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Abstract: Moonpool-type floaters were initially proposed for applications such as artificial islands
or as protecting barriers around a small area enabling work at the inner surface to be carried out
in relatively calm water. In recent years, a growing interest on such structures has been noted,
especially in relation to their use as heaving wave energy converters or as oscillating water column
(OWC) devices for the extraction of energy from waves. Furthermore, in the offshore marine industry,
several types of vessels are frequently constructed with moonpools. The present paper deals with
the hydrodynamics of bottomless cylindrical bodies having vertical symmetry axis and floating in
a water of finite depth. Two computation methods were implemented and compared: a theoretical
approach solving analytically the corresponding diffraction problem around the moonpool floater
and a computational fluid dynamics (CFD) solver, which considers the viscous effects near the sharp
edges of the body (vortex shedding) as non-negligible. Two different moonpool-type configurations
were examined, and some interesting phenomena were discussed concerning the viscous effects and

irregularities caused by the resonance of the confined fluid.

Keywords: moonpool type floaters; viscous effects; computational fluid dynamics; theoretical formu-

lation

1. Introduction

Moonpool-type floaters were initially proposed to be applied either as artificial islands
or as structures enabling activities in their inner area, as they used their solid boundaries as
protecting walls to the wave action. Nevertheless, in recent years, they have been associated
with their use as wave energy converter (WEC) devices suitable for wave energy absorption,
as well as floating pontoons for semi-submersible designs.

Several types of bottomless cylindrical hulls (known as moonpools) have been exam-
ined in the literature. The most common is a vertical cylinder with a vertical opening from
the deck to keel through the hull [1], whereas square floaters with square moonpools have
been also studied [2,3]. Additional types concern toroidal configurations consisting of a
circular (core) section centered upon a large circle (ring) with an infinitesimally small [4]
and finite [5] slenderness core-to-ring-radius ratio, as well as two coaxial surface pierc-
ing truncated circular cylinders [6]. The latter geometry was encompassed by an exterior
partially immersed toroidal structure of finite volume and an interior coaxial free surface-
piercing truncated cylinder. Thus, an internal annular free surface was developed, which
was totally enclosed between the solid boundaries of the cylinders and open to the exterior
fluid domain beneath the concentric bodies.

Hydrodynamics of the isolated truncated hollow cylindrical bodies have been investi-
gated in the past. Garrett [7] presented an analytical solution of the wave scattering problem
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by a vertical bottomless partially immersed circular cylinder with infinitesimal wall thick-
ness using matched axisymmetric eigenfunction expansions. Analytical computations of
the exciting wave forces and moments on the hollow cylindrical shell structure, together
with sway and pitch hydrodynamic coefficients, were derived by Miloh [8]. He also de-
rived analytic expressions for the amplification ratios of heave (pumping) and pitch (seiche)
modes of water motions inside the pond. The corresponding hydrodynamic characteristics
of an open-ended vertically floating circular cylinder, as well as the induced water motion
in the interior basin, accounting for the effect of the finite wall thickness, were presented
by [1,9]. Furthermore, Liu et al. [10] investigated the second-order sum frequency wave
loads on a hollow cylindrical shell structure in long crested irregular seas. Additionally,
in [11,12] the solutions of the diffraction and radiation problems of a moonpool cylindrical
body of infinite thickness and of a partially bottom-opened moonpool were presented.
A moonpool with a restricted entrance was also studied. In [13], it was shown that the
motion of the water inside the body was amplified as the size of the moonpool entrance was
reduced. In addition, Liu et al. [14] measured the viscous effect of a moonpool cylindrical
structure with a restricted entrance by introducing a quadratic dissipation assuming an
additional dissipative disk at the moonpool entrance.

Regarding the two coaxial surface piercing truncated circular cylinder configuration,
the solutions of the linearized diffraction and radiation problems around two independently
moving concentric truncated cylinders were presented in [6,15]. Furthermore, the mean-
and the time-dependent second-order wave loads on such a type of floating structures
were evaluated in [16,17]. Recently, Chao and Kim [18] investigated the hydrodynamic
performance of a two-body WEC by applying analytical solutions, whereas Kong et al. [19]
examined a moonpool platform-wave energy buoy composed of an inner cylindrical buoy
and an outer toroidal-cylinder for wave power extraction by the relative heave motions
between the inner and outer buoys.

Apart from wave energy applications, concentric surface-piecing circular cylindrical
bodies have also been investigated, combined with the trapped wave modes that they can
develop, i.e., the localized oscillations of the enclosed formed free surface area, whereas
the motion in the exterior fluid region decayed to zero. Abramson [20] presented a com-
prehensive review of liquid sloshing problems in moving containers, while Shipway and
Evans [21] examined the wave trapping phenomena by two concentric circular cylindrical
shells with a vertical axis and a zero thickness. As an extension of [21]’s work, Mclver
and Newman [22] studied the case of vertically axisymmetric trapping structures, of finite
volumes, composed by two concentric interior free surfaces.

All the aforementioned research is based on potential flow methodologies concerning
the hydrodynamic solutions of several types of bottomless cylindrical hulls. Nevertheless,
over the last decade, there has been a significant interest in computational fluid dynamics
(CFD) modelling due to its detailed results. CFD modelling solves the fluid flow prob-
lem using Navier-Stokes equations, where the hydrodynamics of random-shape floating
structures can be calculated in detail, providing representative results of the flow physics.
Several authors have studied the importance of including viscosity in moonpool problems
using CFD modelling. Lu et al. [23] investigated the possibility of finding an artificial,
empirically-based damping coefficient to the free surface condition inside a moonpool
device applied to potential flow models. The latter exhibit overestimated magnitudes of
wave forces as the fluid resonance takes place; hence, by introducing an artificial damping
term, the potential flow model may work as well as the viscous fluid model. Lu et al. [24]
extended the results from [23] on the wave elevation inside a moonpool body; whereas,
in [25,26], the piston-mode in a 2D moonpool under forced heave oscillations was eval-
uated using a linear potential solver coupled to a viscous Navier-Stokes modelling. In
addition, Fredriksen et al. [27] investigated, numerically and experimentally, how a low
forward/incoming current speed influences the resonant piston-mode resonance in a moon-
pool. They concluded that the moonpool behavior was marginally reduced with a low
forward velocity, whereas this reduction was dependent on the heave forcing amplitude.
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Recently, in [28] a viscous damping model for energy losses of a 2D fluid response in a
moonpool due to wall friction and flow separation was proposed. Furthermore, the limita-
tions of boundary element method solvers when viscous effects near floater’s sharp edges
were taken into account and were exploited in [29] in the case of a moonpool type floater.

