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Abstract: The evaluation of manufacturing component suppliers is focused on economic indicators,
with insufficient emphasis on green indicators and no consideration of the correlation between
indicators. Firstly, indicators related to green production are incorporated into the supplier evalua-
tion system. Then, for the problem that attributes in decision making can be divided into different
categories and there are interrelationships between attributes of the same category, a multi-attribute
decision-making (MADM) method based on the partitioned Maclaurin symmetric mean operator
(PMSM) is proposed. Finally, the proposed MADM method was applied to the evaluation of compo-
nent suppliers considering green production. Comparing popular decision methods with the newly
proposed method for validation, it was demonstrated that the proposed multi-attribute decision
method is highly flexible and versatile. Furthermore, the newly proposed aggregation operator can
not only handle the correlation between multiple attributes, but also be converted to other general
aggregation operators through parameter adjustment.

Keywords: supplier evaluation; greener production; probabilistic linguistic weighted partitioned Maclau-
rin symmetric mean operator (PLWPMSM); multi-attribute decision making; manufacturing industry

1. Introduction

On the backdrop of economic development and continuous technological innovation,
civilization has leapt to a new level. Meanwhile, the problems of wasting resources and of
environmental pollution are becoming more and more serious, posing a great challenge to
the environment on which human beings depend for survival. As an important component
under Industry 4.0, the manufacturing industry bears an important social responsibility
for all of society. At the same time, with the introduction of governmental documents
and global consensus agreements, the cost of environmental protection is also closely
related to the economic performance of enterprises. Moreover, rising consumer awareness
of environmental protection is driving companies to provide environmentally friendly
products. Owing to the complexity and specialism of the manufacturing process and due
to cost considerations, a large proportion of a manufacturing company’s components are
outsourced to different suppliers, so manufacturing companies are extremely dependent
on their suppliers. The environmental awareness and competence of suppliers are a key
determinant of green production in companies. Delays in delivery or components being
out of stock from major suppliers for environmental reasons would pose a significant risk
to a company’s production and business activities. For example, one of Schaeffler’s needle
roller suppliers had to stop production due to environmental problems, which caused most
of the production lines of the downstream company to be suspended [1]. Therefore, apart
from the decisions to be made when selecting suppliers, suppliers should also be evaluated
and managed dynamically during the production process.

It is essential for manufacturers to update their supplier evaluation index systems to
take into account indicators related to green production. Although some environmental
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indicators have been considered in previous supplier selections, many scholars have
focused their research on ranking and selecting suppliers through evaluation methods
before entering the production process. There are limitations to the applicability of the
current research. The reason is that the current cooperation model starts with establishing
a partnership with several qualified suppliers, and then with managing the suppliers with
different priorities and measures during the production process [2]. Some scholars have
studied the collaboration between manufacturing companies and equipment suppliers
during the operational phase in order to improve manufacturing efficiency [3]. However,
few studies have considered the evaluation and management of component suppliers
during the manufacturing process.

The representation of evaluation information and the processing of evaluation infor-
mation are important research questions for MADM. Due to the great uncertainty and
ambiguity in the real decision-making environment, decision information is difficult to
express through accurate figures. In addition, people prefer to use qualitative information
to express their evaluation of things [4]. Therefore, considering the objective factors of
the complexity of the decision-making environment and the subjective factors of human
thinking and expression, DMs can express evaluation information more easily and precisely
through qualitative information [5]. The numerical calculation of qualitative information is
difficult, so the feature of quantifying qualitative information with the help of probabilistic
linguistic information effectively deals with this problem.

For the evaluation of suppliers, previous studies have used the TOPSIS, VIKOR, DEA,
and PROMETHEE methods [6–9]. However, this is all based on the premise that the eval-
uation indicators are independent of each other. In practice, there are often correlations
between evaluation indicators, and the aggregation operator is an effective tool for con-
sidering attribute associations. In addition, aggregation operators are of great interest in
decision making because they can provide specific scores for each alternative, in addition to
the ranking results of the alternatives. Many aggregation operators have been studied and
applied in MADM, such as the power average (PA), Heronian mean (HM), Bonferroni mean
(BM), and Maclaurin symmetric mean (MSM) operators [10–13]. Although these operators
can capture the interrelationships between attributes, there is also a problem in the actual
decision-making process: attributes can be divided into several parts, and attributes in the
same part have interrelationships with each other, while attributes in different parts do not
have interrelationships with each other. For example, in the study by Yang et al., when
considering how to make an asset allocation, the plan was to choose from five alternative
sectors: real estate, energy, gold, the stock market, and artificial intelligence companies [14].
The five main attributes of market potential, growth potential, total risk–loss capital, amount
of interest received, and inflation, were considered, and these attributes were divided into
two groups based on the interrelationship between the attributes. Yang et al. solved this
problem by using the partitioned Bonferroni mean (PBM) operator [14]. However, the PBM
operator only captures the interrelationship between two attributes and is not ideal for
cases where there are interrelationships between multiple attributes. Inspired by the PBM
operator, Liu et al. and Bai et al. both proposed the PMSM operator, which they applied to
intuitionistic fuzzy sets and Q-order orthogonal fuzzy sets, respectively [15,16].

The supplier evaluation problem based on green production is a typical MADM
problem, and research on this problem is of significant value for the construction of green
supply chains. This paper therefore establishes a decision method for solving the supplier
evaluation problem by using probabilistic linguistic information, allowing decision makers
to better express their own evaluation information and quantifying qualitative information,
and the PMSM operator allowing a more comprehensive treatment of the relationships
between attributes. The next sections of this paper are as follows. Section 2 gives a review of
the relevant literature; in Section 3, a supplier evaluation method based on the probabilistic
linguistic terms set (PLS) is proposed; and Section 4 presents a case study and validation of
the proposed method and discusses the influence of parameters. The final section gives the
conclusions of the paper and directions that can be further explored in the future.
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2. Literature Review

In this paper, we focus on the green production evaluation of manufacturing compo-
nent suppliers, using probabilistic linguistic information as evaluation information and
PLWPMSM to deal with the interrelationships between attributes. The literature review
has three main components: supplier evaluation, probabilistic linguistic information, and
the aggregation operator.

2.1. Supplier Evaluation Manufacturing

In previous supplier evaluations, factors such as product quality, delivery time, and
price have been the core indicators in supplier evaluations [17]. For example, quality,
delivery, and historical performance have been identified as the three most important
indicators. Lin et al. mainly considered quality, delivery time, and price as indicators
in their recent study [18]. While these indicators play a large role in the assessment of
suppliers, they lack the quantification of environment-related indicators, especially with
the release of some international certification standards related to the environment by some
developed countries and organizations, such as ISO 14000, ISO 14040, and ISO 14044, which
consider the product life cycle [19]. Although green production-related indicators have been
considered previously in the selection of suppliers, the screening process is integrated with
the actual development and environmental capability of the suppliers. Tseng et al. used a
printed circuit board manufacturing company as an example to explore green supply chain
management, and added environmental performance to the supplier evaluation criteria in
order to improve the environmental benefits of the company [20]. Pech and Vaněček also
pointed out that firms differ in their supplier performance management characteristics [21].
When selecting a supplier, enterprises should not only consider the supplier’s delivery
capability, product quality, and price, as well as the supplier’s position in the industry, but
also whether the supplier has taken effective measures to conserve resources and to protect
the environment. This paper designs a framework to establish an evaluation index system
that considers green production, incorporating the current status of green production of an
enterprise’s partner suppliers.

