV during the process of performing tasks | Fusion genetic algorithm based on improved simulated annealing |
[24] | Development of a fast, energy-efficient global planner | Shortest trajectory planning algorithm |
[25] | Shortest distance path planning for large-scale target points | Parallel ACO algorithm |
No. | Distance/m | Energy/J | ||||
---|---|---|---|---|---|---|
IGA | PRM | IPRM | IGA | PRM | IPRM | |
1 | 196.5 | 180.1 | 173.6 | 5773 | 5056 | 4777 |
2 | 198.9 | 179.0 | 175.1 | 5833 | 5003 | 4832 |
3 | 202.2 | 187.2 | 173.7 | 5930 | 5360 | 4775 |
4 | 200.6 | 179.8 | 174.6 | 5944 | 5018 | 4816 |
5 | 196.8 | 181.6 | 178.9 | 5746 | 5113 | 4996 |
6 | 193.8 | 183.3 | 176.5 | 5546 | 5194 | 4874 |
7 | 198.3 | 180.8 | 174.3 | 5846 | 5050 | 4807 |
8 | 202.3 | 180.5 | 173.5 | 5908 | 5028 | 4774 |
9 | 198.7 | 187.7 | 177.4 | 5813 | 5355 | 4942 |
10 | 193.1 | 184.5 | 172.8 | 5557 | 5187 | 4738 |
Average | 198.1 | 182.5 | 175.0 | 5790 | 5137 | 4833 |
No. | Number of Sampling Points | ||||
---|---|---|---|---|---|
20 | 40 | 60 | 80 | 100 | |
1 | 199.02 | 183.42 | 196.65 | 181.18 | 188.54 |
2 | 182.46 | 189.69 | 180.64 | 174.70 | 184.61 |
3 | 200.09 | 179.91 | 185.60 | 190.36 | 185.02 |
4 | 200.50 | 187.20 | 181.54 | 185.00 | 184.57 |
5 | 187.80 | 197.33 | 190.17 | 187.16 | 189.24 |
6 | 186.66 | 187.03 | 188.08 | 182.16 | 176.74 |
7 | 191.26 | 188.44 | 192.85 | 182.28 | 188.11 |
8 | 190.17 | 198.13 | 189.54 | 185.72 | 178.62 |
9 | 188.07 | 187.80 | 191.21 | 191.00 | 179.59 |
10 | 201.47 | 182.97 | 179.62 | 184.10 | 173.90 |
mean | 192.75 | 188.19 | 187.59 | 184.37 | 182.89 |
No. | Number of Sampling Points | ||||
---|---|---|---|---|---|
20 | 40 | 60 | 80 | 100 | |
1 | 191.14 | 174.53 | 178.58 | 177.49 | 168.98 |
2 | 173.70 | 191.33 | 179.37 | 176.89 | 179.15 |
3 | None | 182.67 | 183.45 | 181.37 | 179.38 |
4 | 184.59 | 190.68 | 193.39 | 184.58 | 180.07 |
5 | 203.08 | 174.15 | 177.18 | 181.43 | 169.07 |
6 | 179.76 | 187.14 | 175.05 | 173.16 | 174.90 |
7 | 198.05 | 185.28 | 179.36 | 171.86 | 162.78 |
8 | 173.71 | 173.23 | 173.11 | 177.15 | 187.29 |
9 | 188.83 | 178.24 | 173.49 | 174.57 | 173.06 |
10 | None | 182.69 | 180.96 | 177.16 | 173.14 |
Mean | 186.61 | 182.00 | 179.39 | 177.56 | 174.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wang, L.; Zou, A.; Cai, J.; He, H.; Tan, T. Path Planning for UAV Based on Improved PRM. Energies 2022, 15, 7267. https://doi.org/10.3390/en15197267
Li W, Wang L, Zou A, Cai J, He H, Tan T. Path Planning for UAV Based on Improved PRM. Energies. 2022; 15(19):7267. https://doi.org/10.3390/en15197267
Chicago/Turabian StyleLi, Weimin, Lei Wang, Awei Zou, Jingcao Cai, Huijuan He, and Tielong Tan. 2022. "Path Planning for UAV Based on Improved PRM" Energies 15, no. 19: 7267. https://doi.org/10.3390/en15197267
APA StyleLi, W., Wang, L., Zou, A., Cai, J., He, H., & Tan, T. (2022). Path Planning for UAV Based on Improved PRM. Energies, 15(19), 7267. https://doi.org/10.3390/en15197267