Lithiated Manganese-Based Materials for Lithium-Ion Capacitor: A Review
Abstract
:1. Introduction
2. The Bases of Electrochemical Capacitors
3. Lithium-Ion Capacitor Materials
3.1. The Mechanism of the Lithium-Ion Capacitor
3.2. Design and Development of Lithiated Manganese-Based Materials for Li-Ion Capacitors
3.2.1. Lithium Manganese Phosphate
3.2.2. Lithium Manganese Oxide
3.2.3. Lithium Manganese Silicate
4. Application of Lithiated Manganese-Based Materials as Lithium-Ion Capacitors
4.1. Effect of Doping on the Pristine Material
4.2. Effect of Carbon on the Pristine Material
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, H.; Yang, H.; Huang, C.; He, J.; Liu, H.; Li, Y. Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities. Nano Energy 2016, 22, 615–622. [Google Scholar] [CrossRef]
- Zhang, S.S. Dual-Carbon Lithium-Ion Capacitors: Principle, Materials, and Technologies. Batter Supercaps 2020, 3, 1137–1146. [Google Scholar] [CrossRef]
- Lamb, J.J.; Burheim, O.S. Lithium-Ion Capacitors: A Review of Design and Active Materials. Energies 2021, 14, 979. [Google Scholar] [CrossRef]
- Jin, L.; Yuan, J.; Shellikeri, A.; Naderi, R.; Qin, N.; Lu, Y.; Fan, R.; Wu, Q.; Zheng, J.; Zhang, C.; et al. An Overview on Design Parameters of Practical Lithium-Ion Capacitors. Batter. Supercaps 2021, 4, 749–757. [Google Scholar] [CrossRef]
- Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric Supercapacitor Electrodes and Devices. Adv. Mater. 2017, 29, 1605336. [Google Scholar] [CrossRef]
- Dubal, D.P.; Gomez-Romero, P. All nanocarbon Li-Ion capacitor with high energy and high power density. Mater. Today Energy 2018, 8, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Xia, Q.; Yang, H.; Wang, M.; Yang, M.; Guo, Q.; Wan, L.; Xia, H.; Yu, Y. High Energy and High Power Lithium-Ion Capacitors Based on Boron and Nitrogen Dual-Doped 3D Carbon Nanofibers as Both Cathode and Anode. Adv. Energy Mater. 2017, 7, 1701336. [Google Scholar] [CrossRef]
- Lee, J.H.; Shin, W.H.; Lim, S.Y.; Kim, B.G.; Choi, J.W. Modified graphite and graphene electrodes for high-performance lithium ion hybrid capacitors. Mater. Renew. Sustain. Energy 2014, 3, 22. [Google Scholar] [CrossRef] [Green Version]
- Nanaji, K.; Pappu, S.; Anandan, S.; Rao, T.N. A High-Energy Density Li-Ion Hybrid Capacitor Fabricated from Bio-Waste Derived Carbon Nanosheets Cathode and Graphite Anode. Glob. Chall. 2022, 2200082. [Google Scholar] [CrossRef]
- Wang, G.; Oswald, S.; Löffler, M.; Müllen, K.; Feng, X. Beyond Activated Carbon: Graphite-Cathode-Derived Li-Ion Pseudocapacitors with High Energy and High Power Densities. Adv. Mater. 2019, 31, e1807712. [Google Scholar] [CrossRef]
- Lu, R.; Ren, X.; Wang, C.; Zhan, C.; Nan, D.; Lv, R.; Shen, W.; Kang, F.; Huang, Z.-H. Na0.76V6O15/Activated Carbon Hybrid Cathode for High-Performance Lithium-Ion Capacitors. Materials 2021, 14, 122. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guan, C.; Wang, X.; Fan, H.J. A High Energy and Power Li-Ion Capacitor Based on a TiO2 Nanobelt Array Anode and a Graphene Hydrogel Cathode. Small 2015, 11, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Lu, B.; Chen, M.; Wang, X.; Xing, T.; Liu, M.; Wang, X. Porous activated carbon derived from Chinese-chive for high energy hybrid lithium-ion capacitor. J. Power Sources 2018, 398, 128–136. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Chen, J.; Li, X.; Cheng, Q.; Wang, G. Fabrication of porous lithium titanate self-supporting anode for high performance lithium-ion capacitor. J. Energy Chem. 2020, 50, 344–350. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, J.; Zeng, Y.; Zhang, Y.; Guo, H. Morphological and Structural Evolution of MnO@C Anode and Its Application in Lithium-Ion Capacitors. ACS Appl. Energy Mater. 2019, 2, 8345–8358. [Google Scholar] [CrossRef]
- Amatucci, G.G.; Badway, F.; Du Pasquier, A.; Zheng, T. An Asymmetric Hybrid Nonaqueous Energy Storage Cell. J. Electrochem. Soc. 2001, 148, A930. [Google Scholar] [CrossRef]
- Horn, M.; MacLeod, J.; Liu, M.; Webb, J.; Motta, N. Supercapacitors: A new source of power for electric cars? Econ. Anal. Policy 2019, 61, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Berrueta, A.; Ursua, A.; Martin, I.S.; Eftekhari, A.; Sanchis, P. Supercapacitors: Electrical Characteristics, Modeling, Applications, and Future Trends. IEEE Access 2019, 7, 50869–50896. [Google Scholar] [CrossRef]
- Burke, A.F.; Zhao, J. Past, present and future of electrochemical capacitors: Technologies, performance and applications. J. Energy Storage 2021, 35, 102310. [Google Scholar] [CrossRef]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Faraji, S.; Ani, F.N. The development supercapacitor from activated carbon by electroless plating—A review. Renew. Sustain. Energy Rev. 2015, 42, 823–834. [Google Scholar] [CrossRef]
- Xiao, X.; Han, B.; Chen, G.; Wang, L.; Wang, Y. Preparation and electrochemical performances of carbon sphere@ZnO core-shell nanocomposites for supercapacitor applications. Sci. Rep. 2017, 7, 40167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Gao, S.; Du, Z.; Yuan, A.; Lu, W.; Chen, L. MnO2-Carbon nanotube composite for high-areal-density supercapacitors with high rate performance. J. Power Sources 2016, 305, 30–36. [Google Scholar] [CrossRef]
- Chen, C.; Yu, D.; Zhao, G.; Sun, L.; Sun, Y.; Leng, K.; Yu, M.; Sun, Y. Hierarchical porous graphitic carbon for high-performance supercapacitors at high temperature. RSC Adv. 2017, 7, 34488–34496. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Shi, B.; Fang, Y.; Rong, F.; Huang, F.; Que, R.; Shao, M. High capacitance and rate capability of a Ni3S2@CdS core–shell nanostructure supercapacitor. J. Mater. Chem. A 2017, 5, 7165–7172. [Google Scholar] [CrossRef]
- Makgopa, K.; Ejikeme, P.M.; Jafta, C.J.; Raju, K.; Zeiger, M.; Presser, V.; Ozoemena, K.I. A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids. J. Mater. Chem. A 2014, 3, 3480–3490. [Google Scholar] [CrossRef] [Green Version]
- Sui, D.; Chang, M.; Peng, Z.; Li, C.; He, X.; Yang, Y.; Liu, Y.; Lu, Y. Graphene-Based Cathode Materials for Lithium-Ion Capacitors: A Review. Nanomaterials 2021, 11, 2771. [Google Scholar] [CrossRef]