2.2. Probabilistic Linguistic Information

PLS is based on the hesitant fuzzy language set (HFLS), which overcomes the disad-
vantage that while HFLS allows decision makers to express multiple possible values, it
cannot assign different weights to multiple possible values. It also has the advantage of
taking qualitative decision information and quantifying it. Pang et al. first proposed the
idea of PLS and gave the basic operation rules, but the computational process tends to
exceed the bounds [22]. So, Gou et al. proposed a new transformation function to solve this
problem, which laid a solid foundation for further research on PLS [23]. Subsequently, other
scholars have conducted research on preference relations, distance formulas, similarity
formulas, etc., enriching the theory of PLS [24–29]. In addition, a considerable number of
scholars have proposed new approaches to solve MADM by combining PLS and related
methods; for example, Zhang and Xing proposed an extended TOPSIS approach to solve
MADM by combining PLS and TOPSIS, which combines the VIKOR method with PLS to
solve green supply chain-related problems [30]. Wu and Liao addressed the quality func-
tion deployment problem through the PLS ORESTE approach [31]. Mao et al. combined
ELECTRE with TOPSIS, in the context of PLS, to propose a solution for Fintech company
selection [32]. In addition, considering the limited rationality of decision makers, Liu and
You considered extending the TODIM approach to PLS to solve the MADM problem [33].
Liu and Li developed a new approach to solve the MADM problem by extending MUL-
TIMOORA to PLS, based on prospect theory [29]. Wu et al. proposed a Borda rule-based
PL-MULTIMOORA method to select karaoke TV brands for investments [34]. PLS has a
wide range of applications in MADM, but the current research considering associations
between multiple attributes in a probabilistic language setting has some shortcomings.
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2.3. Aggregation Operator

Pang et al. gave the forms of geometric and averaging operators in the context of a
probabilistic language set [22]. Bai et al. redefined the PLS averaging operator and PLS
geometric operator based on the new operation rules proposed by Gou [23,28]. Although
the proposed PLWA operator and PLWG operator can help the decision-making process
to a large extent, he ignored the variation among attributes. To address this problem,
Kobina et al. represented the interrelationships between attributes through the mutual
support of probabilistic linguistic power averaging (PLPA) operators [35]. By introducing
the Bonferroni mean operator in a probabilistic linguistic ensemble, Liang et al. proposed
the probabilistic linguistic Bonferroni mean (PLBM) operator to express the correlation
between two attributes [36]. Considering that the relationship between two attributes is also
the Heronian mean operator, Feng et al. used it in combination with other methods in order
to select a suitable waste water treatment solution [37]. For capturing the interrelationships
between multiple attributes, the Maclaurin symmetric mean (MSM) operator proposed by
Maclaurin has great advantages. The MSM operator can handle the case where there are
correlations between multiple attributes by scaling the parameter k. Liu et al. combined
the probabilistic language set with the MSM operator and proposed the PLMSM operator
to solve the case where there are multiple correlations, followed by a generalized MSM
operator with stronger generality [38–40]. Although there were good results in the study of
aggregation operators under probabilistic language sets, previous studies have been too
hypothetical, highlighting the existence of interrelationships between all attributes and
ignoring the cases where some attributes do not have interrelationships with each other.

Based on the analysis, it can be concluded that the evaluation of suppliers in terms of
quality, price, and delivery times alone is no longer sufficient to meet practical needs. Indi-
cators related to green production need to be included in the evaluation system. Scientific
expressions were chosen to express the evaluation of information, and the correlation be-
tween attributes was taken into account in the calculation of the results in order to achieve
more scientific results. Finally, suppliers were assigned priorities and market shares based
on the evaluation results.

3. Methodology

This section presents the PLPMSM operator and the PLWPMSM operator by improving
the PMSM operator to suit the probabilistic language environment.

3.1. Partitioned Maclaurin Symmetric Mean Aggregation Operator

Definition 1. Assuming that Q = {α̃1, α̃2, . . . , α̃n} is a set of non-negative real numbers, it can

be divided into different parts,B1, B2, . . . , Bm, where B̃i ∩ B̃j = ∅ and
m
∪

γ=1
B̃γ = Q. The PMSM

operator is defined as:

PMSM(κ1,...,κm)(α̃1, α̃2, . . . , α̃n) =
1
m

m

∑
γ=1


∑

1≤i1<...<iκ≤Bγ

(
κ

∏
j=1

αi j

)
Cκ

Bγ


1/κγ

(1)

where κγ is the parameter in the partition Bγ, the range of the κ value is [1, |Bγ|], |Bγ| indicates the
number of input arguments in the partition, Bγ

(
i1, i2, . . . , iκγ

)
traverses the overall κr-tuple different

combinations of (1, 2, . . . , |Bγ|); Cκγ

|Bγ | denotes the binomial coefficient, and Cκγ

|Bγ | =
n!

κγ!(n−κγ)!
.

The PMSM(κ1,κ2, ...,κm) has the following properties:

(1) PMSM(κ1,κ2, ...,κm)(0, 0, . . . , 0) = 0 and PMSM(κ1,κ2, ...,κm)(ã, ã, . . . , ã) = ã;

(2) PMSM(κ1,κ2, ...,κm)(ã1, ã2, . . . , ãn) ≤ PMSM(κ1,κ2, ...,κm)
(

b̃1, b̃2, . . . , b̃n

)
if ãi ≤ b̃i for all i;
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(3) min
i
{ãi} ≤ PMSM(κ1,κ2, ...,κm)(ã1, ã2, . . . , ãn) ≤ max

i
{ãi}.

3.2. Probabilistic Linguistic Partitioned Maclaurin Symmetric Mean Aggregation Operator

Definition 2. Let T̃s(π) =
{

T̃s(τ)i

(
π
(τ)
i

)∣∣∣τ = 1, 2, . . . , #T̃si(π)
}
(i = 1, 2, . . . , n) be n PLS,

where T̃s(τ)i and π
(τ)
i are the kth LT and its probability, respectively, in T̃si(π), and PLPMSM is

defined as:

PLPMSM(k)(Ts1(π), Ts2(π), . . . , Tsn(π)) =
1
m

m
⊕

γ=1


⊕

1≤i1<...<iκ≤B̃r

(
κ
⊗

j=1
Ts(π)ij

)
Cκ

Bγ


1
κ

(2)

where m denotes the number of partitions, κ ∈ (1, 2, . . . , n)(i1, i2, . . . , iκ) traverses all κ − tuple
combinations of (1, 2, . . . , n), and Cκ

n is the binomial coefficient; the PLPMSM(κ) is called the
PLPMSM operator.

Theorem 1. Let T̃si(π) =
{

T̃s(τ)i

(
π
(τ)
i

)∣∣∣τ = 1, 2, . . . , #T̃si(π)
}
(i = 1, 2, . . . , n) be n PLS;

then, the aggregated result by Definition 2 is:

PLPMSM(κ)(Ts1(π), Ts2(π), . . . , Tsn(π)) = 1
m

m
⊕

γ=1

 ⊕
1≤i1<...<iκ≤Bγ

(
κ
⊗

j=1
Ts(π)ij

)
Cκ

Bγ


1
κ

= ∪
ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(TsBγ (π))g−1

1−

 m
Π

γ=1

1−

1−
(

Π
1≤i1<...<iκγ≤|Bγ |

(
1−

(
κ
Π
j=1

ξ
(τ)
ij

)))Cκ
Br
 1

κ




1
m

(

m
Π

γ=1
Π

1≤i1<...<iκγ≤|Bγ |

κ
Π
j=1

π
(τ)
ij

)

(3)

Refer to Appendix B for the detailed proof of Theorem 1.

Theorem 2. (Commutativity) Suppose T̃s′ =
{

T̃s′1(π), T̃s′2(π), . . . , T̃s′n(π)
}

and T̃s ={
T̃s1(π), T̃s2(π), . . . , T̃sn(π)

}
are two probabilistic linguistic sets, where T̃s′ is any of the per-

mutations of the elements in T̃s.

PLPMSM(Ts1(π), Ts2(π), . . . , Tsn(π)) = PLPMSM
(
Ts1
′(π), Ts2

′(π), . . . , Tsn
′(π)

)
(4)

Refer to Appendix B for the detailed proof of Theorem 2.
Next, we explore to improve PLPMSM operator parameters κ and B, and some special

cases are introduced.
When m = 1, the proposed PLPMSM operator becomes the PLMSM operator shown below:
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PLPMSM =

 ⊕
1≤i1<...<iκ≤Br

(
κ
⊗

j=1
Tsij

)
Cκ

Bγ


1
κ

= ∪
γ
(t)
1 ∈g(LS1(p)),γ(t)

2 ∈g(LS2(p)),...,γ(t)
hr
∈g(LShr (p))


g−1

1−
(

Π
1≤i1<...<ikγ≤|Bγ |

(
1−

(
κ
Π
j=1

ξ
(τ)
ij

)))Cκ
Bγ

 1
κ

(
Π

1≤i1<...<iκγ≤|Bγ |

κ
Π
j=1

π
(τ)
ij

)


= PLPMSM

(5)

When κ = 1, the PLPMSM operator is simplified to the probabilistic linguistic parti-
tioned mean (PLPM) operator, given as follows:

PLPMSM = 1
m

m
⊕

γ=1

 ⊕
1≤i1<...<iκ≤Bγ

(
Ts(π)ij

)
C1

Bγ


1

Bγ

= ∪
ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(T̃sB̃γ
(π))


g−1


1−

 m
Π

γ=1

1−

1−
(

Bγ

Π
i=1

(
1− ξ

(τ)
ij

))Ck
hr


1
m

(
m
Π

γ=1

Bγ

Π
i=1

π
(τ)
ij

)




= ∪
γ
(t)
1 ∈g(LS1(p)),γ(t)