In the present article, two different geometric configurations of a moonpool-type
floater were investigated; a floater encompassed by two coaxial, free-surface piercing
toroidal cylinders with vertical symmetry axes (Configuration 1, see Figure 1a) and a floater
consisting of an external toroidal cylinder and an internal coaxial surface piercing trun-
cated circular cylinder (Configuration 2, see Figure 1b). In the annular and the cylindrical
fluid areas formed between the cylinders’ vertical walls, oscillations of the enclosed water
columns were developed. A semi-analytical model was used to solve the wave diffraction
problem in the context of linear potential theory [30]. The method of matched axisymmet-
ric eigenfunction expansions was applied to solve the relevant hydrodynamic problem,
according to which the flow field around and inside the examined body was subdivided in
coaxial ring-shaped fluid regions. Hence, appropriate series representations of the velocity
potential can be established in each region, which were matched at the boundaries of adja-
cent fluid domains by enforcing the continuity conditions of the hydrodynamic pressure
and the radial velocity in order to determine the unknown coefficients in the expressions of
the diffraction potential. The exciting wave forces/moments and the wave elevation on
both case studies were calculated and compared focusing on the resonant wave frequencies.
Furthermore, the accuracy of the semi-analytical formulation was assessed in comparison
to high fidelity CFD simulations.

Figure 1. Two examined moonpool case studies exposed to the action of regular wave trains. Defini-
tions and discretization of the flow field around the bodies: (a) two coaxial surface piercing moonpool
vertical toroidal cylinders; (b) moonpool with a coaxial surface piercing truncated circular cylinder.

The present work is structured as follows: in Section 2 the solution of the diffraction
problem is formulated, along with the evaluation of the hydrodynamic forces and wave
elevation around/inside the examined case studies. Section 3 is dedicated to the presen-
tation of the used CFD solver, whereas, in Section 4, the outcomes of the two methods
(i.e., semi-analytical and CFD solvers) are compared for the two moonpool arrangements.
Finally, conclusions are drawn in Section 5.

2. Material and Methods
2.1. Velocity Potential Representation

Two coaxial, free-surface piercing toroidal cylinders with vertical symmetry axes are
considered floating in constant water depth 4. The cylinders are exposed to the action
of a regular wave-train of wave frequency w and amplitude H/2. The draughts of the
moonpool bodies are denoted by /11 and &, respectively. Cylindrical co-ordinates (7,6, z)
are introduced with the z axis positive upwards and with origin on the seabed (see Figure 1).
In the present formulation, viscous effects were neglected, whereas the fluid was assumed
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incompressible. Furthermore, the fluid’s motions were assumed to be small, so that the
linearized diffracted problem could be considered.
The fluid flow is described by the velocity potential expressed as:

®(r,0,z;t) = Re {(p(r, G,Z)e_i“’t} (1)

with
@(r,0,z) = @p(r,0,2) = @o(r,0,2) + @7(1,6,2) )

Here, @ is the velocity potential of the undisturbed incident harmonic wave and
@y is the diffraction potential for the restrained body in the wave impact. The diffraction
potential is described by the velocity potential ¢p.

The undisturbed velocity potential of an incident wave train propagating along the
positive axis can be expressed in cylindrical coordinates as:

H Z() (Z)
2 74(d)

i emi" Jm (kr) cos(m@) 3)

m=0

@o(r,0,z) = —iw

In Equation (3) J,; stands for the mth order Bessel function of first kind, ¢, is the
Neumann’s symbol, i.e., g9 = 1, €, = 2 for m > 1, and Z is derived by:

1 [1 sinh(2kd)

Zo(z) = {2 d H; cos h(kz) 4)

with Z{)(d) being its derivative at z = d. The wave number k and the wave frequency w are
related by the dispersion equation i.e.;: w? = kgtan h(kd).

In accordance with Equation (3) the total diffracted potential of the flow field around
the examined moonpool can be written in the form:

oo

op(r,0,z) = —iwg Z emi™ ¥ p,m(,2) cos(mb) (5)

m=0

The ¥Yp ,,;, denote the principal unknowns of the problem. The subscript D stands for
the diffraction problem, whereas the subscript m indicates the modes that should be taken
into consideration within the solution of the corresponding problem.

The potential ¢p must satisfy:

?pp  10¢p | 19%¢p , P¢p

Aep = 7 Trar TP a2 T oz =0 ©
with the linearized boundary conditions:
on the free surface z = d: 5
2 ©D
_ o2 ¥D _ 7
w'ep —g——= =0 )
on the seabed z = 0: 3
©p
on the body’s bottom (z =d —hy, b <r <aandz=d—hy, | <r <o)
Jdpp

on the body’s sidewalls (d —hy <z <d,r=a,bandd —h; <z <d, r=c,l):

d¢p
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It is also required that the scattered potential satisfies an appropriate radiation condi-

tion as r — oo which has the form [1,31]:

r—oo

In addition, both the velocity potential and its derivatives 9

llm\f(—zk)(p7=0

(11)

must be continuous

at the boundaries » = 4, b, ¢, [ of the neighboring ring elements shown in Figure 1a. This

results in:
for0<z<d—hy,andr = a:

Yhm(@2) =¥p,(2,2) (12)
oYL m(1/2) a‘I’“,m(r,z)
Dér = Dar (13)
r=a r=a
for0<z<d—hy,andr = b:
¥h,u(bz) =¥, (b,2) (14)
a‘If“/m(r,z) a‘I’“/Im(rz)
Dar " Dar b (15)
r= r=
forO<z<d—hy,andr =c:
‘PIDI,Im(c,z) = ‘I’gfm(c,z) (16)
8‘1’“””1 (r,2) B‘Y“/m (r,2)
DE)r = Dar (17)
r=c r=c
forO<z<d—hy,andr =1
‘I’grlm(c,z) = ‘I’Sfm(c,z) (18)
aw“}m (r,2) B‘Y“/m (r,2)
Dar = Dar (19)
r=c r=c

The superscripts I, 11, III, IV, V imply quantities corresponding to respective types of

ring elements.

The procedure for the determination of the velocity potential around a moonpool body

that is exposed to the action of surface gravity waves has been presented thoroughly in
previous studies: [1,5,6,9,15], to name a few. This procedure is extended here to the case of
two coaxial surface piercing toroidal vertical cylinders. The following equations present
proper series representations of the functions ‘YD e 1= 1,11, 111,1V,V in each fluid region
around the body:

(@) Infinite fluid domain, TypeI(a <7, 0 <z < d):
Tor _ _ Im(ka) S ‘
3¥bn = {Intin) ~ Jo G i) | 22 o Km ) 5 @)

where Hy,;, K, is the m-th order Hankel function of the first kind and the modified Bessel
function of the second type, respectively. In addition, Z;(z) are orthonormal functions in
[0, d] defined by Equation (4) for j = 0 and for j > 0:

Zi(z) = ll [1 + sm(Zajd)] ] _ cos(ajz), j >0 (21)

Nl
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The terms a; are the roots of the transcendental equation: w? + a;g tan (ajd) = 0, which
proposes one imaginary ap = —ik, k > 0 and infinite number of real roots.

(b) Second fluid domain, Type Il (b <r <a, 0 <z <d —hy):

1 d nmrz
3¥8n = L oo [RI)R + Rif) R3] cos( 775 @)

where ¢, stands for the Neumann’s symbol and the functions R1L, (r), R:L(r) are presented
in Appendix A.

