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Abstract: The adjoint method is a very promising gradient-based optimisation framework for com-
putational fluid dynamics (CFD), because of its independence of the computation cost from the
number of design variables. With the aim of improving the robustness of the continuous adjoint
topology optimization, this paper presents a direct method for the design variable update. Based
on the intrinsic feature of the topology optimization, this straightforward update method explicitly
controls the design variable target volume, precluding any case-dependent parameters. The details of
its implementation are discussed with regard to an existing open-source continuous adjoint topology
optimization solver. The performance of this alternative method is tested on complex 3D engineering
problems with duct configuration, and no impact on the computational demands or numerical
stability has been observed in the simulations.

Keywords: CFD; computational fluid dynamics; gradient optimization; OpenFoam

1. Introduction

The numerical optimization methods for computational fluid dynamics (CFD) find
their use in various branches of engineering, because they can contribute to the improve-
ment of a fluid flow system performance through relatively easy design interventions.
With the focus on the numerical stability of the optimization simulations, the present
work is restricted to the gradient-based topology optimization for steady-state isothermal
incompressible flows of a Newtonian fluid. The case under consideration is an example of
a constrained optimization problem, in which the constraints are given by a set of partial
differential equations that govern the fluid flow (e.g., the velocity and pressure equations in
the case of a laminar flow). Unlike in the classical gradient-based optimization approaches,
in which the computational cost scales linearly with the number of design variables, the ad-
joint optimization method has highly desirable feature that its computational cost does not
depend directly on the size of the design variable space [1]. For the continuous adjoint opti-
mization framework, the set of adjoint equations is derived from their primal counterparts,
with the aim of providing the objective function sensitivity independent of the derivatives
of the flow variables w.r.t. the design variable. With this obtained sensitivity, the design
variable is updated toward the minimization of the specified objective function. Hence,
the optimization computation cost is related to the effort of solving the augmented set of
equations, and not directly dependent on the design variable space size [2]. The price to be
paid for this beneficial method property is the increased model complexity, which is then
mirrored in the numerical stability.

The advantages of the adjoint-based optimisation in the computational engineering
have long been recognised (most notably in structural mechanics), with the majority of the
early work performed focusing on the needs of the aeronautical industry [3]. The uptake of
the CFD adjoint optimization came with the improvements in the numerical modelling,
when the adjoint optimization method was extended to capture more complex physical
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phenomena, ranging from the turbulence modelling [4] to the conjugate heat transfer [5].
As a part of these developments, the complexity of the method was tackled through a
careful implementation of the grid sensitivity [6], turbulence modeling near-wall treat-
ment [7], or fluid–solid interface [8], just to name a few aspects. At present, the adjoint
method is successfully used for the shape optimization, in which the surface sensitivities
are used to calculate the modification of the boundaries of the investigated body. This is
shown, among other areas, in the aerodynamic applications [9], and in particular for the
car aerodynamics [10]. Another way to make use of the adjoint method is the topology
optimization, in which the volume sensitivities are used to distinguish between the impor-
tant and counterproductive areas within the numerical domain, whereas boundaries of the
investigated body remain unchanged. This approach is presented, e.g., for the intake port
optimization [11], or the exhaust system case [12].

In CFD topology optimization, the design variable is the penalty function, for which
all cells within the domain are examined individually; if a cell does not contribute to
the minimization of the specified objective function, it is penalized by introducing the
Darcy porosity (hence, the flow is blocked in that cell), and the procedure of the design
variable update continues until the optimization criterion is met [13]. A very simple
update approach, yet very illustrative of the gradient-based optimization is the steepest
gradient descent. In this approach, the design variable is updated by a portion of the
calculated sensitivity, iterating through a number of updated steps [14]. The problem arises
with defining the step size, because the sensitivity can take arbitrary values (depending
on the flow characteristics, it can vary by several orders of magnitude). If the selected
gradient descent step size is either too small or too big, the optimization process can be
prohibitively long or fail in the objective function minimisation. Available in the literature
are better-designed and more advanced update methods that do not suffer from these
problems, such as the quasi-Newton method or method of moving asymptotes [15], but
they all follow the same basic idea (thus inheriting related problems) which is that a suitable
value of the design variable is sought. Instead, the explicit scheme for the design variable
update proposed here makes use of the basic idea in the topology optimization that the
counterproductive cells within the domain are either to be blocked or left free (based
on the calculated sensitivity); hence, the design variable value is adjusted between zero
and unity. The aim is in this way to derive the scheme which will ensure numerically
robust optimization simulations, while satisfying directly the volume constraint without
additional computational overload.

