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Abstract: Dry iron core reactors are widely used in various power quality applications. Manufacturers
want to optimize the cost and loss simultaneously, which is normally achieved by the designers’
experience. This approach is highly subjective and can lead to a non-ideal product. Thus, an
objective dry iron core reactor design approach to balance the cost and loss with a scientific basis is
desired. In this paper, a multi-objective optimal design method is proposed to optimize both the cost
and loss of the reactor, which provides an automatic and scientific design method. Specifically, a
three-dimensional finite element model of dry iron core reactor is established, based on which the
dependency of cost and loss upon the wire size of the reactor’s winding is studied by using joint
Matlab-finite element method (FEM) simulation. The Non-dominated Sorting Genetic Algorithm II
(NSGA-II) is used to search for the Pareto optimal solution set, out of which the optimal wire size
of the reactor is determined by using the fusion of the technique for order preference by similarity
to ideal solution (TOPSIS) method and the entropy weight method. TOPSIS helps the designer to
balance the concern between cost and loss, while the entropy weight method can determine the
weight information through the dispersion degree of cost and loss. This methodology can avoid
personal random subjective opinion when selecting the design solution out of the Pareto set. The
calculation shows that the cost and loss can be reduced by up to 17.85% and 19.45%, respectively, with
the proposed method. Furthermore, the obtained optimal design is approved by experimental tests.

Keywords: dry iron core reactor; multi-objective optimization; NSGA-II; matlab-finite element;
TOPSIS; entropy weight method

1. Introduction

Electrical reactors are essential equipment in power systems used for reactive power
compensation, current limiting, over-voltage suppression, etc. [1]. There are two types of
reactors, namely dry-type and oil-immersed. Compared with oil-immersed reactors, the
oil-free dry-type reactors eliminate the risk of oil leakage and fire hazard. Thus, dry-type
reactors have gradually overtaken oil-immersed reactors in the 35 kV and below market,
especially in places with a high safety awareness such as airports, railway stations, etc.
Two kinds of dry-type reactors exist, namely air core and iron core reactors. Dry iron core
reactors, which are the focus of this paper, are favored for applications with installation
space limitations due to their small size. The great demand has urged manufacturers to
pay attention to the design optimization [2–4]. The current design of dry iron core reactors
follows a similar process as a transformer, which relies on electromagnetic field theory to
design the core and coil, with loss and temperature rise as the validation checks [5]. Thus,
loss is a key optimization objective for reactor design and has been studied by researchers.
For example, in [6], the effect of air gaps on the core losses of shunt iron core reactors
was analyzed to select the optimal air gap. Fating Yuan et al. optimized the rain cover
structure based on loss evaluation [7]. Takaaki Ibuchi et al. minimized the copper loss
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for dry-type reactors in the high frequency range [8]. Additionally, manufactures want to
reduce their costs, which makes cost also an optimized parameter. Yuan et al. proposed to
design dry air core reactors with the minimum amount of metal conductors, which referred
to the minimum cost [9]. In [10], genetic algorithms were introduced to reduce the cost of
single-phase dry air core reactors.

As discussed, the studies above take only the loss or the cost of reactor as the one
optimized parameter. However, it is of more significant engineering importance to optimize
the loss and cost simultaneously for a reactor.

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is an effective method
for solving such multi-objective optimization problems [11,12], which has been applied
in different fields [13–16]. It has been used to optimize designs for electrical equipment.
In [17], the optimal design for transformer locations, taking account of investment and
operating costs, was realized by using the NSGA-II algorithm. Reference [18] used the
NSGA-II algorithm to optimize the transformer conductor size considering the eddy current
loss and the temperature gradient of the winding. NSGA-II was also applied for the design
of a dry-type air-core reactor, with the goal of minimizing production costs and operating
costs [19,20]. However, the NSGA-II algorithm gives a set of Pareto solutions, and the
designer may arbitrarily pick one from this set for subsequent design, but not necessarily
the best one. Selecting one of the Pareto solutions requires weighing the importance of
different objectives, which is normally highly randomly subjective and lacks a scientific
basis [21]. It can be imagined that different electrical reactor designers may choose different
solutions from the Pareto set, which leads to products with different performance.