(¢) Third fluid domain, Type Il (c <r <b, 0 <z < d):
B = Y[R + R () E] Zi(2) 3)
i=0
where Z; are orthonormal functions in [0, d] defined by Equations (4) and (21) fori = 0, i > 0,
respectively. The functions RL (), R*I11(r) are presented in Appendix A.
(d) Fourth fluid domain, Type IV (I <r <¢, 0 <z <d — hy):

1 > sz
T8 = e [RIEOR + Rl 0 El cos (25 ) @
s=0 2

Here ¢ stands for the Neumann’s symbol and the functions RLY(r), RiL(r) are
defined in Appendix A.

(e) Fifth fluid domain, Type V (0 <r <[, 0 <z <d):

lov  _ g pv In(agr)

d‘PD,m = qu Im (aql) Zt] (Z) (25)
where Z; are orthonormal functions in [0, d] defined by Equations (4) and (21) for g =0, g4 > 0,
respectively, whereas the term I, is the mth order modified Bessel function of the first kind.
We note that the modified Bessel function of second type K, (a,7) does not appear in the
velocity potential representation of this fluid domain type, as the function K;, has a singular
behavior at 7 — 0. The latter has namely a contribution proportional to (I/r)" for m # 0
and log(r) for m = 0 at r — 0 [32].

Based on the derived velocity potentials in each fluid domain, the continuity require-
ments of the hydrodynamic pressure and radial velocity at the boundaries of neighboring
fluid regions, expressed through Equations (12)—(19), along with the kinematic boundary
conditions at the vertical walls of the body, are then to be fulfilled (see Equation (10)). Hence,
the linear system of equations for the determination of the unknown Fourier coefficients
F;iqj/ | =1,11,111,1V,V,and F;j-, s = II,1II,1V, in each fluid domain, was derived. The
solution procedure is presented in the following Section 2.2.

2.2. Solution Procedure

In this subsection, the solution procedure for determining the unknown Fourier coeffi-
cients in each fluid domain is presented. Towards this goal, we first expressed the velocity
potentials of the fluid domains at their vertical boundaries. To this end, by accounting
for the values of the functions R, (r), RilI(r), RII(r), R (r), RLV.(r), R3LY (r) (see
Appendix A) atr = a, b, c and r = I, the potential functions ‘I’b’m, i=1III1II,IV,V,
see Equations (20), (22)—(25), can be reduced to the following simple series expressions at
r=ua,b,cl:

1 [o¢]
H‘I’{D,m(a,z) =Y F,Zi(2) (26)
j=0
1 " nmz
~vl (a,z) = Y e Fl} cos( ) (27)
d b nzzo o d—
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%‘I’gm(b,z) = :;)snl-“,’;g cos (dn_nle ) (28)
F¥Eh0.2) = L RiZ) @)
TR =

%‘Y{)Vm (c,z) = sio esFLY cos (dsfizz ) (31)

%‘I’Sfm (I,z) = sio esEiLV cos (dsiv;l2> (32)
- £t

Next, by taking into consideration Equations (26)—(33), which represent the velocity
potential at the vertical boundaries of the various fluid regions, as well as Equations (12),
(14), (16), (18), which express the conditions for continuity of the potential function at r = g,
b, c,1, we multiply both sides of Equations (12) and (14) by 1/(d — hy) cos(vrtz/(d — hy)),
v =0,1,2,...,n...., and of Equations (16) and (18) by 1/(d — hy) cos(vrtz/(d — hy)),
v=0,12,...,5...., and then we integrate the resulting expressions over their regions
of validity. The resulting expressions relating the Fourier coefficients of adjacent fluid
regions are:

(e}
FrlV = Y LegFyg (34)
q=0
[ee]
Fpo =Y LaFpi! (35)
=0
11 - 111
Fyn = Y_ LyiFy; (36)
i=0
I oo I
Fon = Z Lnij]' (37)
j=0

The Lsg, Lsi, Lyi, Lyj terms are defined in Appendix B.

Furthermore, the conditions for the continuity of the first derivatives of the potential
atr =a,b,c,! (see Equations (13), (15), (17) and (19)), as well as the kinematical boundary
conditions at the body’s vertical boundaries (see Equation 10), must also be fulfilled.
Hence, multiplying both sides of Equations (10), (13), (15), (17) and (19) by (1/d)Z,(z),
v=0,12,...,q,....integrating over the regions of their validity and adding the resulting
expressions, the flowing set of equations can be obtained:

FI,Ag_d—hl

mjtj T d Z SnLn/’ |:A,InInF,£1[n + A:,{,{F;:l{,ll] , (38)
n=0

forr=a,0<2z<d
d—hy &
AIEID 4 AT+ — S L enlui [Djin iy + Dy Enit | (39)
=

forr:b,agzgd

(o)

¢l [T pxII] _ d—hy TAIVEIV *IV pxIV

DmiFmi +Dmi Fmi - d ZossLSl[AmsFms +Ams Fms }/
s=

forr=¢,0<z<d

(40)
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d—hy
Frghy = —

[e9)
Y. esLg DY + DIVEY], @)
5=0

forr=1,0<z<d
ThetermsAJI-,A){, A{HIWA*H DII D*H AIU A*HI DHI D*IU AIV A*IV DIV

mns “mnr Cmns i i 0 Ymi o Y mi 7 Y mss Hdms 1 HMmsy

in Equations (38)—(41) are described in Appendix B.
The solution of the infinite system described by the linear Equations (34)—(37) and
(38)—(41) will provide the unknown Fourier coefficients, an]-, I = I1II,IIIIV,V, and

Fr’;?, s = II,III, IV, in each fluid domain. It should be noted that for the numerical

implementation of the method, infinite series (20), (22)—(25), are truncated after |, N, I, S, Q
terms, respectively. A similar procedure has also been used in [1,5,6].

*IV
Dms

2.3. Hydrodynamic Exciting Forces/Moment and Wave Elevation

Having evaluated the diffraction velocity potential, the hydrodynamic pressure in
each fluid region could be estimated by the linearized Bernoulli equation. Hence, the
exciting forces and moments on the moonpool cylindrical body could be determined by
integrating the hydrodynamic pressure, p, over the body’s wetted surface, as follows:

F(t) = — [[ pmidS = —iwpe™ ™t ([ @ pnydS
50 50

2 H it y o m (42)
= —w’pse Zosmz [ ¥D,m(r,z) cos(mb)nedS, fork=1,3
m= So
and
F5(t) = My(t) + Ms(t) (43)
where:
Mi(t) = — [[ p(r x ny)dS = —iwpe ™" ([ @p(r x ny)dS
So So
— (44)
= —w?pHe @t ¥ &,i™ ([ ¥pu(r,z) cos(md)(r x ny)dS, fork=1,3

m=0 So

Here Sy is the mean wetted surface of the body; p is the water density; nj are the
generalized normal components defined by n = (n1, 1, n3); r X n = (ny, ns, ng), r being
the position vector of a point on the wetted surface with respect to the reference co-ordinate
system of the body. Analytical representations of the exciting forces and moments on the
body are presented in Appendix C.