2 ∈g(LS2(p)),...,γ(t)
hr ∈g(LShr (p))


g−1


1−

 m
Π

γ=1

(
Bγ

Π
i=1

(
1− ξ

(τ)
ij

))Ck
hr


1
m

(
m
Π

γ=1

Bγ

Π
i=1

π
(τ)
ij

)




(6)

When κ = 2, the PLPMSM operator is simplified to the probabilistic linguistic parti-
tioned Bonferroni mean (PLPBM) operator (p = 1, q = 1):

PLPMSM(2) = 1
m

m
⊕

γ=1

 ⊕
1≤i1<...<iκ≤Bγ

(
2
⊗

j=1
Tsij

)
C2

Bγ


1
2

= ∪
ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(T̃sB̃γ
(π))g−1

1−

 m
Π

γ=1

1−

1−
(

Π
1≤i1<...<iκγ≤|Bγ |

(
1−

(
2
Π
j=1

ξ
(τ)
ij

)))C2
Br


1
2



1
m

(

m
Π

γ=1
Π

1≤i1<...<iκγ≤|B̃γ |

2
Π
j=1

π
(τ)
ij

)

(7)

3.3. Probabilistic Linguistic Weighted Partitioned Maclaurin Symmetric Mean Aggregation Operator

In this section, PLWPMSM is presented in Definition 2, where it is assumed that the
weights of all attributes are the same. However, in real decision making, each attribute or
decision maker has a different weight. Therefore, it is necessary to consider the case where
each variable has its own weight. Assuming that each variable has a corresponding weight,
the PLWPMSM operator is shown below:
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Definition 3. Suppose that T̃s(π) =
{

T̃s(τ)i

(
π
(τ)
i

)∣∣∣τ = 1, 2, . . . , #T̃si(π)
}
(i = 1, 2, . . . , n) is

a set of n probabilistic languages, and ω = (ω1, ω2, . . . , ωn)
T is the corresponding weight vector

and satisfies ωi ∈ [0, 1], i = 1, 2, . . . , n and
n
∑

j=1
ωj = 1.

WPLPMSM(Ts1(π), Ts2(π), . . . , Tsn(π)) =
1
m

m
⊕

γ=1


⊕

1≤i1<...<iκ≤Bγ

(
κ
⊗

j=1
ωij Ts(π)ij

)
Cκ

Bγ


1
κ

(8)

where m denotes the number of partitions, κ ∈ (1, 2, . . . , n) (i1, i2, . . . , iκ) traverses all κ-tuple

combinations of (1, 2, . . . , n), where 0 ≤ ω ≤ 1 and
n
∑

i=1
ωi = 1, Cκ

n is the binomial coefficient,

whose expression is Cκ
Bγ

=
Bγ!

κ!(Bγ−κ)
, and the PLPMSM(κ) is called the PLPMSM operator.

Theorem 3. Let T̃s(π) =
{

T̃s(τ)i

(
π
(τ)
i

)∣∣∣τ = 1, 2, . . . , #T̃si(π)
}
(i = 1, 2, . . . , n) be n PLS and

w = (w1, w2, . . . , wn)
T be the weight vector of T̃si(π) with wi ∈ [0, 1], i = 1, 2, . . . , n, and

∑n
i=1 wi = 1.Then, the aggregated result by Definition 3 is:

WPLPMSM

= ∪
ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(TsB̃γ
(π))


g−1

1−


m
Π

γ=1

1−

1−

 Π
1≤i1<...<iκ≤|Bγ |(

1−
(

κ
Π
j=1

(
1−

(
1− ξ

(τ)
ij

)ωij
)))


1

Cκ
Bγ


1
κ




1
m
(

m
Π

γ=1
Π

1≤i1<...<iκ≤|Bγ |

κ
Π
j=1

π
(τ)
ij

)}
(9)

Theorem 4. (Commutativity) Given that Ts′ = {Ts′1(π), Ts′2(π), . . . , Ts′n(π)} and
{Ts1(π), Ts2(π), . . . , Tsn(π)} are two probabilistic linguistic sets, where Ts′ is any permuta-
tion of the elements in LS

PLWPMSM(Ts1(π), Ts2(π), . . . , Tsn(π)) = PLWPMSM
(
Ts1
′(π), Ts2

′(π), . . . , Tsn
′(π)

)
(10)

The proofs of Theorems 3 and 4 are similar to Theorems 1 and 2, so they are omitted here.
Finally, some special examples of the IFWPMSM operator are discussed.
When m = 1, the PLWPMSM operator is equivalent to the PLWMSM operator:

PLWPMSM=

 ⊕
1≤i1<...<iκ≤Bγ

(
κ
⊗

j=1
ωij

Ts(π)ij

)
Cκ

B̃γ


1
κ

= ∪
ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(T̃sB̃γ
(π))g−1

1−
(

Π
1≤i1<...<iκ≤|Bγ |

(
1−

(
κ
Π
j=1

(
1− ξ

(τ)
ij

)wij

)))Cκ
Bγ

 1
κ(

Π
1≤i1<...<iκ≤|Bγ |

κ
Π
j=1

π
(τ)
ij

)
= PLWMSM

(11)
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When κ = 1, the PLWPMSM operator is simplified to the probabilistic linguistic
weighted partitioned mean (PLWPM) operator, given as follows:

PLPMSM = 1
m

m
⊕

γ=1

 ⊕
1≤i1<...<iκ≤Bγ

(
ωij

Ts(π)ij

)
C1

Bγ


1

Bγ

= ∪
ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(T̃sB̃γ
(π))g−1

1−

 m
Π

r=1

(
Bγ

Π
i=1

(
1− γ

(τ)
ij

)ωij

)Ck
hr


1
m


(

m
Π

r=1

Bγ

Π
i=1

π
(τ)
ij

)
(12)

When κ = 2, the PLWPMSM operator is simplified to the probabilistic linguistic
weighted partitioned Bonferroni mean (PLWPBM) operator (p = 1, q = 1):

PLPMSM(2) = 1
m

m
⊕

r=1

 ⊕
1≤i1<...<ik≤Bγ

(
2
⊗

j=1
ωij

T̃s(π)ij

)
C2

Bγ


1
2

= ∪
ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(T̃sB̃γ
(π))

g−1

1−


m
Π

γ=1

1−

1−

 Π
1≤i1<...<iκ≤|Bγ |(

1−
2
Π
j=1

(
1−

(
1− ξ

(τ)
ij

)ωij
))


C2

Bγ


1
2



1
m

(

m
Π

γ=1
Π

1≤i1<...<ikr≤|Bγ |

2
Π
j=1

π
(τ)
ij

)

(13)

3.4. A Method for Decision Making That Is Based on the WPLPMSM Operator

This section focuses on a MADM method on which the newly proposed PLWPMSM
operator is based. For a MADM problem expressed in terms of probabilistic linguistic
information, assume that there are Z = {Z1, Z2, . . . , Zn} representing a finite number
of available options, F = {F1, F2, . . . Fn} is the set of evaluations of the attributes, and
ω = (ω1, ω2, . . . , ωn)

T is the weight of the corresponding attribute, with

ωj ∈ [0, 1](j = 1, 2, . . . , n) and
n
∑

j=1
ωj = 1. Furthermore, it is assumed that E =

[
Ts(π)ij

]
l×n

is the decision matrix representing the evaluation value of the attribute of interest for
alternative Z = {Z1, Z2, . . . , Zn}, expressed in probabilistic language.

For the above multi-attribute decision problem, the evaluation information is next
processed using the WPSPMSM operator as shown in Figure 1 to obtain the best solution,
and the main decision steps are as follows:
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Figure 1. Decision diagram of the proposed method.

Step 1: Standardize the attribute values.

Step 1 is the normalization of the evaluation matrix. Depending on the characteristics
of the attributes, they can be divided into two categories, cost and benefit. To eliminate
the influence of different types of attributes, normalize the attributes to a single form of
benefit attributes. Convert cost-based attributes to benefit-based attributes via a conversion
function ψ =

[
Ts(π)ij

]
l×n, where:

Ts(π)ij =


{

Ts(τ)ij

∣∣∣τ = 1, 2, . . . , #Ts(π)ij

}
for benefit attribute Fj{

−Ts(τ)ij

∣∣∣τ = 1, 2, . . . , #Ts(π)ij

}
for cos t attribute Fj

(14)

Step 2: By analyzing the relationship between the attributes, the attributes with mutual
relationships are classified into the same category.

Step 3: The aggregation operator proposed in this paper is used to calculate the evaluation in-
formation after classification in order to obtain the evaluation value of each alternative.

Step 4: The best alternative is obtained by ranking the alternatives Zi(i = 1, 2, . . . , l) ac-
cording to the score function ψ(Tsi) and the exact function σ(Tsi).

Step 5: End.

