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Abstract: Renewable energy is being adopted worldwide, and the proportion of offshore wind tur-
bines is increasing. Offshore wind turbines operate in harsh weather conditions, resulting in various
failures and high maintenance costs. In this paper, a condition diagnosis model for condition moni-
toring of an offshore wind turbine has been developed. The generator, main bearing, pitch system,
and yaw system were selected as components subject to the condition monitoring by considering the
failure rate and downtime of the wind turbine. The condition diagnosis model works by comparing
real-time and predictive operating data of the wind turbine, and about four years of Supervisory
Control and Data Acquisition (SCADA) data from a 2 MW wind turbine was used to develop the
model. A deep neural network and an artificial neural network were used as machine learning to
predict the operational data in the condition diagnosis model, and a confusion matrix was used to
measure the accuracy of the failure determination. As a result of the condition monitoring derived by
inputting SCADA data to the designed system, it was possible to maintain the failure determination
accuracy of more than 90%. The proposed condition monitoring system will be effectively utilized
for the maintenance of wind turbines.

Keywords: correlation analysis; artificial neural network; machine learning; operations and maintenance;
wind turbine

1. Introduction

Currently, the seriousness of global warming is emerging around the world, and many
countries are making various efforts to reduce CO2 emissions, the cause of global warming,
through the Kyoto Protocol and the Paris Agreement on Climate Change [1]. Historically,
nuclear power generation has been converted from the traditional fossil fuel-based energy
system to reduce the burden of fossil fuel depletion and environmental problems and is
playing a leading role in the global electricity market. However, after the Chernobyl and
Fukushima nuclear accidents, public preference for the nuclear power plants has declined
due to safety concerns. In 40 out of 42 countries surveyed, the preference for nuclear
power decreased, and some European countries have decided not to build additional
nuclear power plants [2,3]. Reducing the development of nuclear power plants has raised
expectations and capacity for new and renewable energy sources as an alternative [4]. New
energy that uses hydrogen or changes existing fossil fuels to be environmentally friendly is
being put to practical use in the form of IGCC (Integrated Gasification Combined Cycle)
and hydrogen fuel cells, and CO2 capture and storage technology is being developed [5].
In addition, efforts are being made to convert traditional fossil-fuel-based energy systems
to renewable-based energy systems such as hydro, wind and solar power. According to the
statistics of the International Energy Agency (IEA), the proportion of new and renewable
energy consumption has steadily increased, increasing by 41.59% from 10 years ago in
2017 [6], and wind power accounts for 36% of the total increase. It is growing much
faster than other renewable power generations such as solar power (27%), hydro (22%)
and biomass (12%) [7,8]. In addition, according to a report by the IEA, it is predicted

Energies 2022, 15, 464. https://doi.org/10.3390/en15020464 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15020464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-4004-5986
https://doi.org/10.3390/en15020464
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15020464?type=check_update&version=1


Energies 2022, 15, 464 2 of 16

that renewable energy will account for nearly 30% of global electricity in 2023, of which
wind will account for 6% of the total renewable energy [9]. In particular, the proportion
of offshore wind turbines that have excellent wind conditions and can mitigate problems
such as noise pollution during operation is increasing [10–12].

Wind turbines are exposed to highly variable weather conditions such as wind, tropical
heat, hail and snow. In particular, offshore wind turbines are exposed to harsher weather
conditions than onshore due to the salinity of the sea and strong winds. These weather
conditions add loads to wind turbines and cause various types of failures due to extreme
mechanical stress [13–15]. In the case of a wind turbine failure, not only repair costs but
also costs due to power generation interruption are burdened. The maintenance cost of
offshore wind turbines, which have poor operating conditions compared to onshore ones,
accounts for about 30% of the total energy production cost [16]. Therefore, the importance
of the maintenance of wind turbines is increasing [17–19]. The maintenance consists
of post-maintenance to repair failures of wind turbines and predictive and preventive
maintenances to prevent failures. Preventive maintenance is the replacement of parts on
a regular schedule. Predictive maintenance uses a condition monitoring technology to
check the performance of machines in operation, detect failures, and make repairs before
they occur. As a result, the predictive maintenance can prevent catastrophic failures by
predicting failures early and can reduce the cost of parts and consumables compared to
preventive maintenance. It also has the advantage of reducing downtime by shortening
parts delivery time and repair preparation time, which in turn leads to improved reliability.

