Measuring and Predicting the In-Ground Temperature Profile for Geothermal Energy Systems in the Desert of Arid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experiment
2.2. Measuring Procedure
2.3. Predicting the In-Ground Temperature
3. Results and Discussion
3.1. The Measured In-Ground Temperature Profile
3.2. Validation of the Proposed Equations
3.2.1. Daily Average Validation
3.2.2. Monthly-Average Validation
3.3. Prediction of the In-Ground Temperature for z > 3 m
4. Conclusions and Recommendation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | Description, (Unit) |
EMA | Mean absolute error (°C) |
ERMS | Root mean square error, (°C) |
GUT | Ground undisturbed temperature, (°C) |
t | Time, (h; day; month) |
Tamp | Amplitude of the annual ground surface temperature, (°C) |
Tm | Mean ground surface temperature, annual average, (°C) |
In-ground soil temperature, (°C) | |
Tg−meas | Measured in-ground temperature, (°C) |
Tg−sim | Simulated in-ground temperature, (°C) |
to | Time shift, (h; day; month) |
z | Depth below the soil surface, (m) |
αs | Thermal diffusivity of soil, (m2/month; m2/day; m2/h) |
References
- Dincer, I.; Acar, C. A review on clean energy solutions for better sustainability. Int. J. Energy Res. 2015, 39, 585–606. [Google Scholar] [CrossRef]
- Carotenuto, A.; Ceglia, F.; Marrasso, E.; Sasso, M.; Vanoli, L. Exergoeconomic optimization of polymeric heat exchangers for geothermal direct applications. Energies 2021, 14, 6994. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M.; Esen, M. Technoeconomic appraisal of a ground source heat pump system for a heating season in eastern Turkey. Energy Conv. Manage 2006, 47, 1281–1297. [Google Scholar] [CrossRef]
- Al-Ajmi, F.; Loveday, D.L.; Hanby, V.I. The cooling potential of earth-air heat exchangers for domestic buildings in a desert climate. Build. Environ. 2006, 41, 235–244. [Google Scholar] [CrossRef]
- Alkoaik, F.N.; Al-Faraj, A.A.; Al-Helal, I.M.; Ronnel, B.F.; Mansour, N.I.; Abdel-Ghany, A.M. Toward sustainability in rural areas: Composting palm tree residues in rotation bioreactors. Sustainability 2019, 12, 201. [Google Scholar] [CrossRef] [Green Version]
- Ceglia, F.; Macaluso, A.; Marrasso, E.; Sasso, M.; Vanoli, L. Modelling of polymeric shell and tube heat exchangers for low-Medium temperature geothermal applications. Energies 2020, 13, 2737. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Picuno, P.; Al-Helal, I.M.; Alsadon, A.; Ibrahim, A.; Shady, M. Radiometric characterization, solar and thermal radiation in a greenhouse as affected by shading configuration in an arid climate. Energies 2015, 8, 13928–13937. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A.; Alidrisi, H.; Ahmed, W.; Sheikh, M.H. Potential of geothermal energy in the Kingdom of Saudi Arabia. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 2238–2243. [Google Scholar] [CrossRef]
- Lashin, A.; Al Arifi, N. Geothermal energy potential of southwestern of Saudi Arabia “exploitation and possible power generation”: A case study at AlKhouba area-Jazan. Renew. Sustain. Energy Rev. 2014, 30, 771–789. [Google Scholar] [CrossRef]
- Bharadwaj, S.S.; Bansal, N.K. Temperature distribution inside ground for various surface conditions. Build. Environ. 1981, 16, 183–192. [Google Scholar] [CrossRef]
- Vidhi, R. A review of underground soil and night sky as passive heat sink: Design configurations and models. Energies 2018, 11, 2941. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Hernández, H.P.; Macias-Melo, E.V.; Aguilar-Castro, K.M.; Hernández-Pérez, I.; Xamán, J.; Serrano-Arellano; López-Manrique, L.M. Experimental study of an earth to air heat exchanger (EAHE) for warm humid climatic conditions. Geothermics 2020, 84, 101741. [Google Scholar] [CrossRef]
- Hermes, V.F.; Ramalho, J.V.A.; Rocha, L.A.O.; Santos, E.D.; Marques, W.C.; Costi, J.; Rodrigues, M.K.; Isoldi, L.A. Further realistic annual simulations of earth-air heat exchangers installations in a coastal city. Sustain. Energy Technol. Assess. 2020, 37, 100603. [Google Scholar] [CrossRef]
- Bisoniya, T.S. Design of earth–air heat exchanger system. Geotherm. Energy 2015, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Li, F.; Li, X.; Yang, B. Feasibility analysys of earth-air heat exchanger (EAHE) in a sports and culture centre in Tianjin, China. Case Stud. Therm. Eng. 2021, 26, 101054. [Google Scholar] [CrossRef]