As the developments presented in this paper are making use of the work already to be
found in the literature, Section 2 summarises the theoretical background in a condensed
manner. The novel aspect in this paper is to present the explicit updating idea and its
implementation, and this is given in Section 3. Finally, the performance of this novel
method is shown in Section 4 for a complex engineering fluid flow problem with duct
configuration, and the concluding remarks are given in Section 5.

2. Theoretical Background

The topology optimization for a fluid flow problem can be formulated as the mini-
mization of the selected objective function J, subject to the fluid flow constraints. For the
steady-state case of incompressible isothermal turbulent flow of Newtonian fluid, these con-
straints represent the governing equations, Navier–Stokes (with Darcy term) and continuity,
written in the residual form

Rv = (v · ∇)v +∇p−∇ · (2νe f f D(v)) + αdαv = 0,

Rp = −∇ · v = 0, (1)

where v and p are the primal velocity vector and primal kinematic pressure, respectively,
νe f f = ν + νt is the effective kinematic viscosity comprising the laminar and turbulent
part (obtained from the appropriate turbulence model, which is additionally to be solved),
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and D(v) = 1
2 (∇v + (∇v)T) is the primal rate of strain tensor. The above set of equations

is complemented by the corresponding boundary conditions—at the inlet Dirichlet for
velocity and Neumann for pressure, at the outlet Dirichlet for pressure (typically zero) and
Neumann for velocity, and no slip at wall surfaces (Figure 1a).

(a) (b)

Figure 1. Topology optimization setup: available design space for a duct flow configuration (a) and
the topology optimization outcome (b), with respective boundary conditions.

The central element of topology optimization is the Darcy porosity term in the momen-
tum equation, through which the design variable α is introduced and scaled with the Darcy
porosity coefficient dα. The role of α is to mark those cells that need to be penalized (indi-
cated with shadow in Figure 1b), based on whether or not an individual cell contributes to
minimizing the objective function. The value for the porosity coefficient can be calculated
from the Darcy number estimation [16]

Da =
ν

dα`2 = 10−5, (2)

where Da quantifies the ratio between the viscous and porous forces, ν is the kinematic
viscosity, and ` is the characteristic length (e.g., the inlet hydraulic diameter).

The work presented in this paper has been performed using adjointShapeOptimization-
Foam, the continuous adjoint topology optimization solver (despite what the name suggests)
provided in the open-source CFD suite OpenFOAM® version 1906 [17,18]. Acknowledging
its limitations and restrictions, this solver has been selected for its accessible structure
which allows for a transparent implementation of the presented method. The solver is
developed from the simpleFoam (standard steady-state solver for incompressible isothermal
turbulent flow of Newtonian fluids) by deploying the frozen turbulence assumption in
the adjoint equations, adopting the duct flow configuration (the boundaries comprising
the inlet, outlet, and wall surfaces Γ = Γinlet ∪ Γoutlet ∪ Γwalls, according to the sketch in
Figure 1a), and taking the total pressure loss between the inlet and outlet as the objective
function to be minimized:

J = JΩ + JΓ = −
∫

Γinlet+Γoutlet

dΓ(p + v2/2)v · n, (3)

where v is the velocity magnitude (at inlet and outlet, respectively), and it is assumed that
no contribution to the objective function from the domain interior Ω is present (JΩ = 0).

This constraint flow optimization problem can be solved by looking at the augmented
objective function L = J +

∫
Ω Rxi yidΩ, in which the Lagrange multipliers yi are introduced

adjoint to their respective primal flow governing equations Rxi . The aim is to construct
these adjoints such that the objective function gradient dependency on the derivatives of
the flow variables w.r.t. the design variables is canceled. After an extensive mathematical
manipulation, the final set of adjoint equations is obtained as
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Ru = −(v · ∇)u−∇u · v +∇q−∇ · (2νe f f D(u)) + αdαu = 0,