- Suktha, P.; Phattharasupakun, N.; Dittanet, P.; Sawangphruk, M. Charge storage mechanisms of electrospun Mn3O4 nanofibres for high-performance supercapacitors. RSC Adv. 2017, 7, 9958–9963. [Google Scholar] [CrossRef] [Green Version]
- Xu, N.; Sun, X.; Zhang, X.; Wang, K.; Ma, Y. A two-step method for preparing Li4Ti5O12–graphene as an anode material for lithium-ion hybrid capacitors. RSC Adv. 2015, 5, 94361–94368. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J. Development of high power and energy density microsphere silicon carbide-MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors. Phys. Chem. Chem. Phys. 2014, 16, 11323–11336. [Google Scholar] [CrossRef]
- Lu, X.; Yu, M.; Wang, G.; Tong, Y.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160–2181. [Google Scholar] [CrossRef]
- Ma, Y.; Chang, H.; Zhang, M.; Chen, Y. Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors. Adv. Mater. 2015, 27, 5296–5308. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.S.; Sassin, M.B.; Rolison, D.R.; Long, J.W. Deconvolving double-layer, pseudocapacitance, and battery-like charge-storage mechanisms in nanoscale LiMn2O4 at 3D carbon architectures. Electrochim. Acta 2018, 275, 225–235. [Google Scholar] [CrossRef]
- Hlongwa, N.W.; Ikpo, C.O.; Ndipingwi, M.M.; Nolly, C.; Raleie, N.; Dywili, N.; Iwuoha, E.I. Graphene-functionalised Olivine Lithium Manganese Phosphate Derivatives for High Performance Lithium-ion Capacitors. Electroanalysis 2020, 32, 2812–2826. [Google Scholar] [CrossRef]
- Ndipingwi, M.M.; Ikpo, C.O.; Hlongwa, N.W.; Myalo, Z.; Ross, N.; Masikini, M.; John, S.V.; Baker, P.G.; Roos, W.D.; Iwuoha, E.I. Orthorhombic Nanostructured Li2MnSiO4/Al2O3 Supercapattery Electrode with Efficient Lithium-Ion Migratory Pathway. Batter. Supercaps 2018, 1, 223–235. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Peng, R.; Huang, Y.; Guo, L.; Qi, Y. LiMn2O4/graphene composites as cathodes with enhanced electrochemical performance for lithium-ion capacitors. RSC Adv. 2016, 6, 54866–54873. [Google Scholar] [CrossRef]
- Simon, P.; Burke, A. Nanostructured Carbons: Double-Layer Capacitance and More. Electrochem. Soc. Interface 2008, 17, 38–43. [Google Scholar] [CrossRef]
- Amatucci, G.G.; Badway, F.; du Pasquier, A.; Amatucci, G.G.; Zheng, T.; Ohzuku, T.; Ueda, A.; Yamamoto, N. The Nonaqueous Asymmetric Hybrid Technology: Materials, Electrochemical Properties and Performance in Plastic Cells; Electrochemical Society: Pennington, NJ, USA, 2002; Volume MA. [Google Scholar]
- Ohzuku, T.; Ueda, A.; Yamamoto, N. Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells. J. Electrochem. Soc. 1995, 142, 1431–1435. [Google Scholar] [CrossRef]
- Chen, P.-C.; Shen, G.; Shi, Y.; Chen, H.; Zhou, C. Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes. ACS Nano 2010, 4, 4403–4411. [Google Scholar] [CrossRef]
- Cottineau, T.; Toupin, M.; Delahaye, T.; Brousse, T.; Bélanger, D. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl. Phys. A 2006, 82, 599–606. [Google Scholar] [CrossRef]
- Sun, F.; Gao, J.; Zhu, Y.; Pi, X.; Wang, L.; Liu, X.; Qin, Y. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode. Sci. Rep. 2017, 7, 40990. [Google Scholar] [CrossRef] [Green Version]