The predictive maintenance requires monitoring procedures to observe faults and
identify changes to wind turbines in operation. The monitoring system can be used to
measure and analyze the vibration and temperature of the wind turbine, identify the
conditions before failure, and establish appropriate preventive measures, thereby reducing
the overall maintenance process and cost [20]. Recently, in various industrial fields such as
rotating machines and cutting machines, many studies have been conducted on condition
monitoring systems using machine learning that do not require complex physical equations
between components and have high accuracy [21,22].

Along with the increase in power generation systems using renewable energy, a large-
scale wind power generator condition monitoring system using machine learning is also
being developed. The wind turbine condition monitoring system, which is currently being
developed considering the priority of failure rate, is concentrated on the generator and
gearbox among various components of the wind turbine [23,24]. Clifton, A. et al. [23] per-
formed a condition monitoring to predict the output of wind turbines using the regression
tree method, which combines the regression method and the decision tree method among
machine learning methods. For predictions, data from a 1.5 MW wind turbine simulator
using the aero structural simulator FAST and the stochastic turbulence simulator Turbsim
were used. Rashid et al. [24] conducted a study on the condition monitoring of gearboxes
using machine learning techniques. Among various machine learning techniques, bag-
ging regression was used and the temperature of the gearbox oil was measured to predict
gearbox failure. In terms of the failure rate and downtime of wind turbines, not only the
generator and gearbox but also the yaw system and pitch-system-related components are
becoming important monitoring targets [25]. For example, Dao, C. et al. [25] reported that
the failure rate of offshore wind turbines was 25% for the pitch system, which was higher
than for generators (16.7%) and gearboxes (8.3%). Therefore, for the proper maintenance
of the wind turbine, not only the generator and gearbox but also other components of the
wind turbine should be additionally considered in the condition monitoring system.

In this paper, a condition diagnosis model of the condition monitoring system for the
generator, main bearing, yaw system, and pitch system, which is helpful in the maintenance
of offshore wind turbines, has been developed, and the effectiveness was verified using real-
time data. The condition diagnosis model consists of selecting the components of the wind
turbine to be diagnosed, selecting the data required for diagnosis, designing a machine
learning-based condition prediction procedure, and selecting the failure determination
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criteria. The criteria for the selecting wind turbine components are the failure rate and
downtime. As a result of investigating the failure rate and downtime of each component of
the wind turbine, the generator, main bearing, pitch system, and yaw system were selected
for monitoring. The condition diagnosis model works by comparing the real-time and
predictive operation data of the wind turbine, and the prediction of the operation data of
the wind turbine utilizes the real-time operation data of the turbine. Supervisory Control
and Data Acquisition (SCADA) data of about four years of 2 MW wind power generator
was used as the operating data for constructing the condition prediction procedure of
the condition diagnosis model. The type of SCADA data of the wind turbine to be input
into the machine learning was selected by referring to the Pearson correlation coefficient
between the operation data to be predicted [26]. We used neural networks for machine
learning to predict the condition of wind turbine components. In addition, a confusion
matrix was used to set the abnormal operation criteria of the condition diagnosis model by
referring to Programmable Logic Controller (PLC) state among the SCADA data and to
measure the abnormal operation judgment accuracy of the diagnostic model [27].

As a result of verifying the performance of the condition monitoring system using the
condition diagnosis model proposed in this study with SCADA data for about four months,
the failure determination accuracy for all components of the wind turbine was over 90%.
The condition monitoring system will be effectively used for the maintenance of offshore
wind turbines in the future.