To this end, the research question is to find the best design solution for an electrical
reactor with an objective approach, considering both the loss and cost. Thus, the designer
can scientifically derive the best solution. In this paper, NSGA-II is utilized for the reactor’s
design with the cost and loss as two optimized objectives. To overcome the drawbacks of
random subjective selection, this paper incorporates the technique for order preference
by similarity to ideal solution (TOPSIS) and the entropy weight method into the NSGA-II
algorithm. In this way, the designer can focus more on a certain aspect of the design process,
i.e., loss or cost, eliminating the disadvantages of random selection. This proposed approach
is successfully implemented in the design of a 10 kV three-phase dry iron core reactor.

The paper is organized as follows. Firstly, the three-dimensional (3D) finite element
model of a dry iron core reactor is established, based on which the cost and loss of the
reactor are taken as two optimized objectives. A set of Pareto optimal solutions are obtained
using the joint Matlab-FEM simulation with the NSGA-II algorithm, after which the TOPSIS
method and entropy weight method are implemented to determine the optimal wire size
in the reactor design process. A validation experiment is performed at the end.

2. Multi-Objective Optimization Modeling of Dry Iron Core Reactors
2.1. Three-Dimensional Finite Element Model

A 3D finite element model of a 10 kV three-phase dry iron core reactor was developed
using COMSOL Multiphysics software as shown in Figure 1, based on which the cost and
loss were derived. The dimensions of the model geometric are shown in Appendix A. As
shown in Figure 1 and Appendix A, the structure of the reactor was constructed in detail.
There are 6 air gaps in each iron core and 3 layers for each winding. The implementation
of the calculation includes geometric design, material addition, electromagnetic field
boundary setting and mesh dissection [22,23]. The relevant material parameters are listed
in Table 1.

The reactor core diameter is fixed at 160 mm to meet the rated power while the wire
size is varied as a control parameter. The reactor cost includes the core cost and winding
coil cost, neglecting accessories. Each result is calculated by multiplying the price of related
material per unit volume and its total volume.
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Table 1. Relevant material parameters.

Materials Relative Permeability Relative Permittivity Conductivity [S/m]

winding coil 1 1 2.8 × 107

air 1 1 0

core 9500 1 0

The loss of the reactor includes two parts. One is copper loss, caused by the heat
generated from the current passing through the winding coil [24]. For the calculation of
copper losses, the following equation is derived according to Joule’s law:

Pcu = I2R1 + I2R2 + I2R3 (1)

where R1–R3 are the three-phase winding resistance.
The other part is the core loss, including hysteresis loss, eddy current loss and addi-

tional loss [25]. Hysteresis loss is generated by the memory of a magnetic material. More
force is necessary to demagnetize magnetic material than it takes to magnetize it, and
the magnetic domains in the material resist realignment. Eddy current losses are from
circulating currents in the core material, which is induced by an alternating magnetic
field [26]. Additional loss is the loss that cannot be directly attributed to eddy current or
hysteresis phenomena. Based on the magnetic field distribution in the core, the core loss
can be calculated by the following formula [25,27]:

Pir = Ph + Pec + Pe = a f Bx
m + b f 2B2

m + e f 1.5B1.5
m (2)

where Pir is the core loss; Ph is the hysteresis loss; Pec is the eddy current loss; Pe is the
additional loss; f is the frequency; and Bm is the flux density amplitude. Values of a, b, x, e
are dependent upon the selected ferromagnetic material.

The distribution of the final flux density is obtained using the finite element study as
shown in Figure 2.