Rq = ∇ · u = 0, (4)

where u is the adjoint velocity vector, q is the adjoint pressure, and D(u) is the adjoint rate
of strain tensor. Taking the total pressure loss as the objective function to be minimized for
the duct flow configuration, as defined by Equation (3), the adjoint boundary conditions
are defined for different boundary sections

inlet and walls: outlet:

ut = 0, q = u · v + unvn + νe f f (n · ∇)un − (p + v2/2)− v2
n,

un =

{
0 wall,
−vn inlet,

0 = vn(ut − vt) + νe f f (n · ∇)ut, (5)

where the vectors are decomposed into their normal and tangential components (with
respect to the boundary surface normal unit vector n and its perpendicular tangential unit
vector t ⊥ n), the primal velocity v = vtt + vnn and the adjoint velocity u = utt + unn,
the zero-gradient boundary condition is imposed for the adjoint pressure at the inlet and
walls (analogous to its primal counterpart), and the normal component of the adjoint
velocity at the outlet is obtained from the continuity requirement (Figure 1b).

Although the form of the adjoint equations corresponds to that of the primal equations
(including the Darcy term in the adjoint velocity equation, which accommodates the design
variable), one needs to note two main differences between the equation sets (1) and (4):
in the adjoint velocity equation the convection term has a negative sign (therefore, in
Figure 1 the vectors for (a) and (b) have opposite signs), and there is an additional transpose
convection term which is not conservative and thus can cause numerical problems.

A more elaborate explanation of the continuous adjoint topology optimization method,
as well as the full derivation of the adjoint equations and related boundary conditions can
be found elsewhere [19,20]. In the present section, however, the complete set of equations is
given just to describe the optimization workflow. Namely, in order to minimize the objective
function, Equation (3), one needs to solve the equation sets (1) and (4), complemented by
appropriate boundary conditions (standard set for the primal equations, and the equation
set (5) for the adjoint equations). Having solved the presented set of equations, the topology
sensitivity is obtained from the calculated primal and adjoint fields:

∂L
∂α

= sens = u · v, (6)

and the design variable α is updated by using the calculated sensitivity, e.g., through the
steepest descent method:

αnew = αold(1− γ) +
[
min(max(αold − λsens, 0), 1)

]
γ, (7)

where λ is the gradient descent step, incorporating the porosity coefficient from Equation (2).
To improve the stability of the design variable update, the under-relaxation factor γ can be
applied, and the bounding within the physical limits needs to be imposed.

An exemplary idea behind the gradient-based optimisation is illustrated in Figure 2,
where the gradient of the objective function from Equation (6) drives the update of the
design variable from the initial value α0 to the optimal one α1. This process goes through a
number of steps with size λ, and if λ is too big, the update can jump to the opposite branch
of the design variable curve (in Figure 2 indicated with gray dotted curves).
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Figure 2. General principle of the design variable update based on steepest gradient descent method.

3. Explicit Volume Constraint Update

The centrepiece of the continuous adjoint optimization is to advance the design vari-
ables update based on the calculated sensitivity. It is very often required in the topology
optimization that the percentage of the computational domain occupied by α be limited
(e.g., due to the geometrical limitations, structural requirements, or economical considera-
tions). This volume constraint can be implemented into the design variable update through
the method of moving asymptotes [21].

In the alternative approach, however, one starts from the intrinsic feature of the
topology optimization that α takes the value of unity if the calculated sensitivity indicates
that the cell is counterproductive for minimising the selected objective function. Under this
condition, the considered cell is to be blocked (the porosity is introduced); otherwise, the cell
is left free (α takes the zero value). Mathematically, this behavior can be described with the
sigmoid function, which changes from 0 to 1 as the independent variable x switches sides of
appropriately selected limiting value xL: α = 1− 1/[exp(C1(x− xL) + C2) + 1]. Here, the
coefficient C1 defines the slope and C2 positions the inflection point of the sigmoid function
around the limiting value xL. In the present case, the independent variable represents the
sensitivity, which can take any value depending on the flow conditions, Equation (6). One
can introduce the coefficient modification C2 = C1(xL − C0), and through a conveniently
selected C0 value, position the sigmoid function around the desired value for any xL:

α = 1− 1
eC1(x−C0) + 1

, (8)

where the graphical representation in Figure 3 illustrates how the slope and inflection
point are guided with C1 and C0, respectively.