The free surface elevation outside and in the annulus and moonpool areas inside the
body is given by the linearized boundary condition on the free surface (see Equation (7)).
It holds:

Z(r,0,z;t) = Re{é(r, 9,d)e_i‘“t} = Re{i;ucpp(r, 0,d)(cos(wt) — isin(wt))} (45)

3. Computation Fluid Dynamics—MaPFlow Solver

In this section, a brief description of the CFD modelling applied to the present bodies’
configurations is presented. For a more detailed review of the solver’s methodology, the
reader may refer to [29,33]. In the previous mentioned publications, a series of test cases
have been examined, including a moonpool configuration excited by incident waves that
prove the liability of the solver in this type of simulations.

MaPFlow treats free surface flows as flows of two immiscible and incompressible fluids.
The presence of the two fluids is described using the Volume of Fluid (VoF) approach [34],
while the requirement of the incompressibility is satisfied using the artificial compressibility
method (ACM) [35]. The governing equations are presented in Equation (46). The system
of equations, in 3 dimensions, consists of 5 scalar equations. The equations are augmented
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by the pseudo-time derivatives of the variables. The aim of the numerical procedure is
to drive these derivatives to zero; thus the original unsteady system of equations will be
retrieved. The coupling of the equations is performed during the pseudo-time, where a
relation between the density and the pressure field is assumed. The coupling is controlled

through the relation g—’; ’T = %, where B is a free parameter that in typical free surface flows

ranges from 5 to 15 [33,36].
@ & — B — 2
I [32dQ+Te [ 7dQ+ [ Fo— Fy )dS = [ 5,40 (46)
o} Q E19) Q

— T
In the above integral equation, () is a control volume with boundary 0Q), Q = [p, u, 4]
is the vector of the unknown variables (pressure p, velocity 1 and volume fraction a), vector

gq contains the various source terms of the equations such as the gravitational field, while
t and T denote the real and fictitious time, respectively. The original ACM when applied to
two-phase flows scales locally with the density field and this results to a stiff numerical
behavior. In order to remedy this dependency, the preconditioner I' of Kunz [37] is used;
it is presented in Equation (47). Furthermore, to recover the conservative form of the
equations, the unsteady terms of Equation (46) are supplemented with the matrix I'e, which
is also presented in Equation (47).

- 0 0 0 0 0
T=| 0 opul udp [, Te=]0 pnl uhp (47)
s 0 1 0o 0 1

— —
Finally, F is the vector of the convective fluxes and F, the vector of the viscous fluxes.
The two vectors are given by Equation (48).

Vi 0
OomUAV + pny Tyx My + Tayly + Tazllz
F. = PmUAV + pny, ,Fy = Tyxx + TyyMy + TyzNz (48)
emwAV + pn, Tzxlyx + ToyMy + Tezlz
aVy 0

In Equation (48), AV is the velocity difference between the contravariant velocity
Vi = 171 and the grid face velocity due to the mesh motion Vy = ﬂ)wl-ﬁ. In the present
study, because the structures were considered fully restrained, the mesh was stationary;
thus, Vo = 0. Furthermore, the viscous fluxes are computed through the viscous stresses
T;j, which in turn were expressed using the Boussinesq approximation, by Equation (49).

ou;  ouj 2
Tij = (]/lt +u m) (ax]l + axl> - gpmkéi]' (49)

In the above equation, y ,, is the viscosity of the mixture, y; is the turbulent viscosity,
k the turbulent kinetic energy and 4;; the Kronecker’s symbol. Moreover, since here only
small amplitude linear waves were investigated, the turbulence modelling was switched
off (uy =0, k =0).

The generation and damping of the free surface waves were performed by adding
source terms to the momentum equations in user-specified regions near the boundaries of
the computational domain. The form of this source term is described by Equation (50). The
source terms scale according to the coefficient C;;¢, which is controlled though the factor

Kot [%} and the function f(x,y:) defined inside the wave generation or damping zone.

f (x4wt) has typically an exponential or polynomial form [38]; at is a free parameter that
depends on the flow itself (e.g., the waves entering the damping zone) and the discretization
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process. In [33] a parametric analysis of the effects of the coeff1c1ent Chuwt is presented. The

source term S nwt drives the solution to the desired velocity field u tar- The target velocity
in the case of generation zone was the velocity field provided by an analytical solution of
free surface waves (linear, Stokes nth order waves, etc.); in the case of damping zone, the
usual strategy was to set the normal velocity to the boundary equals to zero.

- - =
S nwt = antpm <u — Utgy )/ Chwt = "‘nwtf(xnwt) (50)

The above system of equations was discretized using the finite volume method. In
each cell of the computational mesh, a control volume () was defined, where the unknown
variables had a constant value and the control volume was represented by the geometric
center of the computational mesh (cell-centered approximation). The surface integrals were
decomposed into a sum of constant surface integral over the faces that make up the cell.
The semi-discretized form of the equations is presented in Equation (51). The source terms
of the equations are considered constant in each cell.

N
a<QQI> 20 =
e———2 +T0,5% = —Rq, (51)

N
Rq, is the spatial residual of the discretization process (see Equation (52)).

- NeQp) —
Ro, ~ ) (FCFU) AS;+QyS, (52)
j i

The convective fluxes are computed using the approximate Riemann solver of Roe [39,40],
whereas a second order interpolation scheme supplemented by a directional derivative
to account for the skewness of the mesh has been applied for the computation of the
viscous fluxes.

For the time discretization, a second order backwards differentiation scheme was
used [41] for the real time derivatives, while, for the pseudo-time derivatives, a first order
explicit Euler scheme was utilized. In order to facilitate convergence, the pseudo-timestep
scales locally in each cell based on a given Courant-Friedrichs-Lewy (CFL) number and the
characteristics of the flow. For an analytic description of the time discretization process the
reader can refer to [33].

Finally, regarding the boundary conditions, at the wall boundaries, the no-slip bound-
ary condition was applied; the symmetry plane was treated as a slip boundary, while the
far field boundaries were approximated using ghost cells. At every far field boundary face,
an approximate Riemann problem was solved between the state inside the domain and the
far field conditions imposed by the ghost cell. It should be noted that, in the case of wave
generation, the ghost cell’s values were given by the current wave solution.

The discretization of the equations led to a non-linear system of equations. The lin-
earization process took places in pseudo-time. The resulting linear system was solved using
a Gauss—Seidel iterative method, while it was permutated using the Reverse Cuthill-Mckee
reordering scheme to accelerate convergence.

The above methodology was implemented as part of the CFD solver MaPFlow [42,43];
MaPFlow was developed in NTUA, solved the URANS equations in unstructured meshes
and is capable of running up to 1000 parallel processes utilizing the MPI protocol.

4. Results

In accordance with the procedure presented in the previous sections, it is obvious
that the accuracy of the method and the CPU time required was affected by the evaluation
procedure of the Fourier coefficients in each fluid domain. In the present calculations,
80 terms were used for the series expansions of the velocity potential in the fluid domains
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of the I, IIl and V types, whilst 150 terms are retained for the velocity representation in the
II, IV types.