As seen in Figure 2, the flux density is larger at the corners of the core, and the
magnitude and distribution of the flux density are consistent with the design.
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2.2. Multi-Objective Optimization Mathematical Model

The optimal design of reactors is essential to solve a nonlinear problem with constraints.
The input variables and objective function are the key to solving such optimization issues.
In the design process of the three-phase dry iron core reactor, the sizes of the wire were
used as input variables. The cost and loss of the reactor were used as the optimized indexes
to form a multi-objective optimization function as shown in Equation (3):{

min f1(X) = f (x1, x2)
min f2(X) = f (x1, x2)

(3)

where x1 is the wire length and x2 is the wire width, as shown in Figure 3. f 1 is the total
cost while f 2 denotes the loss, which is the sum of Equations (1) and (2), i.e., Pir + Pcu. The
f 1 and f 2 are taken as the objectives for design optimization.
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3. Optimization of Reactor Incorporating NSGA-II and TOPSIS and Entropy
Weight Method

The NAGA-II algorithm is widely used in the design of multi-objective optimization;
the algorithm performs a non-dominated sorting of all design solutions to find the Pareto
optimal solution set. In this paper, the optimal wire size was selected by combining the
TOPSIS method and entropy weight method on the basis of the NSGA-II algorithm. The
flowchart for the optimized design of the dry iron core reactor is shown in Figure 4. Firstly,
the 3D model of the reactor was built, based on which the reactor loss and cost were
obtained with different wires via FEM. Then, the NSGA-II algorithm was used for iterative
calculation to obtain the optimized sets of wires’ dimensions. Finally, TOPSIS combined
with the entropy weight method was applied to derive an optimal wire size.
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3.1. Implementation of NSGA-II Algorithm

The NSAG-II algorithm was applied to the 3D finite element model of a three-phase
dry core reactor with the following procedure.

(1) Population initialization. Since this paper aims to analyze the effect of different wire
size on the optimized indexes, i.e., cost and loss, the common standard wire size was
selected as the initialized population, as shown in Table 2. Twenty-eight combinations
of different wire lengths and wire widths were formed. These 28 individuals were
entered into the COMSOL model as the initial population to calculate the cost and
loss under various wire sizes.

(2) Fast non-domination sorting and crowding distance calculation of the initial pop-
ulation. Dominance and non-dominance are the focus of the process, as shown in
Figure 5. If both the cost and loss for individual i are smaller than individual j, then
i dominates j. Otherwise it is a non-dominated relationship. As shown in Figure 5,
the cost and loss of individual i are less than individual j, indicating that i dominates j.
However, though the loss of individual i is smaller than that of i + 1, the cost of
individual i is higher than that of i + 1. Thus, i and i + 1 does not constitute a dominant
relationship. This is the same for individuals i and i − 1. All the solutions in the
population that are not dominated by other solutions constitute the non-dominated
frontier, i.e., the Pareto optimal solution set. The rank of all the individuals in the
non-dominated frontier was set to 1. After that, all the individuals with rank 1 were
removed and the above operation was repeated for the rest of the population until the
non-dominated sorting of all the individuals was completed. The crowding distance
of individuals under the same dominance rank was sorted and calculated according
to the magnitude of the optimized indexes, where the crowding distance of two
boundary solutions is infinity and the crowding distance of the ith individual can be
defined as the sum of its distances to individual i − 1 and individual i + 1 on each
axis component, which is half of the perimeter of the rectangle in Figure 5.
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(3) Selection, crossover and mutation. The parent that is suitable for reproduction is
selected from the original population to form the elite population. Each selection is a
competition between two randomly selected individuals from the original population
to compare their non-dominance rank, and the individual with smaller rank will
be selected for the elite population. If the non-dominance rank of two individuals
is the same, the individual with the larger crowding is selected to enter the elite
population to ensure the diversity of the population. Since there were 28 individuals
in the initial population, an elite population containing 14 individuals was obtained
after the selection process. After that, a suitable cross-variance operator was selected
to cross-variance this population to obtain the offspring population, and the final
offspring were 14–28 because the probability of cross-variance was different.