- Sui, Y.; Liu, C.; Zou, P.; Zhan, H.; Cui, Y.; Yang, C.; Cao, G. Polypyrrole Coated δ-MnO2 Nanosheet Arrays as Highly Stable Lithium-Ion-Storage Anode Polypyrrole Coated δ-MnO2 Nanosheet Arrays as Highly Stable Lithium-Ion-Storage Anode. Dalton Trans. 2020, 49, 7903–7913. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Niu, Z. Carbon-based materials for lithium-ion capacitors. Mater. Chem. Front. 2019, 3, 1265–1279. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Liu, W.; Li, C.; Wang, K.; Ma, Y. Recent Advances in MXenes for Lithium-Ion Capacitors. ACS Omega 2020, 5, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naskar, P.; Kundu, D.; Maiti, A.; Chakraborty, P.; Biswas, B.; Banerjee, A. Frontiers in Hybrid Ion Capacitors: A Review on Advanced Materials and Emerging Devices. ChemElectroChem 2021, 8, 1393–1429. [Google Scholar] [CrossRef]
- Tušar, N.; Jank, S.; Gläser, R. Manganese-Containing Porous Silicates: Synthesis, Structural Properties and Catalytic Applications. ChemCatChem 2010, 3, 254–269. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Sun, K.; Guo, J.; Yuan, K.; Fu, J.; Zhang, T.; Zhang, X.; Long, H.; Zhang, Z.; et al. Manganese-Based Materials for Rechargeable Batteries beyond Lithium-Ion. Adv Energy Mater. 2021, 11, 2100867. [Google Scholar] [CrossRef]
- Zhang, W.; Zhai, X.; Zhang, Y.; Wei, H.; Ma, J.; Wang, J.; Liang, L.; Liu, Y.; Wang, G.; Ren, F.; et al. Application of Manganese-Based Materials in Aqueous Rechargeable Zinc-Ion Batteries. Front. Energy Res. 2020, 8, 195. [Google Scholar] [CrossRef]
- Ma, S.-B.; Nam, K.-W.; Yoon, W.-S.; Yang, X.-Q.; Ahn, K.-Y.; Oh, K.-H.; Kim, K.-B. A novel concept of hybrid capacitor based on manganese oxide materials. Electrochem. Commun. 2007, 9, 2807–2811. [Google Scholar] [CrossRef]
- Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S. LiMnPO4—A next generation cathode material for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 3518–3539. [Google Scholar] [CrossRef]
- Qin, Z.; Zhou, X.; Xia, Y.; Tang, C.; Liu, Z. Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. J. Mater. Chem. 2012, 22, 21144–21153. [Google Scholar] [CrossRef]
- Yi, T.-F.; Mei, J.; Zhu, Y.-R. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J. Power Sources 2016, 316, 85–105. [Google Scholar] [CrossRef]
- Huang, Q.-Y.; Wu, Z.; Su, J.; Long, Y.-F.; Lv, X.-Y.; Wen, Y.-X. Synthesis and electrochemical performance of Ti–Fe co-doped LiMnPO4/C as cathode material for lithium-ion batteries. Ceram. Int. 2016, 42, 11348–11354. [Google Scholar] [CrossRef]
- Duan, J.; Hu, G.; Cao, Y.; Du, K.; Peng, Z. Synthesis of high-performance LiMnPO4/C/rGO composite via a mechanical-activation-assisted polyol process. Ionics 2016, 22, 1541–1549. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, Y.; Duan, H.; Liang, Z. Enhanced electrochemical performance of LiMnPO4 by Li+-conductive Li3VO4 surface coatings. Electrochim. Acta 2014, 132, 244–250. [Google Scholar] [CrossRef]
- Moskon, J.; Pivko, M.; Jerman, I.; Tchernychova, E.; Logar, N.Z.; Zorko, M.; Selih, V.; Dominko, R.; Gaberscek, M. Cycling stability and degradation mechanism of LiMnPO4 based electrodes. J. Power Sources 2016, 303, 97–108. [Google Scholar] [CrossRef]