Two different geometric configurations of a moonpool-type floater were investigated;
a floater encompassed by two coaxial, free-surface piercing moonpool cylinders with
vertical symmetry axes (Configuration 1, see Figure 1a) and a floater consisting of an
external toroidal cylinder and an internal coaxial surface piercing truncated circular cylinder
(Configuration 2, see Figure 1b) [30]. Specifically, for the Configuration 1 (i.e., coaxial hollow
cylinders) itheld: « =13 m,b=12m,c=9m, [ =6.083m, and iy = 14 m, i) =5.5 m (see
Figure 2a), whereas, for the Configuration 2 (i.e., coaxial truncated cylinder), it was assumed:
x=13m,b=12m,c=9m, h; = 14 m and k) = 5.5 m (see Figure 2b). Both arrangements
were considered restrained to the wave impact at a water depth of d = 70 m.

Ly o
VI vl

zp | zt r |1

(a) (b)

Figure 2. Schematic representation of the two moonpool-type case studies: (a) floater of two coaxial,
free-surface piercing moonpool cylinders with vertical symmetry axes; (b) floater of an external
toroidal cylinder and an internal coaxial truncated cylinder.

Regarding the numerical results that were produced by the in-house CFD solver, the
two different configurations were excited by linear waves with wave frequencies ranging
from 0.6 rad/s to 1.2 rad/s, with a constant wave height of 0.6 m. Based on the linear
wave theory of Airy, the velocity field of the wave was imposed on the one end of the
domain, while, at the other end, wave damping was used. The waves were propagated
along the x-axis, while the free surface was placed perpendicular to the z-axis. In order to
save computational resources, only the half domain was simulated by setting symmetry
boundary conditions to the xz-plane. Due to the large deviation of the wave lengths, two
different computational domains were used, for each case. For wave frequencies between
0.6 and 0.8 rad /s (which corresponds to wave lengths between 170 to 95 m, respectively)
the domain had a total length of 600 m, while, for the wave frequencies between 0.85 and
1.20 rad /s (where the wave lengths range between 85 and 45 m), a domain of total length
of 300 m is used.

The domain discretization is depicted in Figure 3. The discretization of the domain
upwind of the configuration was based on the wave characteristics. Near the free surface,
the domain was uniform along the z-axis, with a length that corresponded to 18 cells per
wave height. The mesh along the wave propagation was also uniform, with a discretization
that corresponded to at least 100 cells per wavelength in each domain for the studied wave
frequencies. Furthermore, special care was taken near the sharp edges of the structure,
as illustrated in Figure 3a, to account for the flow separation that was expected in these
regions. Finally, the mesh coarsened as it reached the lateral and the outflow boundary, to
make sure that no wave reflections occurred. In order to capture the viscous effects close to
the wall, the first point was placed at 0.5 mm normal to the wall.
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(@) (b)

(c)

Figure 3. Computational mesh used for the CFD simulations, in case of Configuration 1. The mesh

of the Configuration 2 has the corresponding characteristics; (a) symmetry plane; (b) z plane cut;
(c) surface mesh.

Figure 4 presents the grid independency study. The M2 grid has the aforementioned
mesh characteristics and a total size of approximately 5 million cells. Additionally, three
more grids were examined. The M1 grid consisted of 1.6 million cells. The main difference
compared to the M2 grid is that it had 8 cells along the wave height and 50 cells at the
smallest wavelength. Furthermore, the characteristic size of the mesh close to the wall is two
times larger, compared to the previous mesh. The M2-w mesh had the same characteristics
as the M2 grid; however, the first node from the wall was placed at 1 mm normal to the
wall. Finally, the M3 had a total size of 8.5 million cells. The M3 grid differed from M2 in
the characteristics of the mesh near the structure, as well as upwind of the structure in the
direction of the wave propagation. The cells per wave height were the same as M2; the
total cells per smallest wavelength were 200; the mesh near the structure had two times
smaller characteristic size. From the independency study, the M2, M2-w and M3 produced
similar results. The characteristics of the M2 grid were chosen for all simulations. The time
discretization was chosen as 1000 timesteps for the corresponding wave period [33].
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Figure 4. Grid Independency study. Forces acting on Configuration 2 during the 35th wave period. The
wave excitation frequency is w = 0.80 rad/s; (a) horizontal excitation force; (b) vertical excitation force.

Figures 5 and 6 depict the horizontal and vertical exciting forces on the moonpool
floater of the 1st examined Configuration, derived by the presented potential flow formu-
lation. The results are also compared with the corresponding exciting forces on the outer
moonpool floater (i.e., Body 2) (see Figure 2a), without the presence of the inner moonpool
floater (i.e., Body 1), as well as on Body 1, without the presence of Body 2 (i.e., isolated
bodies). The results of the exciting forces are normalized by the term rroga®(H/2).

1.40
—Body 1

1.20 Body 2
= 1.00 ——Configuration 1
~
Z 0.80
% 0.60
< 0.40
[N

0.20

0.00

0.00 0.50 1.00 1.50 2.00

w [rad/s]

Figure 5. Horizontal exciting forces on the Configuration 1. The results are also compared with the
corresponding forces on the isolated toroidal Bodies 1 and 2.

1.40
120 ——Body 1
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Figure 6. Vertical exciting forces on the Configuration 1. The results are also compared with the
corresponding forces on the isolated toroidal Bodies 1 and 2.

The peculiar behavior of the horizontal exciting forces (see Figure 5) on the Body 1 and
Body 2, in the neighborhood of w ~ 1.74 rad/s and w ~ 1.23 rad/s, respectively, was due to
the resonance pitch oscillations of the interior water basin of each Body 1 and 2. The same
behavior has been reported in [1] regarding moonpool floaters. It should be further noted
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that the peculiar behavior of the horizontal exciting force on the total Configuration 1 (i.e.,
floater of two coaxial, free-surface piercing toroidal cylinders) was moved at a lower wave
frequency, i.e., w ~ 1.13 rad/s. This transpose could be attributed to the annular water
area that formed between the two toroidal cylinders, which resonated in a pitch at a lower
wave frequency than the corresponding one of the independent moonpool floaters (i.e.,
Body 1 and Body 2). In addition, a secondary resonance of the horizontal exciting force
on the total Configuration 1 was observed in the neighborhood of w ~ 1.74 rad/s. In the
latter wave frequency, the resonance pitch oscillations of the interior water basin inside the
Body 1 occurred.

With regard to the vertical forces (see Figure 6) on Body 1 and Body 2, resonances
appeared in the vicinity of w ~ 1.05 rad/s and w ~ 0.7 rad/s, respectively. These peaks
were due to the pumping resonance of the fluid motion in the interior water area of
the moonpools Body 1 and Body 2. Concerning the vertical exciting force on the total
Configuration 1, it can be seen (Figure 6) that its pumping resonant wave frequency was
located in between the corresponding pumping wave frequencies of Body 1 and Body 2
(i.e., w ~ 0.8 rad/s).