4. Case Study and Discussion
4.1. Application in the Evaluation of Green Suppliers

The environmental friendliness and sustainability of manufacturing enterprises are
also receiving attention from the government and the public with the introduction of na-
tional green and sustainable strategies and technological advances. Many companies have
incorporated environmental factors into their supply chains. Suppliers, as an important
part of green supply chain management, are evaluated for green production, which is
of great environmental and practical importance to the sustainability of a company. A
manufacturing company evaluates its suppliers of important components in order to decide
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on the next stage of supplier management strategy [1]. There are currently four suppliers
with which these companies cooperate, and the evaluation attributes are set as follows.

Economic factors (F1
′): Economic factors are the primary factors in the evaluation of

suppliers, mainly from the supplier’s product price competitiveness, product localization
performance, product logistics costs, and business claims record. Usually, when evaluating
suppliers, enterprises evaluate suppliers based on the competitiveness of their product
prices among suppliers; the degree of product localization and product logistics costs are
the prerequisites for ensuring a stable supply at low cost, and a lower record of business
claims ensures a reduction in variable costs.

Green production (F′2): This mainly includes the level of environmental certification,
the risk of production processes, pollutant emissions and disposal, and the record of
environmental penalties. A high environmental certification level is a prerequisite for the
supplier’s environmental proof. Risks are classified according to the processes designed for
the parts in the production process, and a more comprehensive evaluation of the supplier
can be made based on historical data, such as the supplier’s three waste emissions and
environmental records.

Technological innovation (F′3): investment in technological research and development,
the level of research and development in environmental technology, and the ability to
produce green technology. Investment in R&D is a prerequisite for the technological
upgrading of enterprises, and a superior technology level is a prerequisite for long-term
and stable cooperation.

Green products (F′4): environmental protection level of components and raw materials,
natural resource consumption, and green design. The environmental protection level
of components is assessed from the perspective of the design and procurement of the
supplier’s component products.

Product quality (F′5): Product quality factors include product defect rates, quality re-
sponse time, and quality certification systems. Having a higher level of quality certification
is a prerequisite for supplier quality assurance. Reduced product defects and rapid quality
response time are prerequisites for the continued efficient operation of the supply chain.

Service levels (F′6): financial settlement, daily business, and after-sales service perfor-
mance. A comprehensive evaluation of the supplier’s service level in terms of financial,
operational, and after-sales levels provides a solid foundation for improving efficiency.

Four experts were invited to evaluate four suppliers, with the six attributes’ weights
being w = (0.2, 0.2, 0.2, 0.1, 0.2, 0.1). According to the correlation between the attributes,
the attributes can be divided into two parts, B1{F′1, F′5, F′6} and B2{F′2, F′3, F′4}, where
B1 is the product value, and B2 is the environmental protection level. Experts’ evaluation
information is shown in Table 1.

Table 1. The evaluation values by PLS.

F’
1 F’

2 F’
3 F’

4 F’
5 F’

6

Z′1 {s2(0.8)} {s0(0.4), s1(0.6)} {s2(0.6)} {s0(0.7)} {s−1(0.2), s0(0.8)} {s2(0.6)}
Z′2 {s2(0.6)} {s1(0.3), s2(0.7)} {s−1(0.8)} {s2(1)} {s−2(0.4), s−1(0.5)} {s1(0.7)}
Z′3 {s2(0.9)} {s1(0.8), s2(0.6)} {s2(0.6)} {s2(0.7)} {s0(0.2), s1(0.5)} {s2(1)}
Z′4 {s0(0.3), s1(0.6)} {s−2(0.8)} {s1(0.7)} {s1(0.5)} {s2(1)} {s1(0.6), s2(0.4)}

The evaluation information was calculated using the PLWPMSM operator to obtain
the ranking of suppliers, which was calculated as follows.

Step 1: Normalization of attributes.

As the attributes in our scenario were all revenue attributes, the attribute values did
not need to be normalized.

Step 2: With the proposed PLWPMSM aggregation operator, the aggregated values for all
attributes of each alternative were calculated.
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Assume that m = 2 and κ1 = κ2.
The description of this calculation is omitted here because the amount of data obtained

from the calculation is too large.

Step 3: The score of each alternative was calculated according to the formulas
ψ(Ts1) = s−1.9643, ψ(Ts2) = s−2.1077, ψ(Ts3) = s−1.6548, and ψ(Ts4) = s−2.0899.

Step 4: The options were ranked according to Definition A5 in Appendix A and ranked as
Z′3 � Z′1 � Z′4 � Z′2.

Comparing the expected values of the four suppliers according to Definition A4 gave
ψ(Ts3) > ψ(Ts1) > ψ(Ts2) > ψ(Ts4), and according to the Definition A5, the ranking of
the four suppliers can be obtained as Z′3 � Z′1 � Z′4 � Z′2.

4.2. The Influence of the Parameters κ

The effect of the parameter κ on the results of the proposed method is discussed next.
By assigning different values of parameter κ, where κ = 1, 2, and 3, the sorting results with
different κ values are shown in Table 2.

Table 2. Ranking of the alternatives based on the PLPMSM operator for the different alternatives.

The Values of κ The Scores of the Alternative Ranking

κ1 = 1, κ2 = 1 ψ(Ts1) = s0.8607, ψ(Ts2) = s0.7389, ψ(Ts3) = s1.2756, ψ(Ts4) = s0.5791 Z′3 � Z′1 � Z′4 � Z′2
κ1 = 1, κ2 = 2 ψ(Ts1) = s−1.9403, ψ(Ts2) = s−2.0667, ψ(Ts3) = s−1.6364, ψ(Ts4) = s−2.0515 Z′3 � Z′1 � Z′4 � Z′2
κ1 = 1, κ2 = 3 ψ(Ts1) = s−1.9433, ψ(Ts2) = s−2.1096, ψ(Ts3) = s−1.6490, ψ(Ts4) = s−2.0384 Z′3 � Z′1 � Z′2 � Z′4
κ1 = 2, κ2 = 1 ψ(Ts1) = s−1.9749, ψ(Ts2) = s−2.0304, ψ(Ts3) = s−1.6338, ψ(Ts4) = s−2.0598 Z′3 � Z′1 � Z′2 � Z′4
κ1 = 2, κ2 = 2 ψ(Ts1) = s−1.9642, ψ(Ts2) = s−2.1078, ψ(Ts3) = s−1.6548, ψ(Ts4) = s−2.0899 Z′3 � Z′1 � Z′4 � Z′2
κ1 = 2, κ2 = 3 ψ(Ts1) = s−1.9672, ψ(Ts2) = s−2.1512, ψ(Ts3) = s−1.6673, ψ(Ts4) = s−2.1128 Z′3 � Z′1 � Z′4 � Z′2
κ1 = 3, κ2 = 1 ψ(Ts1) = s−1.9754, ψ(Ts2) = s−2.0630, ψ(Ts3) = s−1.6494, ψ(Ts4) = s−2.0909 Z′3 � Z′1 � Z′2 � Z′4
κ1 = 3, κ2 = 2 ψ(Ts1) = s−1.9783, ψ(Ts2) = s−2.1408,.ψ(Ts3) = s−1.66705, ψ(Ts4) = s−2.1212 Z′3 � Z′1 � Z′4 � Z′2
κ1 = 3, κ2 = 3 ψ(Ts1) = s−1.9813, ψ(Ts2) = s−2.1844, ψ(Ts3) = s−1.6830, ψ(Ts4) = s−2.1442 Z′3 � Z′1 � Z′4 � Z′2

The following conclusions can be drawn from Table 2.

(1) When κ = 1, the ranking result of the four firms is: Z′3 � Z′1 � Z′2 � Z′4; the best
alternative is Z′3.

(2) When κ = 2 or 3, the ranking result of the four firms is: Z′3 � Z′1 � Z′4 � Z′2; the
best option is likewise Z′3.

It is obvious that the ranking order may vary with the parameter κ; however, in this
case, the most appropriate choice remained the same. By further analysis, it can be seen that
for the same decision information, the expectation value obtained by the MADM method
decreased with the increase in the parameter κ. Moreover, it can also be used to describe the
DM’s preferences. Usually, decision makers need to give a suitable value to the parameter
κ according to their preferences in the current decision. To further explore the effect of
the parameter κ on the scores and ranking of the alternative firms, different values were
assigned to κ to each part of κ1 = 1, 2, 3 and κ2 = 1, 2, 3. It can be seen from Table 2 that
for different values κ, the scores and ranking results of the four alternative firms differed
somewhat, but the best ranking solution for different values were all Z′3. Moreover, for the
same alternative company, the score obtained using the WPLPMSM operator decreased
as the value κ increased, following the previous theorem. According to the characteristics
of the WPLPMSM aggregation operator, the adjustment of the parameters κγ can reflect
the DM’s preference for risk. When the DM is a risk-neutral person, he or she chooses a
larger value within the allowed range, and when the DM is a risk-averse person, he or she
prefers to choose a smaller value. Management’s attitude to risk should be neutral and
take into account the correlation among attributes when making decisions. Therefore, Qin

and Liu suggested setting a parameter κγ =

[
min

γ
|Bγ|/2

]
to denote the value adopted by

the risk-neutral DMs [38], where denotes the conditional number in the partition, and the
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symbol [] represents the downward integer. When κγ >

[
min

γ
|Bγ|/2

]
, it represents that

the DM is optimistic, that is, risk-neutral, and when κγ <

[
min

γ
|Bγ|/2

]
, it represents that

the DM is pessimistic, that is, risk-averse. In the above example, it can be found that the
best option is the third firm, because the DMs are unbiased.