- Pitchai, R.; Thavasi, V.; Mhaisalkar, S.G.; Ramakrishna, S. Nanostructured cathode materials: A key for better performance in Li-ion batteries. J. Mater. Chem. 2011, 21, 11040–11051. [Google Scholar] [CrossRef]
- Nolis, G.M.; Omenya, F.; Zhang, R.; Fang, B.; Upreti, S.; Chernova, N.A.; Wang, F.; Graetz, J.; Hu, Y.-Y.; Grey, C.P.; et al. Structure, defects and thermal stability of delithiated olivine phosphates. J. Mater. Chem. 2012, 22, 20482–20489. [Google Scholar] [CrossRef]
- Herrera, J.O.; Camacho-Montes, H.; Fuentes, L.E.; Álvarez-Contreras, L. LiMnPO4: Review on Synthesis and Electrochemical Properties. J. Mater. Sci. Chem. Eng. 2015, 3, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Luo, Z.; Xie, J. Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries. Prog. Nat. Sci. Mater. Int. 2012, 22, 572–584. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Z.; Cao, C. Mesoporous Spinel LiMn2O4 Cathode Material by a Soft-templating Route. Electrochim. Acta 2016, 199, 51–58. [Google Scholar] [CrossRef]
- Put, B.; Vereecken, P.M.; Labyedh, N.; Sepulveda, A.; Huyghebaert, C.; Radu, I.P.; Stesmans, A. High Cycling Stability and Extreme Rate Performance in Nanoscaled LiMn2O4 Thin Films. ACS Appl. Mater. Interfaces 2015, 7, 22413–22420. [Google Scholar] [CrossRef] [PubMed]
- Hung, I.M.; Yang, Y.C.; Su, H.J.; Zhang, J. Influences of the Surfactant on the Performance of Nano-LiMn2O4 Cathode Material for Lithium-Ion Battery. Ceram. Int. 2015, 41, S779–S786. [Google Scholar] [CrossRef]
- Plitz, I.; DuPasquier, A.; Badway, F.; Gural, J.; Pereira, N.; Gmitter, A.; Amatucci, G. The design of alternative nonaqueous high power chemistries. Appl. Phys. A 2006, 82, 615–626. [Google Scholar] [CrossRef]
- Vijayan, S.; Kirubasankar, B.; Pazhamalai, P.; Solarajan, A.K.; Angaiah, S. Electrospun Nd3+-Doped LiMn2O4 Nanofibers as High-Performance Cathode Material for Li-Ion Capacitors. ChemElectroChem 2017, 4, 2059–2067. [Google Scholar] [CrossRef]
- Lu, J.; Chang, Y.-L.; Song, B.; Xia, H.; Yang, J.-R.; Lee, K.S.; Lu, L. High energy spinel-structured cathode stabilized by layered materials for advanced lithium-ion batteries. J. Power Sources 2014, 271, 604–613. [Google Scholar] [CrossRef]
- West, N.; Ozoemena, K.I.; Ikpo, C.O.; Baker, P.G.; Iwuoha, E.I. Transition metal alloy-modulated lithium manganese oxide nanosystem for energy storage in lithium-ion battery cathodes. Electrochim. Acta 2013, 101, 86–92. [Google Scholar] [CrossRef]
- Kim, D.K.; Muralidharan, P.; Lee, H.-W.; Ruffo, R.; Yang, Y.; Chan, C.K.; Peng, H.; Huggins, R.A.; Cui, Y. Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes. Nano Lett. 2008, 8, 3948–3952. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, S.; Zhu, Y.; Chang, Z.; Hu, C.; Wu, Y.; Holze, R. Spinel LiMn2O4 nanohybrid as high capacitance positive electrode material for supercapacitors. J. Power Sources 2014, 246, 19–23. [Google Scholar] [CrossRef]
- Tianran, Z.; Daixin, L.; Tao, Z.; Jun, C. Understanding Electrode Materials of Rechargeable Lithium Batteries via DFT Calculations. Prog. Nat. Sci. Mater. Int. 2013, 23, 256–272. [Google Scholar]