(4) Merging parent and child generations to generate a new population. The parent–
child population was merged into a new population, and the elite retention strategy
was used to calculate the new population’s non-dominated sorting and crowding
distance. Afterwards, a new population containing 28 individuals was selected to
participate in the subsequent evolution based on the sorting and crowding distance.
The subsequent step was to repeat the process of (3)–(4) until the number of iterations
was satisfied to obtain the Pareto optimal solution set. The above process of NSGA-II
can be represented as Figure 6, where Gen indicates the number of generations of
genetic evolution.

Table 2. Selected line length and line width.

wire length (mm) 3.15 3.35 3.55 3.75 - - -

wire width (mm) 1.4 1.5 1.6 1.7 1.8 1.9 2.0
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3.2. Implementation of TOPSIS Method

The NSGA-II algorithm produces an optimal solution set. In order to obtain the
optimal solution from it, the TOPSIS method [28] was used. The basic principle of TOPSIS
is to rank the evaluation objects by detecting the distance between the ideal solution and
the negative ideal solution. If the evaluation object is closest to the ideal solution and far
from the negative ideal solution, the object is the best design solution, and vice versa.

In order to obtain the optimal individual in the optimal solution set obtained by the
NSGA-II algorithm, the samples to be evaluated and their evaluation indexes are collected
at first. If there are m evaluation samples and n evaluation indexes, the original matrix as
in (4) can be formed.

X =

 x11 . . . x1n
...

. . .
...

xm1 · · · xmn

 (4)

The collected data are normalized for the indicators. Specifically for this paper, the
two evaluation indicators of cost and loss are normalized according to Equation (5):

xij = max
1≤i≤m

{
xij
}
− xij (5)

where xij is the jth evaluation index of the ith evaluation object.
In order to eliminate the influence of different indicators, we need to use the method

of vector normalization to obtain the normative decision matrix, as shown in Equation (6),
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where zij is the jth evaluation index of the ith evaluation object after normalization, and Z
is the normative decision matrix.

zij =
xij√
n
∑

i=1
x2

ij

(6)

Z =

 z11 . . . z1n
...

. . .
...

zm1 · · · zmn

 (7)

Based on Equations (8) and (9), the ideal solution Z+ and the negative ideal solution
Z− of each index can be found.

Z+ = (max{z11, · · · , zm1}, · · · , max{z1n, · · · , zmn}) (8)

Z− = (min{z11, · · · , zm1}, · · · , min{z1n, · · · , zmn}) (9)

The distance between the ith evaluation object and the ideal/negative ideal solution,
are defined as follows, respectively:

D+
i =

√√√√ n

∑
j=1

(Z+
j − zij)

2 (10)

D−i =

√√√√ n

∑
j=1

(Z−j − zij)
2 (11)

where D+
i is the distance between the ith evaluation object and the ideal solution, D−i is

the distance between the ith evaluation object and the negative ideal solution, Z+
j is the

ideal solution of the jth evaluation index, and Z−j is the negative ideal solution of the jth
evaluation index.

The score of the evaluation object is finally determined with Equation (12). Obviously,
0 ≤ Ci ≤ 1. The default n evaluation indicators of the formula have the same weight, but
different designers may place different weight on loss or cost. One can use an analytic
hierarchy process to give weights to these n evaluation indicators according to Equation (13).
The analytic hierarchy process needs weight information as input, which is normally carried
out by subjective assignment and can be biased. The entropy weight method instead can
be used to obtain objective values through the dispersion degree of loss and cost.

Ci =
D−i

D+
i + D−i

(12)

n

∑
j=1

wj = 1 (13)

3.3. Implementation of the Entropy Method

Entropy is a measure of the degree of disorder of the system [29]. Thus, for a certain
index (such as cost and loss in this paper), the entropy value can be used to determine its
dispersion degree. The smaller its entropy value, the greater the dispersion degree of the
index and the greater the influence of the index on the design evaluation (i.e., the weight).
The entropy method effectively avoids the interference of subjective factors and makes the
weight determination of evaluation indicators more objective [30,31]. In this paper, TOPSIS
combined with the entropy weighting method was used to obtain the weights.
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(1) First, the weight of the jth index value of the ith sample was calculated and the weight
matrix P was built.

pij =
xij

m
∑

i=1
xij

(14)

P =

 p11 . . . p1n
...