Figure 3. Sigmoid function with varying coefficients, C0 for the inflection point shift (full, dash,
dash–dot) and C1 for modifying the slope (red, green, blue), and step function (black).
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With the notion that the coefficient selection can control the mapping between the
calculated sensitivity and the design variable distribution, it is left to define the framework
for calculating the needed coefficients. As C1 is increased, the range of x for which the
resulting α will be between 0 and 1 gets smaller. This grey zone is unwanted in the topology
optimization, because the cell is either to be blocked or left free. By letting C1 grow suitably
high, Equation (8) tends towards the step function (as indicated in Figure 3 with the color
sequence red–green–blue–black), which eliminates the grey zone. On the other hand, taking
the high C1 limit into the introduced coefficient modification yields C0 to tend toward xL.
Within OpenFOAM® the step function is available as pos(s), which evaluates to 1 if the
scalar expression s yields a non-negative value, or 0 otherwise [17]. Finally, by suitably
selecting the coefficients of the sigmoid function, it can be turned into the step function
pos(s) = pos(x − xL) to mark for blocking the part of the domain where the calculated
sensitivity is greater than the limiting sensitivity value.

It is drawn in Figure 4 how the limiting sensitivity value can be sought, such that the
volume constraint (i.e., the blocking cells’ volume does not exceed the pre-defined target
value) is satisfied explicitly. Given that the calculated sensitivities can span several orders
of magnitude, the procedure consists of nloops steps through the logarithmic scale. It starts
by setting the sensitivity threshold at the highest obtained sensitivity value sensmax (in
order to start with the smallest portion of the domain marked for blocking), subsequently
reducing it toward the lowest sensitivity value sensmin (at which the entire domain with
positive sensitivity is marked for blocking). This threshold reduction is performed with
the step size that covers equally all range decades, and at every step the obtained blocking
volume is recalculated in order to stop the process when the target volume is reached:

xL = range
[
log(sensmax), log(sensmin), nloops

]
,

sensL = 10xL ,

α = pos(sens− sensL),

vol =
∫

Ω
αdV ≤ votT , (9)

where sensL is the limiting sensitivity, as calculated with nloops steps, for which the target
volume of the blocking cells volT is reached.

Figure 4. Schematic representation of the design variable update with explicit volume constraint.

The implementation of the explicit design variable update into an existing contin-
uous adjoint optimization solver boils down to introducing the procedure summarized
in Equation (9) instead of the existing design variable update (e.g., Equation (7) for the
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steepest gradient descent expression). In further work, the step function pos(s) replaced the
continuous distribution defined by Equation (8). The search for sensL is further simplified if
the calculated sensitivity field is normalised with the maximum obtained value sensmax, so
that the loop is performed over the decades (100, 10−1, 10−2, . . . , 10−m in Figure 4). Empiri-
cally, one can set the maximum number of search decades m (estimating that the blocking
cells are found within m orders of magnitude of sensmax) and select the number of divi-
sions per decade p (assuming that each decade is split in p-th), to estimate the number of
search steps nloops = mp. To complete the flowchart of the continuous adjoint topology
optimisation with the design variable update fulfilling explicitly the volume constraint, it
is indicated in Figure 5 that with the design variable update completed, the design cycles
can be repeated for ncycles times, in order to adjust to the latest distribution of α.

Figure 5. Flowchart of the topology optimization cycles using continuous adjoint method, with ex-
plicit design variable update.

4. Topology Optimization Results

The presented topology optimization framework is applied to a 3D flow distribution
duct (Figure 6), in which the air flow is entering below through a central pipe (inlet diameter
din = 4 cm) and needs to be brought above on two sides to leave through the slits (opening
thickness tout = 5 mm) incurring the lowest possible total pressure loss (Equation (3)).
The related geometry, with the overall dimensions 20 × 20 × 20 cm, is shown in Figure 6a.
Colored in green is the inlet with vin = 8 m/s fixed inlet velocity. The outlet is colored violet,
and the walls are cyan. From the steady-state solution of non-optimized case, shown in
Figure 6b, the characteristic flow pattern can be inquired (from the streamlines and velocity
vectors and contourplots). The jet flow is entering from the pipe and hitting the opposite
wall of the housing; subsequently, it splits and bends in the horizontal plane, creating an
adjacent recirculation zone. Further downstream, it bends in the vertical plane and leaves
through the upper slits.
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(a) (b)

Figure 6. The 3D flow distribution duct: geometry and boundary conditions (a), streamlines and
contour plots revealing flow features (b).

