Possibilities of Using Zeolites Synthesized from Fly Ash in Adsorption Chillers
Abstract
:1. Introduction
2. Material and Methods
2.1. Zeolites Preparation Methods
2.2. Surface Area Analysis
2.3. Phase Analysis
2.4. Morphology Analysis and Semi-Quantitative Analysis of Synthesised Zeolites Using Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM–EDS)
2.5. Water Adsorption Isotherm Determination
3. Results and Discussion
3.1. Sample Characterization—Surface Area Analysis
3.2. Sample Characterization—Morphology Analysis and Semi-Quantitative Analysis of Synthesised Zeolites Using Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM–EDS)
3.3. Sample Characterization—Phase Analysis
3.4. Adsorption Isotherm and Potential Use in Adsorption Chiller
3.4.1. Silica Gel
3.4.2. Synthesized Na-A Zeolite (12 h)
3.4.3. Synthesized Na-A Zeolite (24 h)
3.4.4. Synthesized 13X Zeolite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, R.; Wang, L.; Wu, J. Adsorption Refrigeration Technology: Theory and Application, 1st ed.; Wiley: Wiley, NJ, USA, 2014. [Google Scholar] [CrossRef]
- IEA. Cooling. Available online: https://www.iea.org/reports/cooling (accessed on 23 January 2021).
- IEA. The Future of Cooling. Available online: https://www.iea.org/reports/the-future-of-cooling (accessed on 23 January 2021).
- IEA. Explore Energy Data by Category, Indicator, Country or Region. Available online: https://www.iea.org/data-and-statistics?country=WORLD&fuel=Electricity%20and%20heat&indicator=ElecGenByFuel (accessed on 23 January 2021).
- Wolak, E.; Kraszewski, S. An overview of adsorptive processes in refrigeration systems. In Proceedings of the 1st International Conference on the Sustainable Energy and Environment Development (SEED), Krakow, Poland, 17–19 May 2016; Volume 10, p. 00104. [Google Scholar] [CrossRef] [Green Version]
- Lenntech. Zeolite Structure. Available online: https://www.lenntech.pl/zeolites-structure-types.htm#:~:text=Zeolites%20are%20three%2Ddimensional%2C%20microporous,other%20through%20shared%20oxygen% (accessed on 23 January 2021).
- Moshoeshoe, M.; Tabbiruka, M.S.N.; Obuseng, V. A Review of the Chemistry, Structure, Properties and Applications of Zeolites. Am. J. Mater. Sci. 2017, 7, 196–221. [Google Scholar] [CrossRef]
- Julbe, A.; Drobek, M. Zeolite A Type. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Ríos, C.A.; Williams, C.D.; Castellanos, O.M. Crystallization of low silica Na-A and Na-X zeolites from transformation of kaolin and obsidian by alkaline fusion. Ing. Compet. 2012, 14, 9–22. [Google Scholar]
- Fruijtier-Pölloth, C. The safety of synthetic zeolites used in detergents. Arch. Toxicol. 2009, 83, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, M.; Modarress, H. The effects of structural parameters of zeolite on the adsorption of hydrogen: A molecular simulation study. Mol. Simul. 2012, 38, 1038–1047. [Google Scholar] [CrossRef]
- Julbe, A.; Drobek, M. Zeolite X: Type. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Georgiev, D.; Bogdanov, B.; Markovska, I.; Hristov, Y. A Study on the Synthesis and Structure of Zeolite NaX. J. Chem. Technol. Metall. 2013, 48, 168–173. [Google Scholar]
- Ma, B.; Lothenbach, B. Synthesis, characterization, and thermodynamic study of selected Na-based zeolites. Cem. Concr. Res. 2020, 135, 106111. [Google Scholar] [CrossRef]
- Indira, V.; Abhitha, K. A review on recent developments in Zeolite A synthesis for improved carbon dioxide capture: Implications for the water-energy nexus. Energy Nexus 2022, 7, 100095. [Google Scholar] [CrossRef]
- DVS Vacuum-Surface Measurement System (Device Brochure). Available online: https://www.surfacemeasurementsystems.com/wpcontent/uploads/2017/08/DVS_Vacuum.pdf (accessed on 14 April 2021).
- Yahia, M.B.; Torkia, Y.B.; Knani, S.; Hachicha, M.A.; Khalfaoui, M.; Lamine, A.B. Models for Type VI Adsorption Isotherms from a Statistical Mechanical Formulation. Adsorpt. Sci. Technol. 2013, 31, 341–357. [Google Scholar] [CrossRef]
- Sotomayor, F.J.; Cychosz, K.A.; Thommes, M. Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies. Acc. Mater. Surf. Res. 2018, 3, 34–50. [Google Scholar]
- Ambarita, H.; Kawai, H. Experimental study on solar-powered adsorption refrigeration cycle with activated alumina and activated carbon as adsorbent. Case Stud. Therm. Eng. 2016, 7, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; He, Z.; Chua, H.T. Performance simulation of multi-bed silica gel-water adsorption chillers. Int. J. Refrig. 2015, 52, 32–41. [Google Scholar] [CrossRef]
- Sayfikar, M.; Behbahani-nia, A. Study of the performance of a solar adsorption cooling system. Energy Equip. Syst. 2013, 1, 75–90. [Google Scholar] [CrossRef]
- Brites, G.; Costa, J.; Costa, V. Sustainable Refrigeration Based on The Solar Adsorption Cycle. Available online: https://inovenergy.inovcluster.pt/media/29412/SUSTAINABLE_REFRIGERATION_BASED_ON_THE_SOLAR_ADSORPTION_CYCLE.pdf (accessed on 14 April 2021).