. . .
...

pm1 · · · pmn

 (15)

(2) Calculate the entropy ej of the jth index according to Equation (16). A larger value
means less variation. The redundancy value dj of the jth index is obtained referring
to Equation (17), and finally the entropy weight wj of each index is obtained by
normalizing it based on Equation (18). Obviously, the entropy weight sum of all
indicators is 1.

ej = −
1

ln m

m

∑
i=1

pij ln pij ej ∈ [0, 1] (16)

dj = 1− ej (17)

wj =
dj

n
∑

j=1
dj

(18)

Based on the entropy weighting wj, the weighting matrix zij* and the weighting matrix
are constructed as shown in Equations (19) and (20).

z∗ij = zij · wj (19)

Z∗ =

 z11 · w1 . . . z1n · wn
...

. . .
...

zm1 · w1 · · · zmn · wn

 (20)

4. Algorithm Implementation

In this paper, the finite element model of a three-phase iron core reactor was estab-
lished by Comsol software(Manufacturer: COMSOL, city: Stockholm, country: Sweden).
The NSGA-II algorithm, TOPSIS method and entropy weight method were implemented
in Matlab(Manufacturer: MathWorks, city: Massachusetts, country: USA). The joint simula-
tion derives the cost and loss of the reactor with different wire sizes from the finite element
model. The optimized wire size was selected by integrating NSGA-II, TOPSIS and the
entropy weight method, which can significantly save human operation time and avoid
subjective design preference.

In this example, 28 individuals were selected, and the convergence of NSGA-II al-
gorithm was achieved by iteration. Figure 7 shows the loss and cost distribution of the
initial population. The 28 initial individuals were dispersed with multiple domination rela-
tionships. Figure 8 shows the same result for the fifth generation. It can be seen that after
the algorithm iteration is completed, there is no domination relationship between all indi-
viduals, which indicates the dominated individuals are removed and the remaining ones
constitute the Pareto optimal solution set. When the number of evolutionary generations
exceeds 5, the offspring have all been located in the Pareto dominance frontier. Therefore,
the Pareto frontier curve at the 5th generation was selected as the optimal solution set in
this study [32].
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Table 3 shows the final iterative results. The loss was given by copper loss and iron
loss, respectively. The sum of both is the total loss. The price of iron core material was
taken as CNY 16/kg, and the price of copper conductor material was taken as CNY 55/kg.
The maximum loss was 1.5954 kW (Pmax) and the minimum value was 1.0786 kW (Pmin).
Based on Equation (21), the difference of loss ∆P was calculated and the result was 32.39%.
Similarly, the variation of cost can be calculated to be 29.62%.

∆P =
Pmax − Pmin

Pmax
(21)

Using the TOPSIS method to assign different weights to the two indexes, the results in
Figure 9 were obtained. It can be seen that with the increase of cost weight, cost decreases
while loss increases. The trend validates the TOPSIS method applied to the wire selection.
The TOPSIS method integrated with the entropy weight method provides a scientific way
to obtain the weight of the indicators, avoiding the subjectivity of random selection. Based
on Equations (16)–(18), the cost weight of 0.5051 and loss weight of 0.4949 were obtained,
which provides an objective basis for the selection of wire size. The corresponding result is
also shown in Figure 9, with the detailed values in Appendix B. The loss and cost results
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obtained by the TOPSIS–entropy weight method are shown in the 7th row of Appendix B.
Compared with the other design results, this solution balances the cost and loss. It is
located near the crossing point of the loss and cost curve in Figure 9, which represents
the optimal design solution. Following the calculation in Equation (21), the final design
reduced loss up to 19.45% and cost up to 17.85%, respectively.