2. Configurations of the Condition Monitoring System
2.1. Functionalities of the Condition Monitoring System

The wind turbine condition monitoring system consists of a real-time monitoring
module and a condition diagnosis model. The real-time monitoring module collects
environmental data such as wind speed and turbine ambient temperature, component
status data such as generator temperature and blade pitch angle, and operating data such
as output current and power of the wind turbine in real-time. The data used by the
monitoring module is collected by using additionally installed sensors or SCADA systems
for the condition monitoring system. SCADA systems are installed in most wind turbines
and collect data to monitor the operation of wind turbines. Therefore, if the SCADA
system is used for the real-time monitoring module, there is no need to install additional
sensors, thereby reducing the construction cost of the condition monitoring system. The
condition monitoring system in this paper was designed using data collected for about four
years from a SCADA system of a 2 MW wind turbine that outputs an average of 1 data
every 10 min.

The condition diagnosis model of the condition monitoring system uses the data of the
wind turbine collected through the real-time monitoring module to determine the operating
condition of the wind turbine. As methods used for condition diagnosis, a real-time order
analysis, a filtering by frequency band, a machine learning, etc. are used. Recently, by
utilizing machine learning, a condition diagnosis model with high prediction accuracy is
being designed without the need for complex physical equations between data of wind
turbines. The data with the condition of the wind turbine is predicted using machine
learning, and the predicted data is used to diagnose the condition of the wind turbine.
In order to diagnose the condition of a wind turbine, appropriate diagnostic criteria are
required, and to select an appropriate diagnostic criterion, it is good to use data from the
start of operation of the turbine to the occurrence of a failure. The PLC state represents the
real-time operation condition of the wind turbine, and the operating condition includes
failures, maintenances, and normal operations.

Figure 1 shows the working process of the designed condition monitoring system.



Energies 2022, 15, 464 4 of 16

Figure 1. Working process of the condition monitoring system.

First, the condition diagnosis model designed with the SCADA data collected for
four years is imported into the condition monitoring system. The condition monitoring
model receives the real-time SCADA data and predicts and outputs the condition data of
each component. At this point, the absolute deviation between the predicted condition data
and the real-time condition data is measured. By comparing the deviation of the condition
data with the abnormal operating deviation criteria, it is classified into the normal operation
and the abnormal operation. The monitoring process is performed every 10 min by the
SCADA data measured every 10 min.

2.2. Selection of the Wind Turbine Components for the Condition Monitoring System

A wind turbine consists of various components such as a generator, a drivetrain, and
a pitch system. When all components are considered in the condition monitoring system, it
is a great help for maintenance of a wind turbine. However, considering all components
of a wind turbine, there is a limit to the cost due to the installation of sensors and the
development of a condition monitoring system. Therefore, it is necessary to select the
appropriate components to be considered in the condition monitoring system. To design
an optimal condition monitoring system for maintenance, the failure rate and downtime of
wind turbines were considered [25]. Maintenance costs can be further reduced by selecting
components with high failure rates and downtime. Figure 2 depicts the proportion of each
component among the total failures occurring in offshore wind turbines and the proportion
of each component in the downtime due to the failure.
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Figure 2. Failure rates and downtime rates of offshore wind turbine components: (a) each compo-
nent’s share of the total failures; (b) each component’s percentage of the total downtime.

In Figure 2a, the pitch system accounted for 25% of all wind turbine failures, and the
generator took the second place with 16.7%. The gearbox, yaw system, control system,
blade, and drivetrain were the same with a failure rate of 8.3%. In Figure 2b, among
the wind turbine components, the gearbox and the generator accounted for the highest
downtime rate of 33.3%. Next, the blades accounted for 22.2% and the drivetrains accounted
for 11.1% of downtime. Considering the failure rate and downtime, the generator, main
bearing, pitch system, and yaw system were selected as the target components of the
condition monitoring system. Because the target of the condition monitoring system to be
implemented in this study is a direct-driven offshore wind turbine in which the driving
force of the rotor is transmitted directly to the generator, the gearbox was excluded from
consideration, and the bearing of the main shaft was subject to monitoring because it would
receive a high load.