Next, the horizontal and vertical wave exciting forces on the examined Configuration 2
(see Figure 2b), derived from the theoretical formulation, are presented. Specifically, in
Figures 7 and 8 the values of Fy/ (npgocz(H /2))and F,/ (npgzxz(H /2) on the Configuration 2
are depicted, respectively. The results are also compared with the corresponding exciting
forces on the isolated Body 1 and Body 2, when the latter were considered alone in the
wave field (i.e., Body 1 was assumed alone in the wave field without the presence of Body 2,
and vice versa for Body 2).

2.50 —Body 1

2.00 Body 2
= ——Configuration 2
< 1.50
B
& 1.00
£
~
w 0.50

0.00

0.00 0.50 1.00 1.50 2.00

w [rad/s]

Figure 7. Horizontal exciting forces on the Configuration 2. The results are also compared with the
corresponding forces on the isolated Bodies 1 and 2.

2.50
—Body 1

2.00 Body 2
N —— Configuration 2
i 1.50
)
® 1,00
£
~
u™ 0.50

0.00

0.00 0.50 1.00 1.50 2.00

w [rad/s]

Figure 8. Vertical exciting forces on the Configuration 2. The results are also compared with the
corresponding forces on the isolated Bodies 1 and 2.
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The resonance of the horizontal exciting force on the Configuration 2 (see Figure 7),
which occurred in the neighborhood of w ~ 1.125 rad/s due to the pitch fluid motion in
the annular fluid area between the interior cylinder and the exterior toroidal body, was
moved to w ~ 1.24 rad /s for the Body 2 case, when the latter was assumed isolated in the
wave field. As far as the forces on the isolated Body 1 are concerned, it can be seen that
they followed a smooth variation pattern at the examined wave frequency range, without
any sharp maximizations.

Regarding the vertical exciting forces on the Configuration 2 (see Figure 8), the pump-
ing resonance of the fluid motion in the annular area was depicted at w ~ 0.85 rad /s [20],
whereas, for the isolated Body 2, this pumping resonance lied near w ~ 0.7 rad/s (see
discussion of Figure 5). It should also be noted that the smooth variation pattern of the
vertical exciting force on the isolated cylinder follows (i.e., Body 1).

Comparing Figures 5 and 7, it can be concluded that both configurations 1 and 2 at-
tained, in the non-resonance regime, comparable results concerning the horizontal exciting
wave forces. Furthermore, their resonance pitch oscillations occurred at the vicinity of
w ~ 1.13 rad/s. Hence, it could be derived that the wave motion inside the pond of Body 1
in the first configuration did not seem to affect the floater’s horizontal forces. On the other
hand, the secondary resonance of the horizontal exciting wave force on the Configuration 1
(i.e., w~1.74 rad/s) was not observed in the case of Configuration 2. Regarding the vertical
exciting forces F, /(tpga?(H/2)), see Figures 6 and 8; in the case of Configuration 2, due to
the truncated inner cylindrical body, they attained higher values compared to the vertical
loads on Configuration 1. Hence, assuming both Configurations as heaving point absorbers
for wave energy exploitation, Configuration 2 seems to be more efficient compared to
Configuration 1.

In the sequel, the results from the theoretical formulation were supplemented by
numerical ones, which took into consideration the viscous effects near the sharp edges
of the examined moonpool-type floaters. The numerical results presented follow the
configuration terminology described in the previous section. A grid consisting of 5 million
cells was employed with symmetry conditions (half of the moonpool is modelled). Since
the moonpool was considered fixed and the waves were essentially in the linear region, the
flow is assumed laminar [29,44].

Regarding Configuration 1 the comparison of the non-dimensional horizontal and
vertical exciting forces could be seen in Figures 9 and 10. The illustration of the horizontal
forces (Figure 9) suggested that the comparison was relatively good for both methods.
CFD predictions follow the analytical method’s trends with minor discrepancies. In the
proximity of the peak excitation frequency (between 1.0-1.2 rad/s), the differences between
the predictions became larger. More specifically, in the near peak frequency region, CFD
results predicted earlier the peak of the Body 1 than the analytical method, leading to a rise
in total force. At 1.13 rad/s, both methods predicted the maximum horizontal excitation
force. However, it was evident that the amplitude of the CFD predictions was significantly
smaller. This could be justified by both the phase difference of the peak excitation loads
between the two bodies in the CFD predictions (discussed in the following) induced by the
viscous effects that were taken into account in the CFD computations.
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Figure 9. Comparison between the theoretical and CFD results of the non-dimensional horizontal
excitation force, in case of the Configuration 1; (a) wave frequencies between 0.05 and 2 rad/s;
(b) wave frequencies between 0.8 and 1.2 rad /s (detailed view).
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Figure 10. Comparison between the theoretical and CFD results of the non-dimensional vertical
excitation force, in case of the Configuration 1; (a) wave frequencies 0.05 and 2 rad/s; (b) wave
frequencies between 0.6 and 1.0 rad /s (detailed view).

Regarding the vertical excitation force in Figure 10, the comparison between the
methodologies was fair, with the CFD simulations predicting smaller peak loads and
shifted towards the lower frequencies. This has also been noted in [29]. Nevertheless,
the qualitative comparison for both the total force and the individual body forces was
considered to be in good agreement.

The respective comparison for Configuration 2 (external toroidal cylinder with internal
coaxial truncated cylinder) can be found in Figures 11 and 12. The agreement between the
numerical results is good in both the horizontal and vertical forces. As Figure 11 suggests,
CFD predictions followed the analytical method trends; nevertheless, the peak excitation
frequency was predicted earlier. As opposed to Configuration 1, the individual body forces
peak excitation frequencies were predicted in the same frequency, suggesting that the
forces on the two bodies were in phase. This was also the case for the analytical method’s
predictions. Finally, regarding the vertical force in Figure 12, again the CFD predicted the
peak excitation frequency earlier; however, as in Configuration 1, the predicted trends were
the same.
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Figure 11. Comparison between the theoretical and CFD results of the non-dimensional horizontal

excitation force, in case of the Configuration 2; (a) wave frequencies 0.05 and 2 rad/s; (b) wave
frequencies between 0.8 and 1.2 rad /s (detailed view).
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Figure 12. Comparison between the theoretical and CFD results of the non-dimensional vertical

excitation force, in case of the Configuration 2; (a) wave frequencies 0.05 and 2 rad/s; (b) wave
frequencies between 0.6 and 1.0 rad /s (detailed view).

In order to gain a better insight of this phase difference between each body’s horizontal
force in Configuration 1, instantaneous free surface elevation contours at four snapshots of
the wave period are presented in Figure 13 at w = 1.1 rad/s.
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Figure 13. Cont.
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Figure 13. Snapshots of the non-dimensional surface elevation ({/(H/2)) during a wave period for
Configuration 1 and w =1.1rad/s; (a) t=0T/4; (b); t =T/4; (c) t = 2T/4; (d) t =3T /4.