4.3. Comparison and Sensitivity Analysis

In this section, the effectiveness and superiority of the evaluation method are empha-
sized by comparison with other existing methods, such as the PLWA operator used by Pang
and the PLWMSM operator proposed by Liu [22,41].

When comparing with Pang’s approach, it is necessary to establish the prerequisite
that all attributes are located in the same partition; the latter assumptions do not take into
account the correlation among attributes and the partitioning of attributes. The method
of this paper was compared with Pang’s method, as shown in Table 3, where m = 1 and
κ = 1. The results Z3

′ ≺ Z1
′ ≺ Z2

′ ≺ Z4
′ obtained by this method are consistent with

Pang’s method. However, the results obtained when the parameter of the proposed method
was m = 2 and κ = 2, 3 were different. The PLWA operator does not take into account
the correlation between attributes and the classification of attribute classes. For instance,
if the correlation among attributes were ignored, then Pang’s method and the method in
this paper should yield consistent conclusions. Applying the operator of this paper and
Pang’s method to the example separately, it can be found that when m = 1 and κ = 1, the
ranking results of both methods were the same, which is consistent with our analysis of
PLWA as a special case of the PLWPMSM operator. However, when m = 2 and κ = 2, 3, our
method’s results differed from Pang’s results, because our method reflects the classification
of attributes and the correlation of attributes, while the PWLA operator does not reflect
the correlation and classification between attributes. The results show that our method
can address not only the problem of attribute correlation and attribute classification, but
also the case of attribute-free relationship classification. This is because the method in this
paper has stronger generality than Pang’s method.

Table 3. A comparison of the ranking results for different MAGDM methods.

Aggregation Operator Expected Values ψ(Ts1) Ranking

PLWA ψ(Ts1) = s−2.0066, ψ(Ts2) = s−2.19237, ψ(Ts3) = s−1.6881, ψ(Ts4) = s−2.2024 Z′3 � Z′1 � Z′2 � Z′4
PLMSM
(κ = 2 ) ψ(Ts1) = s−1.9355, ψ(Ts2) = s−2.0530, ψ(Ts3) = s−1.6348, ψ(Ts4) = s−2.0740 Z′3 � Z′1 � Z′2 � Z′4

Proposed method
(m = 1 , κ = 1) ψ(Ts1) = s1.1354, ψ(Ts2) = s1.0112, ψ(Ts3) = s1.75364, ψ(Ts4) = s0.9367 Z′3 � Z′1 � Z′2 � Z′4

Proposed method
(m = 2 , κ1 = κ2 = 1) ψ(Ts1) = s0.8607, ψ(Ts2) = s0.7389, ψ(Ts3) = s1.2756, ψ(Ts4) = s0.5791 Z′3 � Z′1 � Z′2 � Z′4

Proposed method
(m = 2 , κ1 = κ2 = 2) ψ(Ts1) = s−1.9813, ψ(Ts2) = s−2.1844, ψ(Ts3) = s−1.6830, ψ(Ts4) = s−2.1442 Z′3 � Z′1 � Z′4 � Z′2

Proposed method
(m = 2 , κ1 = κ2 = 3) ψ(Ts1) = s−1.9813, ψ(Ts2) = s−2.1844, ψ(Ts3) = s−1.6830, ψ(Ts4) = s−2.1442 Z′3 � Z′1 � Z′4 � Z′2

Similar to the method by Pang et al., the method proposed by Liu et al. also does
not consider the case of attribute partitioning. Therefore, assuming that there is only one
partition of attributes in this example, the proposed method was compared with the method
proposed by Liu et al. Table 3 shows the comparison results between the proposed method
and Liu et al.’s method. Similar to Pang’s method, the method based on MSM operator does
not consider attribute partitioning. Hence, it was supposed that there is no partitioning of
the properties in the instance, and the proposed method was then compared with Liu’s
method. Table 3 shows the results of the comparison between this paper’s method and
Liu’s method.
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The MSM operator proposed by Liu only considers the correlation among attributes
and does not consider attribute partitioning. In this example, if the parameter is set to
m = 1, the attributes are not partitioned, and only the correlation between the attributes
κ = 2 is considered, which should have consistent results with Liu’s method. The two
methods were applied separately to this example. When Liu et al.’s method and the
proposed PLWPMSM operator are applied to the case, it is known that the two methods
yield consistent results for the ranking of alternatives with parameters and κ = 2, which is
consistent with the proof above that the MSM operator is a special case of the PLWPMSM
operator, indicating the effectiveness of the new method. It can be concluded that when
m = 1, the ranking results obtained by using these two methods separately are the same,
which is consistent with the conclusion that the MSM operator is a special case of the
PLWPMSM operator, and also shows the effectiveness of the new method. However, in this
case, all the attributes were divided into two categories, and it was difficult to accurately
capture the correlation between the attributes by using Liu’s approach. Therefore, the
approach in this paper has better applicability and handles the problem well, regardless of
how attributes are divided.

The method was used in different examples and compared with the original calculation
method in order to illustrate the effectiveness and superiority of the method.

Referring to the example of Pang et al. in selecting a hospital to validate our proposed
method, there are three alternative hospitals to be evaluated from four criteria (the invest-
ment fund of the hospital, the level of information technology of the healthcare professionals,
and the original level of information technology of the hospital mainly include the level of
hardware and software and the support of the local government) to select the most suitable
hospital as a pilot hospital for future smart medical projects [22]. The decision matrix is
given in Table 4, and the example is then processed by the MADM method of this paper.
The ranking scheme obtained by the method based on the PLWPMSM aggregation operator
in this paper was analyzed in comparison with the scheme of the PLWA operator. As shown
in Table 5, these properties can be divided into two groups: the hospital investment funds
and the support of the local government as the external factors, namely Q1 = {F′′ 1, F′′ 4},
and the information level of medical staff and the hospital information level of the original
as internal factors, namely Q2 = {F′′ 2, F′′ 3}. Table 4 below gives the decision matrix. The
MADM method was proposed to deal with an example, the method based on WPLPMSM
aggregation operator was also used, and Pang and others were compared based on PLWA
operators; then, a solution was obtained, as shown in Table 5.

Table 4. Evaluation Information of Smart Hospital.

F”
1 F”

2 F”
3 F”

4

Z′′ 1 {s3(0.4), s4(0.6)} {s2(0.2), s4(0.8)} {s3(0.2), s4(0.8)} {s3(0.4), s5(0.6)}
Z′′ 2 {s5(0.2), s3(0.8)} {s2(0.2), s3(0.4), s4(0.2)} {s1(0.2), s2(0.4), s3(0.2)} {s4(0.2), s3(0.8)}
Z′′ 3 {s3(0.6), s4(0.4)} {s3(0.6), s4(0.2)} {s3(0.2), s4(0.2), s5(0.2)} {s4(0.8), s6(0.2)}

Table 5. Comparison using two methods.

Aggregation Operator Expected Values ψ(Tsi) Ranking

PLWA ψ(Ts1) = s1.26, ψ(Ts2) = s0.89, ψ(Ts2) = s1.24 Z′′ 1 � Z′′ 3 � Z′′ 2
Proposed method

(m = 1 , κ1 = κ2 = 1) ψ(Ts1) = s1.26, ψ(Ts2) = s0.89, ψ(Ts3) = s1.24 Z′′ 1 � Z′′ 3 � Z′′ 2

Proposed method
(m = 2 , κ1 = κ2 = 2) ψ(Ts1) = s−1.6861, ψ(Ts2) = s−2.1893, ψ(Ts3) = s−1.6347 Z′′ 3 � Z′′ 1 � Z′′ 2

The attributes in this case were divided into two parts. Each part had two attributes,
namely Q1 = {F′′ 1, F′′ 4} and Q2 = {F′′ 2, F′′ 3}, so κ in each partition could take the value
of 1 or 2, and there was a certain relationship between the two attributes, so the result of
taking κ1 = κ2 = 2 to obtain the sorting result of the scheme was Z3 ′′ � Z1

′′ � Z2 ′′ , which
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was different from the sorting scheme obtained by the complementary PLWA operator.
This is because our MADM method considers the mutual relations between attributes in
the same group, and the MADM PLWA operator method was used, which does not reflect
the relationship between the property and the different properties among the difference. A
comparison with Pang’s method shows that the PLWPMSM operator has greater generality
and advantages.