2.3. Design of the Condition Diagnosis Model

The design of the condition diagnosis model proceeds with the selection of condition
data of each component, the data preprocessing, the machine learning for condition data
prediction, and the selection of abnormal operation judgment criteria.

2.3.1. Selection of Predictive Data for the Condition Diagnosis Model

It is the process of selecting data representing the condition of the wind turbine
components. The SCADA data of a 2 MW wind turbine was used to design the wind turbine
condition monitoring system. Each SCADA data consists of about 140 types of operation
statuses. Among them, the SCADA data related to the status of generator, main bearing,
pitch system, and yaw system handled by the condition monitoring system were selected.
Table 1 represents the SCADA data selected as the condition data of the components.

Table 1. The SCADA data selected as the condition data of the components.

Components of Wind Turbine Condition Data

Generator Temperature of the generator
Main bearing Temperature of the main bearing
Yaw system Deviation of wind direction angle relative to nacelle position
Pitch system Blade pitch angle

The output of the generator is mostly limited by the temperature rise, such as the
temperature rise of the field winding and the armature winding, the temperature rise at the
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iron core edge of the armature, and the temperature rise due to the failure of the cooling
device, so the temperature was selected as the condition data. Moreover, in the case of
the main bearing, the temperature rises due to large loads and imbalances, which can
cause cracks and damage, so the bearing temperature was selected as the condition data to
prevent damage. The pitch system and the yaw system, which adjust the angle of the blade
and nacelle according to the real-time wind speed and direction, are abnormally changed
in the angle of the blade and the nacelle due to a malfunction of the pitch controller or wind
vane during operation. Therefore, the blade pitch angle and wind direction angle deviation
were selected as the condition data for the pitch and yaw system as shown in Table 1.

2.3.2. Data Preprocessing of the Condition Diagnosis Model

The SCADA data of the condition diagnosis model should be preprocessed. Prepro-
cessing proceeds with data selection under the normal operation status, the SCADA data
selection related to condition data and data scaling. The PLC state was used to distinguish
the normal operation status. The condition diagnosis model uses the SCADA data cor-
related with the condition data of each component. In order to improve the prediction
accuracy of condition data through machine learning, it is necessary to select the SCADA
data with high correlation with condition data. The Pearson correlation coefficient is a
statistical method that measures the magnitude and direction of the linear relationship
between the condition data of each component and the SCADA data, and the Pearson corre-
lation coefficient is the formal method of measuring correlation and is still the most widely
used [26]. Thus, the Pearson correlation coefficient was used to measure the correlation in
this study and is expressed in Equation (1) [27].

r =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi − Y

)2
(1)

In Equation (1), r is the Pearson correlation coefficient, n is the number of variables,
Xi, Yi are each variable, and X, Y are the average of each variable. The correlation
coefficient is distributed between −1 and +1, and the closer the relationship between
the two variables, the closer to the extreme value. The SCADA data with correlation
coefficients close to −1 or 1 were used. The data scaling was performed on the SCADA data
selected using the correlation coefficient. Figure 3 shows the SCADA data for 1000 min.
As shown in Figure 3a,b, the data range of wind speed is 1.79~6.85 m/s, and the range of
system active power is 0~971.34 W, respectively.

Figure 3. SCADA data for 1000 min: (a) the data range of wind speed; (b) the range of system
active power.

If the range of the SCADA data is different, the accuracy of the condition prediction is
affected, so the range of the SCADA data is adjusted to a certain level through data scaling.
For data scaling, there are scalers such as Normalizer, Standard scaler, and MinMax scaler,
and a scaler suitable for the data type and machine learning technique is used in general.
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2.3.3. Machine Learning for the Prediction of Condition Data

The machine learning predicts the condition data using the preprocessed SCADA data.
The configuration of machine learning is shown in Figure 4.

Figure 4. Configuration of the machine learning.