As Figure 13 suggests, the sloshing mode was excited between the outer (Body 1) and
the inner (Body 2) cylinder, which explains the phase difference between the horizontal
force of each individual body.

Figure 14 presents the free surface elevations inside the moonpool (between Body 1 and
2) for both configurations with respect to the incident wave frequency. The space averaged
free surface elevation inside the moonpool is presented, as well as in three circumferential
positions at 0, 90 and 180 degrees (as shown in Figure 13a). In both configurations up to
w =1rad/s, it was evident that the free surface elevation did not greatly vary between
the various spatial positions, suggesting that the piston mode dominated the free surface
elevation inside the moonpool. As the frequency increased beyond 1 rad/s the gauge
at 90 degrees followed the spaced averaged elevation; however, the other two locations
at 0 and 180 degrees clearly deviated (they increase in amplitude), thus indicating the
appearance of a sloshing mode inside the moonpool. As the radial frequency was further
increased, this mode dampens out. Furthermore, it is worth noting that peak frequencies
of the piston mode resulted in an increase of the vertical forces, while the sloshing mode
resulted in the resonance of the horizontal excitation forces.
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Figure 14. Analysis of the instantaneous free surface elevations inside the moonpool of Config-
uration 1 (a) and Configuration 2 (b) The position of the wave gauges is shown in Figure 13a.
The non-dimensional amplitude of the free surface elevation (¢/(H/2)) is plotted for the various
wave frequencies.

This is further illustrated in Figure 15, where the phase angle of the signal in the
three wave gauges is presented. In smaller frequencies, the three signals had no phase
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difference; however, in larger frequencies, the phases started to deviate. In the case of
w = 1.1 rad/s, the signal in the upwind gauge (0 deg) and in the downwind gauge (180 deg)
had a 90 degrees phase difference compared to the middle gauge (90 deg) and 180 degrees
between them. In higher frequencies, there were still some phase differences; however, the
amplitude of free surface was relatively small (see Figure 13).

| crg CFD gag —e—  CFD g1s —o— | | crog CFD gog —e—  CFD @10 —o—
180 1 1 1 1 1 180 1 1 1 1 ! 1
90 90 4
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Figure 15. Analysis of the phase angle of the downwind (0 deg), middle (90 deg) and the upwind
(180 deg) wave gauges for the two configurations. The position of the gauges is shown in Figure 13a;
(a) Configuration 1; (b) Configuration 2.

Lastly, Figure 16 presents the y-vorticity field in the symmetry plane in the case of the
Configuration 1 for different wave frequencies. Close to the resonance of the piston mode,
excessive flow separation was noted near the sharp edges of the structure (Figure 16b).
Due to the loss of energy in this region of recirculating flow, the viscous solver predicted
smaller amplitude of the piston mode (and thus of the vertical forces) compared to the one
of the analytical solution. Contrary to Figure 16b, the vorticity field in larger frequencies
(where the amplitude of the piston mode is reduced significantly), the vortex shedding was
not significant; thus, minor discrepancies were noted between the two approaches. It was
also noted that the performance of inviscid potential models is influenced by the radiation
effect of the inner water area, leading to discrepancies between the viscous solver and the
analytical solution.

(a) (b)

Figure 16. Snapshot of the y-vorticity field in the symmetry plane for two different wave frequencies,
in case of Configuration 1; (a) vorticity field at the wave frequency where a resonant behavior of the
piston mode is predicted (w = 0.75 rad/s); (b) vorticity field at the wave frequency where a resonant
behavior of the pitch sloshing mode is predicted (w = 1.1 rad/s).

5. Conclusions

A semi-analytical method has been developed to solve the linearized diffraction
problem of two types of moonpool floaters, namely: (a) two coaxial toroidal cylinders
configuration and (b) a floater encompassed by an external toroidal cylinder and a coaxial
internal truncated cylinder. The potential flow theoretical formulation was supplemented
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by a numerical modelling that considered the viscous effects near the sharp edges of the
body as non-negligible.

The accuracy of the two presented methods, the theoretical formulation and the
numerical approximation, have been validated in both examined Configurations 1 and 2
and in a wide range of wave frequencies, i.e., 0.6 rad /s to 1.2 rad/s. It can be concluded that,
in the non-resonance regime, the comparisons between the two methods were excellent;
hence, both models predicted accurate results. However, in the critical wave frequencies
near resonance, the CFD modelling predicted the peak excitation frequency earlier, whereas
the amplitude of the predictions was significant smaller than the corresponding ones from
the theoretical analysis. This can be traced back to the viscous effects that were taken into
account in the CFD computations, which altered both the phase difference of the peak
excitation loads between the two bodies in the CFD predictions. Specifically, an excessive
flow separation was noted in the resonance regime, near the sharp edges of the structure;
hence, the viscous solver predicted smaller force amplitudes. On the other hand, in larger
frequencies the vortex shedding was negligible; thus, minor discrepancies were noted
between the two approaches.

The present research will be continued further by comparing the accuracy of both
methodologies to arrays of floating bodies in which the exciting forces on the structures
are affected not only by the shape of the floaters but also from their position in the array
towards the incoming waves.
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Appendix A
Expressions of the functions R, (), R:! (r) in Equation (22):

Rl _ Ko (5 ) I (435 ) — Kon (355 ) o (d""fl) AD
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whereas, for n = 0 the terms anlo,

R:H equal to:
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The functions R (r), R*1H (r) in Equation (23), are given by:

_ Kuw(aic)In(air) — K (air) I (ajc)

M Ko (ai¢) Iy (a;0) — Koy (a;b) Iy (a;c)” i#0 (A5)

m_ Ko (air) Ly (a;b) — K (a;b) Ly (a;7)
" Ku(aic)In(a;b) — Kin(a;b) In(a;c)

i #£0 (A6)

Here a; are the roots of the transcendental equation: w? + a;¢ tan(a;d) = 0.
Similar to Equations (A1) and (A2), the expressions of the functions R1Y(r), RiLV (r) in
Equation (24) are given by:

1 1
Ko () n (55 = Koo (55 ) n (55
Rips = ,5#0 (A7)
K ( sl )Im( s7tC ) —Km( sl )Im( STIC )
m\ 77, a—h, a—ry d—Iy
) )
ms_K<S7TI)I<S7TC>_K(ST[[)I(SH’C)I
m\ d—n, ) 'm\ d=h, m\ d—hy ) 'm\ a=h;
n"—(/r" (c/r)" —(r/c)"
RIV — (r/ RV = ) 0,5=0 A9
m0 = e/ (1/e)™ MmO T ey — (e " 70,5 (A9)
In(r/1) In(c/7)
v _ «IV _
R0 = ey R0 = qngeny =0 5=0 (A10)
Appendix B
The terms Lsg, Lsi, Lyi, Lyj defined in Equations (34)-(37) equal to:
1 d—hy STTZ B ag(d —hy)
L :7/ z dz = (—1)'N; 121 in(a,(d — ) for g > 1 All
1 d_h2 0 q(z)cos<d—h2> z ( ) q ﬂ%(d—h2)2—527'[2 Sln(”ﬂ( 2)) Orq— ( )

d—hy
Li= 4 Of Zi(2) cos( dsf,fz)dz

= (—1)SN71/2‘”(”’%}12)7T2 sin(a;(d — hy)) fori > 1

1 u?(dfhz)zfsz

(A12)

1 rd—hy STTZ _ k(d —hy) . .