In these simulations, the effects of turbulence were modelled by using the k − ε
model [22]. The porosity coefficient in this case was defined by using Equation (2), and the
number of search loops in Equation (9) was set to nloops = 12. In order to scrutinize the
optimization requirement to limit the volume occupied by the cells marked for blocking,
the simulations with varying volT were performed. Starting with volT = 10% as the
expected relative target volume, the regions that contribute the most to the minimization
of the total pressure loss are marked for blocking (Figure 7a) immediately after the pipe
enters the duct, as well as the the corners between the horizontal and vertical duct section.
When this parameter is increased to volT = 20%, these dead regions are highlighted more
(Figure 7b), and extended to the recirculation zone in the horizontal duct section. Increasing
this parameter even further volT = 30%, the blocking region forges ahead into the vertical
duct section (Figure 7c). The solution obtained as the topology optimization outcome can
be understood as the channeling of the jet flow coming from the inlet pipe, bending it
sideways at the back wall of the duct, and finally after bending upward, streamlining the
expansion of the flow from the back wall toward the outlet slits.

Looking at the variation of the objective function (relative to the initial objective
function value, calculated from the converged solution of non-optimized case) throughout
the design cycles ncycles, Figure 8 shows that most of the objective function reduction is
reached within the first three design cycles, and after the fourth cycle, further reduction
becomes negligible. On the other hand, by increasing the limit for the allowed occupied
volume (relative to the total volume of the domain), better streamlining of the flow can
be achieved, which is reflected in stronger reduction of the objective function (in Figure 8
the values from the last design cycle). With votT = 10% (Figure 7a), the flow is penalized
mostly in the duct corners, which brings 3.5% reduction of J. For votT = 20% (Figure 7b),
the jet flow is also channeled through the central duct section, and J is reduced by 5.5%.
A smooth transition further into the vertical duct section is featured with votT = 30%
(Figure 7c), which yields 6% improvement of J. It needs to be noted, however, that the rate
at which the objective function is reduced becomes lower as votT moves to higher values,
which is a clear indication that votT is not to be arbitrarily varied.
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(a)

(b)

(c)

Figure 7. Flow pattern (streamlines) and α distribution (left–back view, middle–front view) and
sensitivity (right) for 3D flow distribution duct optimization with votT = 10% (a), 20% (b), 30% (c).

Figure 8. Reduction of the objective function (relative to the non-optimized case) at different design
optimization cycles.
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For comparison of the performance, the same topology optimization was repeated
by using the steepest gradient descent method (Equation (7)), and the distribution of α
obtained with a different gradient descent step after a fixed number of simulation steps is
summarized in Figure 9. The design variable update will progress slowly if λ is too low
(Figure 9a), which is seen by a large portion of the design variable taking intermediate
values (green). The method can become unstable if the gradient descent step is too high
(Figure 9c), which is reflected in a wrinkled α distribution. The foretaste of this extreme
behaviour can be recovered from Figure 2: the walk toward the optimal α value either
takes too many steps, or it jumps from one side of the curve to the opposite side. Therefore,
the goal is to appropriately select λ in order to obtain plausible results (Figure 9b), but it is
difficult to estimate in advance the appropriate value of the gradient descent step, because
it depends on the flow conditions (case-dependence).

(a) (b) (c)

Figure 9. Distribution of the Darcy porosity αdα (back view) with steepest descent method for varying
step size λ: too small (a), appropriate (b), too big (c).

The flexibility of the proposed explicit design variable update illustrates the example
of the topology optimization of 3D fluid flow connector (in Figure 10 enclosed in white
rectangle) which makes part of a pin-plate cooler. The coolant is delivered to the cooler
body through the circular pipe (green in Figure 10a) and rectangular inclined passage in
the cooler housing (grey in Figure 10a), comprising the inlet connector. Flowing through
the pin-plate channels (red in Figure 10b), the coolant escapes at the opposite end of the
cooler body through the similar construction of the rectangular passage and circular pipe
(blue in Figure 10a), comprising the outlet connector.