The machine learning uses supervised learning when there are output variables for
input variables, and unsupervised learning when there are no output variables for input
variables. In addition, supervised learning is divided into regression and classification
based on whether the type of the output variable is a numeric variable or a categorical
variable. The input variable used for the machine learning of the condition diagnosis model
is the SCADA data, and the output variable is the condition data, which is a numerical
variable, so the machine learning used a regression model of supervised learning. The
regression models include methods such as a regression tree, bagged regression technique,
and neural network. Among them, the neural network was used to design the condition
diagnosis model. The neural network is the machine learning technique created by referring
to the way the human brain processes information, and given sufficient computation time,
data, and parameter tuning, it outperforms other machine learning methods. According to
the number of the hidden layers, the neural networks are divided into an artificial neural
network (ANN) composed of a single layer and a deep neural network (DNN) composed
of two or more layers. Figure 5 shows the structure of the neural network used to predict
the condition data [28].

Figure 5. The structure of the neural network of the condition diagnostic model.

The neural network of the condition diagnosis model uses the SCADA data as the
input variables and predicts the condition data as the output variables. The parameters of
a neural network include the number of hidden layers, activation functions, and epochs.
As shown in Figure 5, the hidden layer between the input layer and the output layer is
composed of nodes and neurons, enabling the prediction of complex data. At least one
hidden layer is required for a neural network, and a neural network with multiple hidden
layers is called a deep neural network. A training accuracy changes according to the
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number of hidden layers. In order to determine the number of hidden layers with the
highest training accuracy, the training accuracy was measured by changing the number of
hidden layers from one to five. The activation function creates nonlinearities in the training
process of the neural network, making it possible to train complex patterns. Figure 6 depicts
activation functions. Activation functions were compared with a hyperbolic tangent (Tanh)
and a rectified linear unit (ReLU). The Tanh is in the form of Figure 6a, has the same
characteristics as sigmoid, and the output value is between −1 and 1 depending on the
input variable. The ReLU is in the form of Figure 6b, which is a linear function for positive
input variables and zero for negative input variables.

Figure 6. Activation functions: (a) hyperbolic tangent; (b) rectified linear unit.

The epoch represents the number of learning iterations, and as the epoch increases,
the number of iterations of learning increases. Figure 7 shows the learning loss when the
epoch is increased from 0 to 100.

Figure 7. Training loss graph according to the size of the epoch.

When the epoch increases, the training loss decreases, but the training loss remains
constant from a certain epoch or more. In the epoch, there is little change in the training
loss, and the value of the moment similar to the training loss of validation is used.

2.3.4. Selection of Abnormal Operation Criteria for the Condition Diagnosis Model

The abnormal operation of the condition diagnosis model is determined by comparing
the real-time condition data with the predicted condition data. The real-time condition
data and the predicted condition data are measured using the SCADA data that is put



Energies 2022, 15, 464 9 of 16

out every 10 min. Therefore, the abnormal operation of the condition diagnosis model is
judged every 10 min. When the deviation value between the real-time condition data and
the predicted condition data increases by more than the abnormal operation criteria, it is
determined as abnormal operation of the wind turbine. The abnormal operation criteria
were selected using the condition data and PLC state. The abnormal operation criteria were
set by adjusting the standard deviation of the real-time condition data and the predicted
condition data by an integer multiple until the moment when the condition diagnosis
accuracy is high. The condition diagnosis accuracy was measured using a confusion matrix.
The confusion matrix is a measure for judging the accuracy of data classification, and its
structure is as shown in Figure 8.

Figure 8. Structure of the confusion matrix.

The confusion matrix consists of two dimensions, including the dimension of the real-
time operation state and the dimension of the predicted operation state. In the confusion
matrix, when the real-time operation is normal, it consists of True positive (TP), which is
a diagnosis success, and False negative (FN), which is a diagnosis failure. If the real-time
operation is abnormal, it is composed of True negative (TN), which is a successful diagnosis,
and False positive (FP), which is a diagnosis failure. The method of measuring the accuracy
of the condition diagnosis using the confusion matrix is as shown in Equation (2) [29].