L 27/ z dz = (~1)°N;1/2 h(k(d —hy)) forig=0  (Al3

T d— o O(Z)Cos(d—hz) 2= N G g i) 4 s SR — ) for g (A13)
_ 1 =i nmnz _ na—1/2 a;(d —hp) . .

Ly = iy ./0 Zi(z) cos(d — h1>dz = (—=1)"N; a?(d - h1)2 e sin(a;(d — hy)) fori > 1 (A14)
1 d—hy nriz nar—1/2 a](d_hl) . .

Ly = i /0 Zj(z)cos<d_hl)dz: (-1) N; ajz-(d—hl)z—nZNZ sin(a;(d — hy)) forj > 1 (A15)

1 d—h nmz _1 k(d —hy) ..
Lo = / Zo(z COS( ) z=(—1)"N, 2 sinh(k(d —hy)) forj,i =0 Al6
no A 0(2) (=1)"No () nt (k(d — hy)) for j (A16)

In Equations (A11)—(A16) the terms N;, Ny equal to:

1 [ sin(zald)} 1 {1 sinh(2kd) } (A17)

— — |14 227 _ -
Ne=g |t 2ad |’ No=3 2kd
Also, k is related to the wave frequency w through the dispersion equation and

aj, 1 > 0 are the positive real roots of w? + a;g tan (a;d) = 0.
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The terms A]l , AL, Azl in Equation (38) equal to:

mns

Kj, (ajr oR! 9R*U
A]I = m( ] )|r:u, AilT{I’l = mn , ;';lll’{ _ mn (A18)
Ky, (a;a) or |,_, o |,_,
Moreover, the terms D.L DI Aﬁi] , A:‘nIiI L'in Equation (39) can be written as:
ORI ORI ORI oR*I
Dy, =b—=2 | Dpl=b—=t All=b—2) AT =p—M|  (A19)
or |,y or |,._p or or
r=b r=b
The terms Dﬁil , D:fil L ALV, AsLV of Equation (40) equal to:
11 11 *
pitl — R Dl o OR i o ORY IV _ . IR (A20)
mi ar r_c’ mi ar r_c’ ms ar r:C’ ms ar e
and the terms A}{, DLV, DiLV of Equation (41) can be written as:
DIV =1 aRian D*IV =] aR;;tlsv AV -1 Iin (ﬂqT) |r:l (A21)
ms or |,/ ™ or |,/ 1 L, (agl)

In (A18) and (A21) primes denote derivatives with respect to the radius

Appendix C

The first order horizontal exciting wave forces on the body, based on Equation (42)
can be written as:

A= —w?pHac ity e, f:fh OZH‘P,IJ/m(r,z) cos(m®0) cos 0dfdz+

o) d 2m

+wpBbeiwt ¥ eyi™ [ [ ¥PL(r,z) cos(mb) cos 0dfdz—
m=0 d—hy 0

—w?peemt v g™ [ [ YHI (¥,2) cos(mB) cos 0d0dz+
m=0 d~h, 0

+wrpBle @t ¥ eyi™ [ [ W], (r,z) cos(mB) cos fdfdz =
m=0 d—hy 0

1 (A22)
= —zikd(npgaZg) tan f1(kd) { I(V,gii (F{O - gF{gI) [sinh(kd) — sin h(k(d — hy))]+

J-1nN-1/2 -1 Nl_—l/z

i=1

+ jgl (104]7.,1)1:11]' [Sin(ajd) - Sin(aj(d - hl))] - % = (a;a) FlliH
1
-3
[sin(a;d) — sin(a;(d — hy))] + (%)27125) (Flll — LEV)[sinh(kd)— sin h(k(d — hy))]+
I-1 \-1/2 . . Q-1 172 ) )
+H(E) T I\(]jx’_c) F{H[sin(a;d) — sin(a;(d — hy))]— (%)2 qgl (ch) Fl‘g [sin (agd) — sin(ay(d — h2))] }

The first three terms in the parenthesis express the horizontal exciting wave force on
the external torus, while the rest three the corresponding force imposed on the internal
toroidal cylinder.

Similarly, the vertical exciting wave forces on the body equal to:
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a2m
B = —wlpleivt Z emi™ [ [ ¥p (1, 2) cos(mb)(—1)rdrd6—
= b 0
. " c2m
—w?p et Z emi™ [ [ ¥D (1, 2) cos(mB)(—1)rdrdf =
m=0 10
— 2H 1 1—(b/a) 1pstl (((B)? _ 1=(b/a)
—de<”P8ﬂ tan hi(kd) { Foo( ~ a/b)> — 200 ((u) - 21n(a/h))+ (A23)

M,

N-1
+2 % (-1 (% ’“) [Fon (Aon = Din) + Fou (A" = Di') ]+

=1 nrta
1-(1/¢) . 2 2 1—(/e?
R (1- e ) -4 (1) - 5 )+

,5-1 N2
#2057 L (-1 (42) [RY (A - 0l + i (gl - o)) |

s7tC
s=

The first three terms in the parenthesis express the vertical exciting wave force on
the external torus, while the rest three the corresponding force imposed on the internal
toroidal cylinder.

The overturning moment about a horizontal axis lying at an arbitrary distance z = e
from the seabed arises from the pressure distribution on the body’s vertical walls and on
its bottom surface, based on Equation (43), i.e.,

. [ee]
—w?pHae=wt Y i
m=0

d
f (r,z) cos(mB) cos 0(z — e)ddz+
—In
d

+w?pH pe~iwt Os mi™ f
= h

m=

—w?pH et 2 emi™ f Y1 (r,2) cos(mB) cos 0(z — e)dfdz+

d=ly
+w?p 1wt y%0_ e,i™ fd o ‘Pgm(r z) cos(mB) cos 0(z — e)dbdz =

—Zikd(npga 2)tanh(kd){( W) (Fllo Fllél) x
[k(d —e) smh(kd) k(d —hy —e)sinh(k(d — hy)) — cosh(kd) + cos h(k(d — hy))]+

2
/¥
0
2
[ ¥R (r,2) cos(mb) cos 0(z — e)dddz—
0
27
J
0

+ f>:: o [ i(d — e)sin(a;d) — aj(d — hy — e) sin(aj(d — hy))+ (A24)
+co d>1_ cos(aj(d —hy))]—
% g 2 FIU[ l(d — e) Sin(tXid) — Dci(d — hl — e) sin(ai(d — hl)) + COS(tXl'd) _

— cos(as(d — )] + (£)° M (FlYt — LE )
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-1 N2

)3 N

r

i 1(0(0)

—cos(a;(d —hy))] — (& ) ZQ ' (IZ szK]
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