- Uyun, A.S.; Akisawa, A.; Miyazaki, T.; Ueda, Y.; Kashiwagi, T. Numerical analysis of an advanced three-bed mass recovery adsorption refrigeration cycle. Appl. Therm. Eng. 2009, 29, 2876–2884. [Google Scholar] [CrossRef]
- Saha, B.B.; Koyama, S.; Lee, J.B.; Kuwahara, K.; Alam, K.C.A.; Hamamoto, Y.; Akiswa, A.; Kashiwagi, T. Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller. Int. J. Multiph. Flow 2003, 29, 1249–1263. [Google Scholar] [CrossRef]
- Sharafian, A.; Mehr, S.M.N.; Huttema, W.; Bahrami, M. Effects of different adsorber bed designs on in-situ water uptake rate measurements of AQSOA FAM-Z02 for vehicle air conditioning applications. Appl. Therm. Eng. 2016, 98, 568–574. [Google Scholar] [CrossRef]
- Khanam, M.; Jribi, S.; Miyazaki, T.; Saha, B.B.; Koyama, S. Energy Analysis and Performance Evaluation of the Adsorption Refrigeration System. Energies 2018, 11, 1499. [Google Scholar] [CrossRef] [Green Version]
- Sitorus, T.B.; Napitupulu, F.H.; Ambarita, H. A Study on Adsorption Refrigerator Driven by Solar Collector Using Indonesian Activated Carbon. J. Eng. Technol. Sci. 2017, 49, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Sharafian, A.; Dan, P.C.; Huttema, W.; Bahrami, M. Performance analysis of a novel expansion valve and control valves designed for a waste heat-driven two-adsorber bed adsorption cooling system. Appl. Therm. Eng. 2016, 100, 1119–1129. [Google Scholar] [CrossRef]
- Myat, A.; Choon, N.K.; Thu, K.; Kim, Y.D. Experimental investigation on the optimal performance of Zeolite–water adsorption chiller. Appl. Energy 2013, 102, 582–590. [Google Scholar] [CrossRef]
- Schawe, D. Theoretical and Experimental Investigations of an Adsorption Heat Pump with Heat Transfer between Two Adsorbers. Ph.D. Dissertation, Process and Biotechnology, Faculty of Energy, University of Stuttgart, Stuttgart, Germany, 2001. [Google Scholar] [CrossRef]
- Trindade, M.V. Modelling and Optimization of an Adsorption Cooling System for Automotive Applications. Ph.D. Dissertation, Doctoral Program of Energy Technology, Universidad Politécnica De Valencia, Valencia, Spain, 2015. Available online: https://riunet.upv.es/handle/10251/54120 (accessed on 9 September 2022).
- Sharma, P.; Song, J.S.; Han, M.; Cho, C.H. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties. Sci. Rep. 2016, 6, 22734. [Google Scholar] [CrossRef] [PubMed]
Na-A Zeolite (12 h), mol% | Na-A Zeolite (24 h), mol% | 13X Zeolite, mol% | |
---|---|---|---|
Na | 30.6 | 22.1 | 22.7 |
Si | 28.4 | 19.5 | 37.8 |
Al | 24.3 | 16.1 | 21.7 |
Si/Al | 1.17 | 1.21 | 1.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mlonka-Mędrala, A.; Hasan, T.; Kalawa, W.; Sowa, M.; Sztekler, K.; Pinto, M.L.; Mika, Ł. Possibilities of Using Zeolites Synthesized from Fly Ash in Adsorption Chillers. Energies 2022, 15, 7444. https://doi.org/10.3390/en15197444
Mlonka-Mędrala A, Hasan T, Kalawa W, Sowa M, Sztekler K, Pinto ML, Mika Ł. Possibilities of Using Zeolites Synthesized from Fly Ash in Adsorption Chillers. Energies. 2022; 15(19):7444. https://doi.org/10.3390/en15197444
Chicago/Turabian StyleMlonka-Mędrala, Agata, Tarikul Hasan, Wojciech Kalawa, Marcin Sowa, Karol Sztekler, Moises Luzia Pinto, and Łukasz Mika. 2022. "Possibilities of Using Zeolites Synthesized from Fly Ash in Adsorption Chillers" Energies 15, no. 19: 7444. https://doi.org/10.3390/en15197444
APA StyleMlonka-Mędrala, A., Hasan, T., Kalawa, W., Sowa, M., Sztekler, K., Pinto, M. L., & Mika, Ł. (2022). Possibilities of Using Zeolites Synthesized from Fly Ash in Adsorption Chillers. Energies, 15(19), 7444. https://doi.org/10.3390/en15197444