Table 3. NSGA-II algorithm combined with finite element model simulation results.

Wire
Length
(mm)

Wire
Width
(mm)

Copper
Loss
(kW)

Iron Core
Loss
(kW)

Total Loss
(kW)

Core
Quality

(kg)

Copper
Quality

(kg)

Cost
(CNY 10,000)

Overcrowding
Distance

3.8070 1.9994 0.8030 0.2756 1.0786 716.97 348.20 3.0622 Inf
3.1459 1.3873 1.3586 0.2368 1.5954 673.86 195.81 2.1551 Inf
3.1503 1.4846 1.2739 0.2369 1.5108 674.23 210.05 2.2340 0.2298
3.4231 2.0134 0.8867 0.2530 1.1397 691.95 315.48 2.8422 0.1878
3.3500 2.0000 0.9114 0.2487 1.1601 687.23 306.40 2.7848 0.1721
3.1599 1.4258 1.3186 0.2375 1.5561 674.71 202.17 2.1915 0.1690
3.1377 1.6171 1.1816 0.2365 1.4181 673.44 228.94 2.3367 0.1674
3.6784 1.9838 0.8368 0.2678 1.1045 708.45 333.57 2.9681 0.1575
3.7500 2.0000 0.8149 0.2720 1.0869 713.13 343.08 3.0279 0.1539
3.1632 1.9212 1.0008 0.2388 1.2396 675.07 277.14 2.6044 0.1521
3.5645 2.0024 0.8560 0.2614 1.1175 701.13 326.46 2.9173 0.1493
3.1500 2.0000 0.9689 0.2375 1.2064 674.15 288.21 2.6638 0.1479
3.0589 1.7147 1.1482 0.2321 1.3803 668.22 237.37 2.3747 0.1444
3.1713 2.0382 0.9461 0.2390 1.1851 675.51 296.13 2.7095 0.1412
3.1351 1.8900 1.0250 0.2366 1.2616 673.18 269.75 2.5607 0.1311
3.1500 1.7944 1.0697 0.2374 1.3071 674.17 256.42 2.4890 0.1309
3.1447 1.5271 1.2431 0.2366 1.4796 673.80 215.95 2.2658 0.1100
3.1449 1.5331 1.2385 0.2366 1.4751 673.75 216.92 2.2711 0.1054
3.1492 1.7106 1.1179 0.2370 1.3549 674.11 243.76 2.4193 0.1034
3.3877 2.0000 0.9013 0.2509 1.1523 689.60 309.94 2.8080 0.1029
3.3308 1.4819 1.2073 0.2466 1.4539 685.97 221.57 2.3162 0.0995
3.1412 1.7553 1.0945 0.2372 1.3317 673.57 249.87 2.4520 0.0947
3.1487 1.9188 1.0066 0.2375 1.2441 673.97 275.19 2.5919 0.0908
3.1347 1.8575 1.0414 0.2368 1.2783 673.11 264.74 2.5330 0.0901
3.1506 1.4171 1.3301 0.2369 1.5670 674.14 200.14 2.1794 0.0833
3.5416 2.0276 0.8518 0.2597 1.1115 699.65 328.85 2.9281 0.0811
3.0693 1.8805 1.0516 0.2335 1.2851 668.95 262.75 2.5155 0.0769
3.1494 1.6784 1.1376 0.2374 1.3750 674.14 238.81 2.3921 0.0733

Energies 2022, 15, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 9. The cost and loss with/without integrating entropy weight method. 

5. Experiment Validation 
The optimization result gave the desired wire dimension as 3.07 mm × 1.88 mm, 

which is not a standard wire size. Thus, the closest size of 3.15 mm × 2 mm was selected. 
The trial reactor was made with this wire, and the loss test was conducted. The principle 
is shown in Figure 10a and the measurement is shown in Figure 10b. The test result was 
1.25 kW, with an error of less than 5% compared to the calculated value, which verified 
the accuracy of the simulation calculation. The cost was also calculated, showing that the 
maximum cost saving of this design solution was about CNY 4000 compared to other wire 
options. 