- Le, A.T.; Wang, L.; Wang, Y.; Li, D. Measurement investigation on the feasibility of shallow geothermal energy for heating and cooling applied in agricultural greenhouses of Shouguang City: Ground temperature profiles and geothermal potential. Inf. Process. Agric. 2020, 8, 1–19. [Google Scholar] [CrossRef]
- Hebbal, B.; Marif, Y.; Hamdani, M.; Belhadj, M.M.; Bouguettaia, H.; Bechki, D. The geothermal potential of underground buildings in hot climates: Case of southern Algeria. Case Stud. Therm. Eng. 2021, 28, 101422. [Google Scholar] [CrossRef]
- Al-Helal, I.M.; Alsadon, A.; Marey, S.; Ibrahim, A.; Shady, M.; Abdel-Ghany, A.M. Geothermal energy potential for cooling/heating greenhouses in hot arid regions. Atmosphere 2022, 13, 105. [Google Scholar] [CrossRef]
- Tiwari, G.N.; Akhtar, M.A.; Shukla, A.; Emran Khan, M. Annual thermal performance of greenhouse with an earth-air heat exchanger: An experimental validation. Renew. Energy 2006, 31, 2432–2446. [Google Scholar] [CrossRef]
- Ghosal, M.K.; Tiwari, G.N.; Das, D.K.; Pandey, K.P. Modeling and comparative thermal performance of ground air collector and earth air heat exchanger for heating of greenhouse. Energy Build. 2005, 37, 613–621. [Google Scholar] [CrossRef]
- Ozgener, O.; Ozgener, L.; Goswami, D.Y. Experimental prediction of total thermal resistance of a closed loop EAHE for greenhouse cooling system. Int. Commun. Heat Mass Transf. 2011, 38, 711–717. [Google Scholar] [CrossRef]
- Ozgener, O.; Ozgener, L.; Goswami, D.Y. Seven years energetic and exergetic monitoring for vertical and horizontal EAHE assisted agricultural building heating. Renew. Sustain. Energy Rev. 2017, 80, 175–184. [Google Scholar] [CrossRef]
- Hepbasli, A. Low exergy modelling and performance analysis of greenhouses coupled to closed earth-to-air heat exchangers (EAHEs). Energy Build. 2013, 64, 224–230. [Google Scholar] [CrossRef]
- Bisoniya, T.S.; Kumar, A.; Baredar, P. Experimental and analytical studies of earth-air heat exchanger (EAHE) systems in India: A review. Renew. Sustain. Energy Rev. 2013, 19, 238–246. [Google Scholar] [CrossRef]
- Holman, J.P. Heat Transfer, 8th ed.; McGraw-Hill Inc.: New York, NY, USA, 1997. [Google Scholar]
- Ceglia, F.; Marrasso, E.; Roselli, C.; Sasso, M. Effect of layout and working fluid on heat transfer of polymeric shell and tube heat exchangers for small size geothermal ORC via 1-D numerical analysis. Geothermics 2021, 95, 102118. [Google Scholar] [CrossRef]
- Kusuda, T.O.; Bean, W. Annual Variation of Temperature Field and Heat Transfer under Heated Surface, Slab-On Grade Floor Heat Loss Calculation, Building Science Services 156; National Bureau of Standards: Gaithersburg, MD, USA, 1983. [Google Scholar]
- Morland, F.L.; Higgs, F.; Shih, J. (Eds.) Earth-covered buildings. In Proceedings of the Conference: Earth Covered Settlements in Fort Worth, Fort Worth, TX, USA, 17 May 1978; National Bureau of Standard: Gaithersburg, MD, USA, 1983. [Google Scholar]
- Labs, K. Passive Cooling; Cook, J., Ed.; MIT Press: Cambridge, MA, USA; London, UK, 1989. [Google Scholar]
- Aydin, M.; Sisman, A.; Gultekin, A.; Dehghan, B. An experimental performance comparison between different shallow ground heat exchangers. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Ghany, A.M.; Al-Helal, I.M.; Alsadon, A.; Ibrahim, A.; Shady, M. Measuring and Predicting the In-Ground Temperature Profile for Geothermal Energy Systems in the Desert of Arid Regions. Energies 2022, 15, 7268. https://doi.org/10.3390/en15197268
Abdel-Ghany AM, Al-Helal IM, Alsadon A, Ibrahim A, Shady M. Measuring and Predicting the In-Ground Temperature Profile for Geothermal Energy Systems in the Desert of Arid Regions. Energies. 2022; 15(19):7268. https://doi.org/10.3390/en15197268
Chicago/Turabian StyleAbdel-Ghany, Ahmed M., Ibrahim M. Al-Helal, Abdullah Alsadon, Abdullah Ibrahim, and Mohamed Shady. 2022. "Measuring and Predicting the In-Ground Temperature Profile for Geothermal Energy Systems in the Desert of Arid Regions" Energies 15, no. 19: 7268. https://doi.org/10.3390/en15197268
APA StyleAbdel-Ghany, A. M., Al-Helal, I. M., Alsadon, A., Ibrahim, A., & Shady, M. (2022). Measuring and Predicting the In-Ground Temperature Profile for Geothermal Energy Systems in the Desert of Arid Regions. Energies, 15(19), 7268. https://doi.org/10.3390/en15197268