Referring to the example given by Liu et al., suppose the company has an idle amount
of money available for investment. Now, there are four projects to choose from for in-
vestment. However, these projects have potential gains as well as risks of loss. Therefore,
the company invited relevant experts to evaluate the project from four aspects: F1

′′′ the
financial perspective, F2 ′′′ customer satisfaction, F3 ′′′ internal business process, and F4

′′′

learning and growth, and the evaluation information is shown in Table 6, to select the best
project to maximize profits. These attributes can be divided into two groups: customer
satisfaction, internal business processes, and organizational learning and growth, as a
related set of attributes, and then financial perspective as a separate set of attributes, i.e.,
Q1 = {F′′′ 1}, Q2 = {F′′′ 2, F′′′ 3, F′′′ 4}.

Table 6. Evaluation information of investment projects.

F”’
1 F”’

2 F”’
3 F”’

4

Z′′′ 1 {s2(1)} {s1(0.6)} {s3(0.4), s4(0.4)} {s3(0.8)}
Z′′′ 2 {s2(0.8)} {s1(0.8)} {s0(0.6), s1(0.2)} {s2(0.6)}
Z′′′ 3 {s1(0.4)} {s3(0.6)} {s2(0.8), s3(0.2)} {s0(0.5)}
Z′′′ 4 {s1(0.8)} {s1(0.6)} {s3(0.5), s4(0.5)} {s2(1)}

From the obtained Table 7, it can be seen that the MADM method for the PLWPMSM
aggregation operator and the MADM for the HPLAWMM operator give extremely different
results. Z1

′′′ was identified as the best solution, and Z3 ′′′ was identified as the worst
solution by the HPLAWMM. The PLWPMSM, however, yielded a ranking scheme of
Z4
′′′ � Z3 ′′′ � Z1

′′′ � Z2 ′′′ , where the optimal choice was Z4
′′′ and the poorest choice

was Z2 ′′′ . The improved method classifies attributes into different classes based on the
PLWPMSM operator and assumes that the attributes in each class are related to each other,
but Liu’s calculation assumes that all attributes are related, which ignores the presence of
irrelevant ones in the attributes, so the approach here is more sensible.

Table 7. Comparison of two methods.

Aggregation Operator Expected Values ψ(Tsi) Ranking

HPLAWMM ψ(Ts1) = 2.09, ψ(Ts2) = 0.35, ψ(Ts3) = 0, ψ(Ts4) = 1.56 Z′′′ 1 � Z′′′ 4 � Z′′′ 2 � Z′′′ 3
Proposed method
(m = 2 , κ1 = 1, κ2 = 2) ψ(Ts1) = s0.7811, ψ(Ts2) = s0.6121, ψ(Ts3) = s1.1322, ψ(Ts4) = s1.1671 Z′′′ 4 � Z′′′ 3 � Z′′′ 1 � Z′′′ 2

Proposed method
(m = 2 , κ1 = 1, κ2 = 3) ψ(Ts1) = s0.7380, ψ(Ts2) = s0.5785, ψ(Ts3) = s1.0542, ψ(Ts4) = s1.1474 Z′′′ 4 � Z′′′ 3 � Z′′′ 1 � Z′′′ 2

The proposed MADM method captures the relationship among attributes and can
be classified into several parts, whereas Liu’s MADM method can only represent the
relationship between attributes. Furthermore, Pang’s MADM method simply aggregates
the evaluation information without taking into account the correlation among attributes in
the aggregation process. As the proposed MADM method is able to divide attributes into
multiple partitions, it takes into account the correlation among multiple attributes in the
same category, as well as the independence of attributes in different categories. Therefore,
it has better generality and validity compared to previous methods.
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5. Conclusions

As environmental awareness grows, a growing number of manufacturing companies
are considering environmental performance and establishing green supplier evaluation
systems. In this paper, considering the current actual supplier cooperation model, indicators
related to green production are added to the evaluation system of component suppliers.
This paper also proposes a MADM method that considers the correlation between attributes
by converting qualitative information into computable quantitative information through
probabilistic linguistic information to evaluate component suppliers. The findings of this
study are divided into the following main aspects.

From the perspective of green supplier evaluation, green production-related indica-
tors are added to the component supplier evaluation system, ensuring the quality, timely
delivery, and environmental protection of components in the production process, thereby
improving the environmental performance and sustainable competitiveness of the enter-
prise. Meanwhile, this paper provides decision support for enterprises to give management
to their cooperative suppliers to create a more environmentally friendly, stable, and effi-
cient supply chain. It can also provide a reference for future studies to consider supplier
evaluation issues for green production.

From the perspective of decision-making methods, a decision-making method based
on probabilistic linguistic information is proposed to solve the problem that attributes can
be divided into different groups according to their interrelationships, and attributes in the
same group are related to each other, while attributes in different groups are not related
to each other. In addition, the proposed PLWPMSM operator can be converted to other
commonly used operators by adjusting the parameters, is highly flexible and general, and
provides a general solution to many realistic decision-making problems.

This article also has some limitations, in that some of the evaluation information in
the study relies on expert opinions, which may have a partial cognitive bias; on the other
hand, only the evaluation of cooperative suppliers was focused on in the study, and the
dynamic adjustment of subsequent orders was not taken into account.

In future research, green production indicators in terms of carbon emission reduction
can be quantified, and supplier evaluation and order share allocation can be combined for
dynamic decision making. In addition, it can be considered that the method proposed in
this paper could also be applied to other MADM problems, such as online based product
recommendation, as well as charging pile site planning.
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Appendix A

Definition A1. First define S = {st|t = −υ, . . . ,−1, 0, 1, . . . , ν} as a language set. Let
S = {st|t = −υ, . . . ,−1, 0, 1, . . . , υ} be a linguistic term set. A probabilistic linguistic set (PLS)
can be obtained as:

Tsi(π) =

{
Tsi

(τ)
(

π(τ)
)∣∣∣∣∣Tsi

(τ) ∈ S, r(τ) ∈ t, p(τ) ≥ 0, τ = 1, 2, . . . , #Ts(π),
#Ts(π)

∑
τ=1

π(τ) ≤ 1

}
, (A1)
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where Tsi
(τ)
(

π(τ)
)

is the linguistic term Tsi
(τ) associated with the probability π(τ), r(τ) is the

subscript of Tsi
(τ), and #Ts(π) is the number of all linguistic terms in Tsi

(τ)
(

π(τ)
)

.

To facilitate the information aggregation and keep the consistency, Gou et al. defined
two novel transformation functions between the HFLTS and the HFS. For the PLS, Bai et al.
also came up with the corresponding transformation functions:

Definition A2. Let S = {st|t = −τ, . . . ,−1, 0, 1, . . . , τ} be a linguistic term set. Tsi
(τ)
(

π(τ)
)

is a PLS. The equivalent transformation function of L(p) is defined as:

g
(

Tsi
(τ)
(

π(τ)
))

=

{[
r(τ)

2ν
+

1
2

](
π(τ)

)}
= Tsσ(π), (A2)

where g : [−υ, υ]→ [0, 1] and σ ∈ [0, 1]. Additionally, we can obtain the transformation function
of Tsσ(π) as follows:

g−1(Tsσ(π)) =
{

s(2σ−1)υ

(
π(τ)

)∣∣∣υ ∈ [0, 1]
}
= Ts(π), (A3)

where g−1 : [0, 1]→ [−σ, σ].