Accuracy =
TP + TN

FP + TP + TN + FN
(2)

The accuracy of the condition diagnosis model is judged by the ratio of true positive
and true negative among the total operating state of the wind turbine.

3. Design of a Neural Network for Condition Data Prediction
3.1. Data Preprocessing

When designing the condition diagnosis model, the SCADA data of about four years
of 2 MW wind turbine was used. The number of stored SCADA data for about four years is
about 238,000. When training the neural network for the design of the condition diagnosis
model, the data in the normal operation of the wind turbine among the SCADA data was
used. The condition of the wind turbine was classified using the PLC state. The PLC state
indicates the real-time operation status of the wind turbine, receives the temperature, wind
speed, output power, etc. around the turbine, and classifies the condition through the logic
appropriate to the input. As shown in Table 2, the PLC state consists of 14 types such as
Error, Production, and Setup.
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Table 2. PLC states of wind turbine.

Num. PLC State

1 Standby
2 Error
3 Grid loss
4 Initialization
5 Ready
6 Start up
7 Low temperature
8 Production
9 Setup
10 Health check
11 High wind speed
12 Service mode
13 Slow stop
14 Reset from emergency stop

Of the PLC states, the following three states, Ready, Startup, and Production were
classified as normal operations, and the remaining states were classified as abnormal
operations. Among the four years of SCADA data, the number of normal operation data
is 178,000. By using the classified normal operation data, the SCADA data related to
the condition data of each component was selected; data scaling and condition prediction
model design were carried out. In order to select the SCADA data that has a high correlation
with the condition data, the Pearson correlation coefficient was used. The SCADA data were
classified into 10% units for each section according to the correlation coefficient between
the condition data and the SCADA data. The classified SCADA data selects high-accuracy
SCADA data when training the neural network. As a data scaling method, the training
accuracy was compared using the Standard and MinMax scalers [30]. The Standard scaler
is obtained by Equation (3) by scaling to a value with a Gaussian normal distribution where
the mean of each of the data is 0 and the variance is 1.

xi_new =
xi − µ

σ
(3)

In Equation (3), µ = Mean and σ = Standard Deviation. The MinMax scaler is
obtained by Equation (4) by changing the basic estimate of the corresponding element to 0
for each component, the most extreme value to 1, and scaling the data values to a value in
the range between 0 and 1.

xi_new =
xi − xmin

xmax − xmin
(4)

In Equation (4), xmin is the minimum value of data, and xmax is the maximum value of
data. After comparing the training accuracy through the neural network using the Standard
scaler and the MinMax scaler, a scaler with higher accuracy was used.

3.2. Result of Parameter Selection of the Neural Network for the Condition Diagnosis Model

The SCADA data classified according to the Pearson correlation coefficient was used
for training the neural network by section. The training accuracy of the neural network was
measured using mean absolute error (MAE). Table 3 shows the training accuracy results of
the SCADA data for each section classified according to the Pearson correlation coefficient
with the condition data for each component. There was no SCADA data measured in the
section where the correlation coefficient was 50% with the condition data of the yaw system.
Therefore, the accuracy according to the 50% or higher correlation coefficient of the yaw
system in Table 3 could not be measured.
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Table 3. Training accuracy results of the SCADA data.

Correlation Coefficient Generator Main Bearing Yaw System Pitch System

80% or more 2.45 1.45 4.67 1.8
70% or more 2.11 1.09 4.95 1.26
60% or more 1.66 1.3 4.83 1.36
50% or more 1.67 1.39 - 1.44

In Table 3, when the SCADA data with a correlation coefficient of 60% or more was
used according to the correlation coefficient of the generator, the MAE showed the lowest
error of 1.66, and the number of SCADA data in the corresponding section was 10. When
the SCADA data with a correlation coefficient of 70% or more was used for the main
bearing, the MAE showed the lowest error of 1.09, and the number of SCADA data in the
corresponding section was 8. When the SCADA data having a correlation coefficient of 80%
or higher was used, the MAE showed the lowest error of 4.67, and the number of SCADA
data in the corresponding section was 4. When the pitch system used the SCADA data
with a correlation coefficient of 70% or more, the MAE showed the lowest error of 1.26, and
the number of SCADA data in the corresponding section was 10. The data scaling was
performed using the SCADA data of the selected section. The scaler compared Standard
scaler and MinMax scaler. Table 4 shows the learning accuracy by scaling.