- Chen, Q.; Xiao, P.; Pei, Y.; Song, Y.; Xu, C.-Y.; Zhen, L.; Henkelman, G. Structural transformations in Li2MnSiO4: Evidence that a Li intercalation material can reversibly cycle through a disordered phase. J. Mater. Chem. A 2017, 5, 16722–16731. [Google Scholar] [CrossRef]
- Wang, X.; Luo, S.; Li, P.; Zhan, Y.; Yan, S. Preparation and electrochemical performance of Li2 MnSiO4 cathode material doped with chromium on manganese site. Int. J. Energy Res. 2021, 45, 20483–20491. [Google Scholar] [CrossRef]
- Hou, P.; Feng, J.; Wang, Y.; Wang, L.; Li, S.; Yang, L.; Luo, S.-H. Study on the properties of Li2MnSiO4 as cathode material for lithium-ion batteries by sol-gel method. Ionics 2020, 26, 1611–1616. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, M.; Kumar, A.; Tseng, T.-Y.; Sharma, Y. Facile and One-Step in Situ Synthesis of Pure Phase Mesoporous Li2MnSiO4/CNTs Nanocomposite for Hybrid Supercapacitors. ACS Appl. Energy Mater. 2020, 3, 2450–2464. [Google Scholar] [CrossRef]
- Fisher, C.A.J.; Kuganathan, N.; Islam, M.S. Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li2MnSiO4. J. Mater. Chem. A 2013, 1, 4207–4214. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Y.; Jia, D.; Peng, Z.; Xia, Y.; Zheng, G. All-Nanowire Based Li-Ion Full Cells Using Homologous Mn2O3 and LiMn2O4. Nano Lett. 2014, 14, 1080–1084. [Google Scholar] [CrossRef]
- Yang, X.; Qu, F.; Niu, H.; Wang, Q.; Yan, J.; Fan, Z. High-performance aqueous asymmetric supercapacitor based on spinel LiMn2O4 and nitrogen-doped graphene/porous carbon composite. Electrochim. Acta 2015, 180, 287–294. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Wu, N.-L. Characterization of MnFe2O4/LiMn2O4 aqueous asymmetric supercapacitor. J. Power Sources 2011, 196, 851–854. [Google Scholar] [CrossRef]
- Pazhamalai, P.; Krishnamoorthy, K.; Sudhakaran, M.S.P.; Kim, S.J. Fabrication of High-Performance Aqueous Li-Ion Hybrid Capacitor with LiMn2 O4 and Graphene. ChemElectroChem 2016, 4, 396–403. [Google Scholar] [CrossRef]
- Liu, L.; Diao, X.; He, Z.; Yi, Y.; Wang, T.; Wang, M.; Huang, J.; He, X.; Zhong, X.; Du, K. High-performance all-inorganic portable electrochromic Li-ion hybrid supercapacitors toward safe and smart energy storage. Energy Storage Mater. 2020, 33, 258–267. [Google Scholar] [CrossRef]
- Prabaharan, S.; Star, R.A.; Kulkarni, A.R.; Michael, M. Nano-composite LiMnPO4 as new insertion electrode for electrochemical supercapacitors. Curr. Appl. Phys. 2015, 15, 1624–1633. [Google Scholar] [CrossRef]
- Xiang, J.; Zhang, P.; Lv, S.; Ma, Y.; Zhao, Q.; Sui, Y.; Ye, Y.; Qin, C. Spinel LiMn2O4 nanoparticles fabricated by the flexible soft template/Pichini method as cathode materials for aqueous lithium-ion capacitors with high energy and power density. RSC Adv. 2021, 11, 14891–14898. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Sil, A.; Sharma, Y. Energy storage performance of hybrid aqueous supercapacitor based on nano-Li2MnSiO4 and activated carbon. Ionics 2016, 22, 1719–1728. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Kumar, A.; Sil, A.; Sharma, Y. Cost effective urea combustion derived mesoporous-Li2MnSiO4 as a novel material for supercapacitors. RSC Adv. 2015, 5, 25156–25163. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Deng, L. Enhanced electrochemical properties of LiMnPO4/C via doping with Cu. Ionics 2012, 18, 573–578. [Google Scholar] [CrossRef]