Definition A3. Let S = {st|t = −τ, . . . ,−1, 0, 1, . . . , τ} be a linguistic term set. Given three
PLS, Ts(π), Ts1(π1), and Ts2(π2), their basic operations are summarized as follows:

Ts1(π1)⊕ Ts2(π2) = g−1

 ∪
ξ
(i)
1 ∈g(T̃s1),ξ

(j)
2 ∈g(T̃s2)

{(
ξ
(i)
1 + ξ

(j)
2 − ξ

(i)
1 ξ

(j)
2

)(
π
(i)
1 π

(j)
2

)} (A4)

Ts1(π1)⊗ Ts2(π2) = g−1

 ∪
ξ
(i)
1 ∈g(T̃s1),ξ

(j)
2 ∈g(T̃s2)

{(
ξ
(i)
1 ξ

(j)
2

)(
π
(i)
1 π

(j)
2

)}; (A5)

λTs(π) = g−1

(
∪

η(τ)∈g(T̃s)

{(
1−

(
1− ξ(τ)

)λ
)(

π(τ)
)})

and λ ≥ 0; (A6)

(Ts(π))λ = g−1

(
∪

η(τ)∈g(T̃s)

{(
ξ(τ)

)λ(
π(τ)

)})
, where λ ∈ R and λ ≥ 0. (A7)

In order to compare the PLS, Pang et al. defined the score and the deviation degree of a PLS:

Definition A4. Let Tsi(π) =
{

Ts(τ)i

(
π
(τ)
i

)∣∣∣τ = 1, 2, . . . , #Tsi(π)
}
(i = 1, 2, . . . , n) be a PLS,

and r(τ) is the subscript of linguistic term T̃s(τ). Then, the score of T̃s(π) is defined as follows:

ψ(Ts(π)) = sα, (A8)

whereα = ∑
#Ts(π)
τ=1 π(τ)r(τ)/∑

#Ts(π)
τ=1 π(τ). The deviation degree of T̃s(π) is:

σ(L(p)) =
∑

#Ts(π)
τ=1

(
π(τ)

(
r(τ) − α

))0.5

∑
#Ts(π)
τ=1 π(τ)

(A9)
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Based on the score and the deviation degree of a PLS, Pang et al. further proposed the
following laws to compare them:

Definition A5. Given two PLS, Ts1
(
π1
)

and Ts2(π2). ψ
(
Ts1
(
π1
))

and ψ(Ts2(π2)) are the
scores of Ts1

(
π1
)

and Ts2(π2), respectively. σ
(
Ts1
(
π1
))

and σ(Ts2(π2)) donate the deviation
degrees of Ts1

(
π1
)

and Ts2(π2). Then, we have:

a. If ψ
(
Ts1
(
π1
))

> ψ(Ts2(π2)), then Ts1
(
π1
)

is bigger than Ts2(π2), denoted by
Ts1
(
π1
)

>Ts2(π2);
b. If ψ

(
Ts1
(
π1
))

< ψ(Ts2(π2)), then Ts1
(
π1
)

is smaller than Ts2(π2), denoted by
Ts1
(
π1
)
<Ts2(π2);

c. If ψ
(
Ts1
(
π1
))

= ψ(Ts2(π2)), then we need to compare their deviation degrees:

c1. If σ
(
Ts1
(
π1
))

= σ(Ts2(π2)), then Ts1
(
π1
)

is equal to Ts2(π2), denoted by
Ts1
(
π1
)
~Ts2(π2);

c2. If σ
(
Ts1
(
π1
))

> σ(Ts2(π2)), then Ts1
(
π1
)

is smaller than Ts2(π2), denoted by
Ts1
(
π1
)
<Ts2(π2);

c3. If σ
(
Ts1
(
π1
))

> σ(Ts2(π2)), then Ts1
(
π1
)

is smaller than Ts2(π2), denoted by
Ts1
(
π1
)
<Ts2(π2).

Appendix B

The proof of Theorem 1:

Theorem A1. Let Tsi(π) =
{

Ts(τ)i

(
π
(τ)
i

)∣∣∣τ = 1, 2, . . . , #Tsi(π)
}
(i = 1, 2, . . . , n) be n PLS;

then, the aggregated result by Definition 2 is:

PLPMSM(τ)(Ts1(π), Ts2(π), . . . , Tsn(π))

= ∪
ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(TsB̃γ
(π))


g−1


1−

 m
Π

γ=1

1−

1−

 Π
1≤i1<...<iκ≤|Bγ |(

1−
(

κ
Π

j=1
ξ
(τ)
ij

))


Cκ
Bγ


1
κ



1
m

(
m
Π

γ=1
Π

1≤i1<...<ik≤|Bγ |

κ
Π

j=1
π
(τ)
ij

)




(A10)

Proof. Based on operations of Definition 3, we have:

κ
⊗

j=1
Ts(π)ij = g−1

(
∪

ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(TsBγ (π))

{(
κ
Π
j=1

ξ
(τ)
ij

)(
κ
Π
j=1

π
(τ)
ij

)})

⊕
1≤i1<...<ik≤|Bγ |

(
k
⊗
j=1

Ts(π)ij

)
= g−1

∪ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(TsBγ (π))



(
1− Π

1≤i1<...<iκ≤|Bγ |

(
1−

(
κ
Π
j=1

ξ
(τ)
ij

)))
(

Π
1≤i1<...<ik≤|Bγ |

κ
Π
j=1

π
(τ)
ij

)




⊕
1≤i1<...<ik≤|Bγ |

(
k
⊗
j=1

T̃s(π)ij

)
Cκ

Bγ

= g−1

∪ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(TsBγ (π))




1−

(
Π

1≤i1<...<ik≤|Bγ |

(
1−

(
κ
Π
j=1

ξ
(τ)
ij

)))Cκ
Bγ

(
Π

1≤i1<...<ik≤|Bγ |

κ
Π
j=1

π
(τ)
ij

)




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 ⊕
1≤i1<...<ik≤|Bγ |

(
κ
⊗

j=1
Ts(π)ij

)
Cκ

hr


1
κ

= g−1

∪ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(TsB̃γ
(π))


1−

(
Π

1≤i1<...<ik≤|Bγ |

(
1−

(
κ
Π
j=1

ξ
(τ)
ij

)))Ck
Bγ


1
κ (

Π
1≤i1<...<ik≤|Bγ |

κ
Π
j=1

π
(τ)
ij

)


m
⊕

γ=1

 ⊕
1≤i1<...<ik≤|Bγ |

(
κ
⊗
j=1

Ts(π)ij

)
Cκ

Bγ


1
κ

= g−1

∪ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(TsB̃γ
(π))


1−

m
Π

γ=1

1−

1−
(

Π
1≤i1<...<iκ≤|Bγ |

(
1−

(
κ
Π

j=1
ξ
(τ)
ij

)))Cκ
Bγ

 1
κ

(
m
Π

γ=1
Π

1≤i1<...<ik≤|Bγ |

κ
Π

j=1
π
(τ)
ij

)




1
m

m
⊕

γ=1

 ⊕
1≤i1<...<ik≤|Bγ |

(
κ
⊗
j=1

Ts(π)ij

)
Cκ

Bγ


1
k

= g−1

∪ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(TsBγ (π))


1−

 m
Π

γ=1

1−

1−
(

Π
1≤i1<...<iκ≤|Bγ |

(
1−

(
κ
Π

j=1
ξ
(τ)
ij

)))Cκ
Bγ

 1
κ




1
m

(
m
Π

γ=1
Π

1≤i1<...<ik≤|Bγ |

κ
Π

j=1
π
(τ)
ij

)




= ∪
ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(TsBγ (π))

g−1

1−

 m
Π

γ=1

1−

1−
(

Π
1≤i1<...<iκ≤|Bγ |

(
1−

(
κ
Π
j=1

ξ
(τ)
ij

)))Cκ
Bγ

 1
κ




1
m (

m
Π

γ=1
Π

1≤i1<...<ik≤|Bγ |

κ
Π
j=1

π
(τ)
ij

)


PLPMSM(τ)
(

T̃s1(π), T̃s2(π), . . . , Tsn(π)
)

= ∪
ξ
(τ)
1 ∈g(Ts1(π)),ξ(τ)2 ∈g(Ts2(π)),...,ξ(τ)Bγ

∈g(TsBγ (π))


g−1


1−

 m
Π

γ=1

1−

1−
(

Π
1≤i1<...<iκ≤|Bγ |

(
1−

(
κ
Π

j=1
ξ
(τ)
ij

)))Cκ
Bγ

 1
κ




1
m

(
m
Π

γ=1
Π

1≤i1<...<ik≤|Bγ |

κ
Π

j=1
π
(τ)
ij

)



Thus, the proof of Theorem 1 is completed. �

Appendix C

The proof of Theorem 2:

Theorem A2. (Commutativity) Suppose Ts′ = {Ts′1(π), Ts′2(π), . . . , Ts′n(π)} and
Ts = {Ts1(π), Ts2(π), . . . , Tsn(π)} are two probabilistic linguistic sets, where Ts′ is any of
the permutations of the elements in Ts.