In this complex geometry case, the fluid flow features several flow effects: streamline
curvature, impingement, and flow separation (Figure 10b). Assuming that the same
objective function was considered in this case as in the previous one (the minimization of
the total pressure loss), the distribution of the blocking cells will follow the same principle
as observed there (Figure 7). This is revealed in Figure 10d, where the flow is penalized
around the stagnation point at the bottom of the pipe section (the region of increased
pressure) and in the lower corners of the passage (separation due to the inclined incoming
flow stream), as well as around the pins within the cooler body (flow detachment and wake
behind the pins).

However, what Figure 10c demonstrates is that the design variable update is restricted
only to the zones that are specifically selected—the flow connectors. Namely, in this flow
case one can identify three domain segments, according to their function: inlet and outlet
connectors (white encircled in Figure 10) and the pin-plate cooler body (dominated by
the pin-plate). By virtue of the fluid flow-governing equations, these segments influence
each other; therefore, analyzing them independently would not be fully correct in the
physical sense. Carrying out the optimization throughout the entire domain, however,
might not be fully justified from the engineering point of view; one would probably want
to perform the shape optimization of the pin geometry (e.g., considering them as the
bundle of tubes), while the inlet and outlet connectors are good candidates for the topology
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optimization. Formulating the design variable update as an explicit manipulation of the
calculated sensitivity field, enables the optimization to be performed where it is needed,
while keeping in consideration the totality of the flow.

(a) (b)

(c) (d)

Figure 10. Pin-plate cooler geometry (a) and flow features (b) with flow connector encircled white,
and the topology optimization of flow connector ((c) total view, (d) zoom view).

5. Conclusions and Discussion

Following the aim of this paper, the presented technique for updating the design
variable in the topology optimization based on the continuous adjoint method offers a
robust and simple control over the update process. It originates from the intrinsic feature
of the topology optimization: to block only those cells within the available design space
whose sensitivity indicates that they do not contribute to the minimization of the objective
function. When compared to the traditional approaches, deploying this scheme obviates
the need for the case-specific parameters, the numerical instabilities are suppressed, and the
explicit control of the target volume of the blocking cells is ensured.

Another positive aspect is that the implementation of the presented design variable
updating technique is straightforward and easy. Starting from the existing continuous
adjoint optimization solver, adjointShapeOptimizationFoam, only a few lines of code are
needed to replace the default update method with the procedure summarized in the
equation set (9), which defines the limiting sensitivity that will satisfy the target volume
condition for the blocking cells. As no separate calculations are needed or new variables
stored, no additional overload on the computational resources are inflicted.

The parameter in this method that controls the volume constraint (target volume of
the cells to be blocked through the explicit design variable update) has a clear physical
representation, and its value can be suitably selected based on engineering considerations
(volT between 0 and 1, expressed relative to the total volume of the domain). Furthermore,
the target volume search is implemented through the logarithmic scale, which enables an
efficient sweep through all decades of the sensitivity range. As a rule of thumb, it can be
estimated that the search for sensL spans over 3–4 decades, typically sufficing 2–3 divisions
per decade, to arrive at nloops ≈ 10 as a reasonable first guess for the number of search loops.
The related numerical effort can be compared to that of the step-wise update of the design
variable by using steepest gradient descent, and therefore the incurring computational
times of both methods are comparable.

To test the performance of the presented design variable update technique, the topol-
ogy optimization simulations have been performed on complex duct flow cases featuring
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different flow phenomena. All simulations started from the developed solution of non-
optimizing case, and the stability and robustness of the optimization runs were the same
as those for the underlying non-optimizing solver. The flexibility of the proposed method
allowed for the optimization setup to be adapted to specific flow requirements. In all
cases, the optimized solution was reached with the volume constrained fulfilled. With a
suitable selection of the target volume, one could gain a deeper insight into distinct opti-
mization properties.
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Nomenclature

The following symbols are used in this paper:
α design variable
v primal velocity vector
p primal kinematic pressure
νe f f kinematic turbulent viscosity
u adjoint velocity vector
q adjoint kinematic pressure
dα Darcy porosity coefficient
J objective function
Γ flow domain boundary
Ω flow domain interior
sens objective function sensitivity
volT target volume of blocking cells
nloops number of search loops
ncycles number of design cycles
C0, C1, C2 sigmoid function coefficients
λ steepest gradient descent step
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