- Lee, E.-S.; Huq, A.; Chang, H.-Y.; Manthiram, A. High-Voltage, High-Energy Layered-Spinel Composite Cathodes with Superior Cycle Life for Lithium-Ion Batteries. Chem. Mater. 2012, 24, 600–612. [Google Scholar] [CrossRef]
- Kang, B.J.; Joo, J.-B.; Lee, J.K.; Choi, W. Surface modification of cathodes with nanosized amorphous MnO2 coating for high-power application in lithium-ion batteries. J. Electroanal. Chem. 2014, 728, 34–40. [Google Scholar] [CrossRef]
- Bhatt, M.D.; O’Dwyer, C. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys. Chem. Chem. Phys. 2015, 17, 4799–4844. [Google Scholar] [CrossRef] [Green Version]
- Julien, C.M.; Mauger, A.; Zaghib, K.; Groult, H. Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics 2014, 2, 132–154. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, X.; Huang, T.; Yu, A. Synthesis of nano-sized LiMnPO4 and in situ carbon coating using a solvothermal method. J. Power Sources 2013, 229, 203–209. [Google Scholar] [CrossRef]
- Liu, L.; Wang, T.; He, Z.; Yi, Y.; Wang, M.; Luo, Z.; Liu, Q.; Huang, J.; Zhong, X.; Du, K.; et al. All-solid-state electrochromic Li-ion hybrid supercapacitors for intelligent and wide-temperature energy storage. Chem. Eng. J. 2021, 414, 128892. [Google Scholar] [CrossRef]
- Lu, J.; Zhan, C.; Wu, T.; Wen, J.; Lei, Y.; Kropf, A.J.; Wu, H.; Miller, D.J.; Elam, J.W.; Sun, Y.-K.; et al. Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach. Nat. Commun. 2014, 5, 5693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Li, C.; Zhang, X.; Sun, X.; Wang, K.; Ma, Y. High Performance Lithium-Ion Hybrid Capacitors Employing Fe3O4–Graphene Composite Anode and Activated Carbon Cathode. ACS Appl. Mater. Interfaces 2017, 9, 17136–17144. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wang, X.; Zhang, X.; Peng, H.; Zhang, Y.; Wang, G. Effect of graphene nanosheets on electrochemical performance of Li4Ti5O12 in lithium-ion capacitors. Ceram. Int. 2017, 43, 6554–6562. [Google Scholar] [CrossRef]
- Xu, L.; Wang, S.; Zhang, X.; He, T.; Lu, F.; Li, H.; Ye, J. A facile method of preparing LiMnPO4/reduced graphene oxide aerogel as cathodic material for aqueous lithium-ion hybrid supercapacitors. Appl. Surf. Sci. 2018, 428, 977–985. [Google Scholar] [CrossRef]
- Chen, L.; Li, D.; Zheng, X.; Chen, L.; Zhang, Y.; Liang, Z.; Feng, J.; Si, P.; Lou, J.; Ci, L. Integrated nanocomposite of LiMn2O4/graphene/carbon nanotubes with pseudocapacitive properties as superior cathode for aqueous hybrid capacitors. J. Electroanal. Chem. 2019, 842, 74–81. [Google Scholar] [CrossRef]
Device Configuration (Anode//Cathode) | Voltage Range (V) | Cycling Stability | Maximum Energy Density (W h kg−1) | Maximum Power Density (W kg−1) | Ref. |
---|---|---|---|---|---|
N-doped carbon nanopipes//rGO | 0–4 | 91% over 4000 cycles | 262 | 9000 | [6] |
B&N-doped carbon nanofiber//B&N-doped nanofiber | 0–4.3 | 81% over 5000 cycles | 220 | 22,500 | [7] |