PLPMSM(Ts1(π), Ts2(π), . . . , Tsn(π)) = PLPMSM
(
Ts1
′(π), Ts2

′(π), . . . , Tsn
′(π)

)
(A11)
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Proof.
PLPMSM(Ts1(π), Ts2(π), . . . , Tsn(π))

= 1
m

m
⊕

γ=1

 ⊕
1≤i1<...<ik≤|Bγ |

((
κ
⊗

j=1
Ts(π)ij

))
Cκ

Bγ


1
κ

= 1
m

m
⊕

γ=1

 ⊕
1≤i1<...<ik≤|Bγ |

((
κ
⊗

j=1
T s′(π)ij

))
Cκ

Bγ


1
κ

= PLPMSM(Ts1
′(π), Ts2

′(π), . . . , Tsn
′(π))

Thus, the proof of Theorem 2 is completed. �
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21. Pech, M.; Vaněček, D. Supplier Performance Management in Context of Size and Sector Characteristics of Enterprises. QIP J. 2020,

24, 88. [CrossRef]
22. Pang, Q.; Wang, H.; Xu, Z. Probabilistic Linguistic Term Sets in Multi-Attribute Group Decision Making. Inf. Sci. 2016, 369,

128–143. [CrossRef]
23. Gou, X.; Xu, Z. Novel Basic Operational Laws for Linguistic Terms, Hesitant Fuzzy Linguistic Term Sets and Probabilistic

Linguistic Term Sets. Inf. Sci. 2016, 372, 407–427. [CrossRef]

http://doi.org/10.1016/j.jclepro.2022.130964
http://doi.org/10.1111/jscm.12080
http://doi.org/10.1108/17410381011064003
http://doi.org/10.1371/journal.pone.0222007
http://www.ncbi.nlm.nih.gov/pubmed/31639134
http://doi.org/10.1007/s42524-019-0017-4
http://doi.org/10.3390/ijerph17010089
http://doi.org/10.1108/GS-03-2020-0033
http://doi.org/10.1007/s42524-020-0133-1
http://doi.org/10.1016/j.cie.2021.107283
http://doi.org/10.1109/3468.983429
http://doi.org/10.5897/AJBM11.2267
http://doi.org/10.1109/TSMCB.2010.2072918
http://doi.org/10.1016/j.ijar.2009.06.004
http://doi.org/10.1002/int.22060
http://doi.org/10.1016/j.ins.2019.10.013
http://doi.org/10.3390/sym10090383
http://doi.org/10.1111/j.1745-493X.1966.tb00818.x
http://doi.org/10.1155/2021/7508673
http://doi.org/10.1065/lca2006.02.002
http://doi.org/10.1016/j.jclepro.2010.08.007
http://doi.org/10.12776/qip.v24i1.1407
http://doi.org/10.1016/j.ins.2016.06.021
http://doi.org/10.1016/j.ins.2016.08.034


Energies 2022, 15, 7420 20 of 20

24. Zhang, Y.; Xu, Z.; Wang, H.; Liao, H. Consistency-Based Risk Assessment with Probabilistic Linguistic Preference Relation. Appl.
Soft Comput. 2016, 49, 817–833. [CrossRef]

25. Wang, X.; Wang, J.; Zhang, H. Distance-based Multicriteria Group Decision-making Approach with Probabilistic Linguistic Term
Sets. Expert Syst. 2019, 36, e12352. [CrossRef]

26. Lin, M.; Chen, Z.; Liao, H.; Xu, Z. ELECTRE II Method to Deal with Probabilistic Linguistic Term Sets and Its Application to Edge
Computing. Nonlinear Dyn. 2019, 96, 2125–2143. [CrossRef]

27. Pan, L.; Ren, P.; Xu, Z. Therapeutic Schedule Evaluation for Brain-Metastasized Non-Small Cell Lung Cancer with A Probabilistic
Linguistic ELECTRE II Method. Int. J. Environ. Res. Public Health 2018, 15, 1799. [CrossRef]

28. Bai, C.; Zhang, R.; Qian, L.; Wu, Y. Comparisons of Probabilistic Linguistic Term Sets for Multi-Criteria Decision Making.
Knowl.-Based Syst. 2017, 119, 284–291. [CrossRef]

29. Liu, P.; Li, Y. The PROMTHEE II Method Based on Probabilistic Linguistic Information and Their Application to Decision Making.
Informatica 2018, 29, 303–320. [CrossRef]

30. Zhang, X.; Xing, X. Probabilistic Linguistic VIKOR Method to Evaluate Green Supply Chain Initiatives. Sustainability 2017, 9, 1231. [CrossRef]
31. Wu, X.; Liao, H. An Approach to Quality Function Deployment Based on Probabilistic Linguistic Term Sets and ORESTE Method

for Multi-Expert Multi-Criteria Decision Making. Inf. Fusion 2018, 43, 13–26. [CrossRef]
32. Mao, X.-B.; Wu, M.; Dong, J.-Y.; Wan, S.-P.; Jin, Z. A New Method for Probabilistic Linguistic Multi-Attribute Group Decision

Making: Application to the Selection of Financial Technologies. Appl. Soft Comput. 2019, 77, 155–175. [CrossRef]
33. Liu, P.; You, X. Linguistic Neutrosophic Partitioned Maclaurin Symmetric Mean Operators Based on Clustering Algorithm and

Their Application to Multi-Criteria Group Decision-Making. Artif. Intell. Rev. 2020, 53, 2131–2170. [CrossRef]
34. Wu, X.; Liao, H.; Xu, Z.; Hafezalkotob, A.; Herrera, F. Probabilistic Linguistic MULTIMOORA: A Multicriteria Decision Making

Method Based on the Probabilistic Linguistic Expectation Function and the Improved Borda Rule. IEEE Trans. Fuzzy Syst. 2018,
26, 3688–3702. [CrossRef]

35. Kobina, A.; Liang, D.; He, X. Probabilistic Linguistic Power Aggregation Operators for Multi-Criteria Group Decision Making.
Symmetry 2017, 9, 320. [CrossRef]

36. Liang, D.; Kobina, A.; Quan, W. Grey Relational Analysis Method for Probabilistic Linguistic Multi-Criteria Group Decision-
Making Based on Geometric Bonferroni Mean. Int. J. Fuzzy Syst. 2018, 20, 2234–2244. [CrossRef]

37. Feng, X.; Zhang, Q.; Jin, L. Aggregation of Pragmatic Operators to Support Probabilistic Linguistic Multi-Criteria Group
Decision-Making Problems. Soft Comput. 2020, 24, 7735–7755. [CrossRef]

38. Qin, J.; Liu, X. An Approach to Intuitionistic Fuzzy Multiple Attribute Decision Making Based on Maclaurin Symmetric Mean
Operators. J. Intell. Fuzzy Syst. 2014, 27, 2177–2190. [CrossRef]

39. Liu, P.; Li, Y. Multi-Attribute Decision Making Method Based on Generalized Maclaurin Symmetric Mean Aggregation Operators
for Probabilistic Linguistic Information. Comput. Ind. Eng. 2019, 131, 282–294. [CrossRef]

40. Dutta, B.; Guha, D. Partitioned Bonferroni Mean Based on Linguistic 2-Tuple for Dealing with Multi-Attribute Group Decision
Making. Appl. Soft Comput. 2015, 37, 166–179. [CrossRef]

41. Liu, P.; Li, Y. A Novel Decision-Making Method Based on Probabilistic Linguistic Information. Cogn. Comput. 2019, 11, 735–747. [CrossRef]

http://doi.org/10.1016/j.asoc.2016.08.045
http://doi.org/10.1111/exsy.12352
http://doi.org/10.1007/s11071-019-04910-0
http://doi.org/10.3390/ijerph15091799
http://doi.org/10.1016/j.knosys.2016.12.020
http://doi.org/10.15388/Informatica.2018.169
http://doi.org/10.3390/su9071231
http://doi.org/10.1016/j.inffus.2017.11.008
http://doi.org/10.1016/j.asoc.2019.01.009
http://doi.org/10.1007/s10462-019-09729-0
http://doi.org/10.1109/TFUZZ.2018.2843330
http://doi.org/10.3390/sym9120320
http://doi.org/10.1007/s40815-017-0374-2
http://doi.org/10.1007/s00500-019-04393-6
http://doi.org/10.3233/IFS-141182
http://doi.org/10.1016/j.cie.2019.04.004
http://doi.org/10.1016/j.asoc.2015.08.017
http://doi.org/10.1007/s12559-019-09648-w

	Introduction 
	Literature Review 
	Supplier Evaluation Manufacturing 
	Probabilistic Linguistic Information 
	Aggregation Operator 

	Methodology 
	Partitioned Maclaurin Symmetric Mean Aggregation Operator 
	Probabilistic Linguistic Partitioned Maclaurin Symmetric Mean Aggregation Operator 
	Probabilistic Linguistic Weighted Partitioned Maclaurin Symmetric Mean Aggregation Operator 
	A Method for Decision Making That Is Based on the WPLPMSM Operator 

	Case Study and Discussion 
	Application in the Evaluation of Green Suppliers 
	The Influence of the Parameters  
	Comparison and Sensitivity Analysis 

	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	References