  
(a) (b) 

Figure 10. (a) The principle of loss test. (b) Loss measurement for the trial reactor. 

6. Conclusions 
In this paper, an optimal design approach for a dry iron-core reactor was proposed 

to balance its loss and cost. To implement the method, a three-dimensional FEM was con-
structed with the detailed geometry of the reactor. Joint Matlab-FEM calculation was uti-
lized to obtain the magnetic field distribution and the reactor loss with arbitrary wire di-
mensions. The calculated result matches the tested value with less than 5% error. Addi-
tionally, the cost can be easily derived with the materials’ information. 

Based on the three-dimensional model, the influence of wire size on a three-phase 
dry iron core reactor’s cost and loss was analyzed. To achieve an optimal design, cost and 
loss were used as the objective functions to perform the multi-objective optimization. The 

Figure 9. The cost and loss with/without integrating entropy weight method.



Energies 2022, 15, 7344 12 of 15

5. Experiment Validation

The optimization result gave the desired wire dimension as 3.07 mm × 1.88 mm,
which is not a standard wire size. Thus, the closest size of 3.15 mm × 2 mm was selected.
The trial reactor was made with this wire, and the loss test was conducted. The principle
is shown in Figure 10a and the measurement is shown in Figure 10b. The test result was
1.25 kW, with an error of less than 5% compared to the calculated value, which verified
the accuracy of the simulation calculation. The cost was also calculated, showing that
the maximum cost saving of this design solution was about CNY 4000 compared to other
wire options.
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6. Conclusions

In this paper, an optimal design approach for a dry iron-core reactor was proposed
to balance its loss and cost. To implement the method, a three-dimensional FEM was
constructed with the detailed geometry of the reactor. Joint Matlab-FEM calculation was
utilized to obtain the magnetic field distribution and the reactor loss with arbitrary wire
dimensions. The calculated result matches the tested value with less than 5% error. Addi-
tionally, the cost can be easily derived with the materials’ information.

Based on the three-dimensional model, the influence of wire size on a three-phase
dry iron core reactor’s cost and loss was analyzed. To achieve an optimal design, cost and
loss were used as the objective functions to perform the multi-objective optimization. The
approach of integrating NSGA-II, TOPSIS and the entropy weight method is proposed for
the design of the reactor. This novel approach can not only optimize the two parameters
simultaneously, but also avoid the randomness of personal choice, which offers better
quality guarantee for manufacture. The method was validated via a 10 kV reactor design.
The trial product validates the method by comparing the loss and cost. The results show
that the cost and loss of the reactor can be reduced by 17.85% and 19.45%, respectively.

This method can also be used for the design of other types of reactors and other
electrical equipment, such as transformers. More constraints or objectives can be integrated
into the algorithm for future research work, for example the size/weight of the product
and the percentage of environmentally friendly materials that are used.
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Appendix B

Table A1. The detailed values in Figure 9.

Loss Weight Cost Weight Wire Length
(mm)

Wire Width
(mm)

Total Loss
(kW)

Cost
(CNY 10,000)

1 0 3.8070 1.9994 1.0786 3.0622
0.9 0.1 3.5416 2.0276 1.1115 2.9281
0.8 0.2 3.3500 2.0000 1.1601 2.7848
0.7 0.3 3.1713 2.0382 1.1851 2.7095
0.6 0.4 3.1500 2.0000 1.2064 2.6638
0.5 0.5 3.0693 1.8805 1.2851 2.5155

0.4949 0.5051 3.0693 1.8805 1.2851 2.5155
0.4 0.6 3.0589 1.7147 1.3803 2.3747
0.3 0.7 3.0589 1.7147 1.3803 2.3747
0.2 0.8 3.1447 1.5271 1.4796 2.2658
0.1 0.9 3.1503 1.4846 1.5108 2.2340
0 1 3.1459 1.3873 1.5954 2.1551
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