Graphite//graphene | 2–4 | 97% over 3500 cycles | 135 | 1500 | [8] |
Commercial graphite//activated carbon | 2–4.5 | 69% over 2500 cycles | 125 | 69 | [9] |
Li4Ti5O12//graphite | 1.5–3.7 V | 88% over 10,000 | 233 | 20,960 | [10] |
Artificial graphene//Na0.76V6O15 | 1–3.8 V | 70% over 5000 cycles | 119 | 21,793 | [11] |
TiO2 nanobelt arrays//graphene hydrogels | 0–3.8 | 73% over 600 cycles | 82 | 19,000 | [12] |
Silicon/flake graphite/carbon nanocomposite//biomass-derived porous carbon | 2–4.5 V | 80% over 8000 cycles | 159 | 31,235 | [13] |
Li4Ti5O12-CNT//graphene foam | 1–3.6 | 84% over 5000 cycles | 101.8 | 12,300 | [14] |
MnO on C//trisodium citrate-derived carbon | 0–3.9 | 85.69% over 10,000 cycles | 235 | 25,000 | [15] |
Device Configuration (Anode//Cathode) | Voltage Rage (V) | Cycling Stability | Maximum Energy Density (W h kg−1) | Maximum Power Density (W kg−1) | Ref. |
---|---|---|---|---|---|
AC//LiMnPO4 | 0–2 | 83% over 1000 cycles | 28.8 | 2500 | [82] |
LiMn2O4//nitrogen doped graphene | 0–1.8 | 85 % over 1000 cycles | 44.3 | 595 | [78] |
LiMn2O4//graphene | 0–2.2 | 90% over 1000 cycles | 39.96 | 440 | [80] |
LiMn2O4//AC | 0–2 | 75.9% over 2000 cycles | 32.63 | 10,000 | [83] |
Li2MnSiO4//AC | 0–1.3 | 95% over 5000 cycles | 7.75 | 1650 | [84] |
Porous nanosized Li2MnSiO4 | 0–0.6 | 90% over 500 cycles | 7 | 135 | [85] |
Device Configuration (Anode//Cathode) | Voltage Range (V) | Cycling Stability | Maximum Energy Density (W h kg−1) | Maximum Power Density (W kg−1) | Ref. |
---|---|---|---|---|---|
AC//LiMn0.95Ni0.05PO4 | 0–2 | 71% over 800 cycles | 9.4 | 1610 | [34] |
LiNd0.01Mn1.99O4//black pearl carbon | 0–1.6 | 86 % over 2500 cycles | 17 | 397 | [66] |
AC//Li2MnSiO4/Al2O3 | 0–2.2 | 93.6% over 100 cycles | 10.4 | 4020.8 | [35] |
LiMn2O4@LiNbO3//WO3 | 0–2.3 | 83.5% over 3000 cycles | 106.1 | 574.7 | [92] |
Device Configuration (Anode//Cathode) | Voltage Range (V) | Cycling Stability | Maximum Energy Density (W h kg−1) | Maximum Power Density (W kg−1) | Ref. |
---|---|---|---|---|---|
AC//LMNP/graphene | 0–2 | 83% over 750 cycles | 14 | 1900 | [34] |
LiMnPO4/rGO//rGO | 0–1.5 | 91.2% over 10,000 | 16.46 | 4520 | [96] |
LiMn2O4/graphene//AC | 0–2.3 | 90.6% over 500 cycles | 38.8 | 12.6 | [36] |
LiMn2O4/graphene/CNs//N/S co-doped AC | 0–2.1 | 90.8% over 5000 cycles | 62.77 | 2967.96 | [97] |
Li2MnSiO4/CNTs//AC | 0–1.6 | 83% over 2500 cycles | 31 | 177 | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hlongwa, N.W.; Raleie, N. Lithiated Manganese-Based Materials for Lithium-Ion Capacitor: A Review. Energies 2022, 15, 7276. https://doi.org/10.3390/en15197276
Hlongwa NW, Raleie N. Lithiated Manganese-Based Materials for Lithium-Ion Capacitor: A Review. Energies. 2022; 15(19):7276. https://doi.org/10.3390/en15197276
Chicago/Turabian StyleHlongwa, Ntuthuko W., and Naledi Raleie. 2022. "Lithiated Manganese-Based Materials for Lithium-Ion Capacitor: A Review" Energies 15, no. 19: 7276. https://doi.org/10.3390/en15197276
APA StyleHlongwa, N. W., & Raleie, N. (2022). Lithiated Manganese-Based Materials for Lithium-Ion Capacitor: A Review. Energies, 15(19), 7276. https://doi.org/10.3390/en15197276