Table 4. Learning accuracy results according to the scaler.

Scaler Generator Main Bearing Yaw System Pitch System

Non scaler 1.66 1.09 4.67 1.26
Standard scaler 1.23 1.08 4.65 1.14
MinMax scaler 1.6 1.23 4.89 1.29

As a result of comparing the learning accuracy according to the scaler, all four compo-
nents showed low MAE when using the standard scaler, and the MinMax scaler showed
relatively higher MAE values. The data scaler, hidden layer, epoch, and activation function
with high learning accuracy were selected using the SCADA data of the selected section.
Parameters of the data scaling and the neural network were selected as shown in Table 5.

Table 5. Results of parameter selection of the neural network for each component.

Parameter Generator Main Bearing Yaw System Pitch System

Type of scaler Standard scaler
Num. hidden layer 5 1 3 3
Activation function Tanh ReLU Tanh Tanh

Num. epoch 200

The Standard scaler was selected as the scaler because it showed high accuracy. In the
case of hidden layers, accuracy does not increase just because the number of layers is large.
In the case of the main bearing, high accuracy was achieved in the ANN configuration with
one hidden layer, the generator with five layers of DNN, and the yaw system and pitch
system with three layers of DNN showed high accuracy. For the activation function, the
highest accuracy was derived when the ReLU was used for the main bearing, and high
accuracy was derived when the Tanh was used for the other three components. Epoch was
measured by increasing it from 50, and there was no significant change in the training loss
even when it was increased to 200 or more, so 200 was selected as the epoch. Using the
neural network, the abnormal operation criteria of the condition diagnosis model were
selected and the accuracy was judged.
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4. Diagnosis Results of the Condition Monitoring System
4.1. Selection of Abnormal Operating Deviation Criteria for the Condition Diagnosis

In order to diagnose the real-time operation of the wind turbine in the condition
diagnosis model, abnormal operating deviation criteria were used. Table 6 shows the
deviation criteria for the abnormal operation selected using the condition data and the
PLC state.

Table 6. Condition data for each part component and selected abnormal operating deviation criteria.

Components of the Wind Turbine Condition Data Abnormal Operating
Deviation Criteria

Generator Temperature of generator 6.18 ◦C
Main bearing Temperature of the main bearing 5.34 ◦C
Yaw system Deviation of wind direction angle relative to nacelle position 10.64◦

Pitch system Blade pitch angle 4.95◦

The deviation criterion for abnormal operation of each component is an integer mul-
tiple of the standard deviation between the real-time condition data and the predicted
condition data. Because the condition data of the generator and main bearing utilizes
temperature data, the abnormal operating deviation criterion is temperature data, and the
condition data of the pitch system and the yaw system uses angle data, so the abnormal
operating deviation criterion is the angle data. The accuracy of the designed condition
diagnosis model was measured using the selected abnormal operating deviation criteria.

4.2. Results of the Condition Monitoring of the Wind Turbine

The condition diagnosis of the wind turbine is performed using the abnormal operation
criteria selected for each component. Figure 9 shows the results of monitoring the operating
status of the SCADA data for about four months using the condition monitoring system.
The red dot indicates abnormal operation as the deviation of the condition data is more
than the abnormal operation criteria. The black dot indicates normal operation as the
deviation of the condition data is less than the abnormal operation criteria. Compared to
Figure 9a,b,d, more abnormal operations were found in Figure 9d, the measurement result
of the pitch system. The cause of the results of Figure 9d is that the turbine stopped at the
cut-in wind speed due to maintenance or error occurrence of the wind turbine.

Figure 9. Cont.
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Figure 9. Results of the condition monitoring, (a) generator; (b) main bearing; (c) yaw system;
(d) pitch system.

Table 7 shows the final condition diagnosis accuracy of the condition monitoring
system for each component. As shown in Table 7, the condition diagnosis accuracy of the
generator, main bearing, yaw system, and pitch system was measured to be over 90%.

Table 7. Accuracy of the condition diagnosis for each component of the condition monitoring system.

Generator Main Bearing Yaw System Pitch System

Accuracy 94.93% 93.51% 94.72% 93.61%
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As shown in Table 7, the diagnostic accuracy through the condition monitoring is ap-
proximately 93% for four components. In 7% of cases, the abnormal state of the component
was judged to be normal or the normal state was judged to be abnormal due to an incorrect
diagnosis. Because the designed condition monitoring system is an auxiliary means, the
operator’s additional judgment on the situation that has occurred is required.

5. Conclusions

In this paper, a real-time condition monitoring system for operation condition diagno-
sis of offshore wind turbines has been dealt with. For the components subject to condition
monitoring, the generator, main bearing, pitch system, and yaw system were selected in
consideration of the failure rate and downtime of the wind turbine, and the condition
diagnosis model was designed using the SCADA data of 2 MW wind power generator for
about four years. Among the SCADA data, the data with high correlation with condition
data was selected using the Pearson correlation coefficient. A neural network was applied
as a machine learning method to predict the condition data of each component of the
diagnosis model, and the neural network was designed by selecting parameters such as
activation function, number of hidden layers, and epoch. For high prediction accuracy,
the ANN with a single hidden layer for the main bearing, the DNN with three hidden
layers for the yaw system and pitch system, and the DNN with five hidden layers for the
generator have been designed. As the activation function used in the neural network of
each component, the activation function of the generator, yaw system, and pitch system
was selected as Tanh, and the activation function of the main bearing was selected as ReLU.
The deviation criteria for judging abnormal operation were selected using the PLC state of
the SCADA data and the condition data. The deviation criteria were selected 6.18 ◦C for
the generator, 5.34 ◦C for the main bearing, 10.64◦ for the yaw system, and 4.95◦ for the
pitch system, respectively. The condition monitoring of the SCADA data for four months
was conducted using the selected deviation criteria. As a result, the monitoring accuracy of
the main bearing was the lowest at 93.51%, and the monitoring accuracy of the generator
was measured the highest at 94.93%. The condition monitoring system of the offshore wind
turbine proposed in this study collects data of the real-time wind turbine and predicts the
operating condition of components. The predicted results are provided to the operator,
which will be a good reference for the operator to carry out the predictive maintenance of
the wind turbine. This notifies the operator of the situation before a serious failure of the
wind turbine occurs, and it can reduce downtime through components supply and repair
planning. It can also reduce the impact on surrounding components due to severe failure.
As a result, it is expected that the operational reliability of the offshore wind turbines
will be improved, and the economical maintenance will be possible through the condition
monitoring system.

Author Contributions: Conceptualization and methodology, J.P., M.-C.D.; software, J.P.; validation,
J.P., C.K.; investigation, J.P. and M.-C.D.; writing—original draft preparation, J.P.; writing—review
and editing, J.P., and C.K.; supervision, M.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Korea Institute of Energy Technology Evaluation and
Planning (KETEP) grant funded by the Korea government (MOTIE) (No. 20203010020050).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2022, 15, 464 15 of 16

Abbreviations

ANN Artificial neural network
DNN Deep neural network
IEA International Energy Agency
IGCC Integrated Gasification Combined Cycle
MAE Mean absolute error
PLC Programmable Logic Controller
ReLU Rectified linear unit
SCADA Supervisory Control And Data Acquisition
Tanh Hyperbolic tangent
TN True negative
TP True positive
FN False negative
FP False positive
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