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Abstract: Hybrid and electric vehicle batteries deteriorate from use due to irreversible internal
chemical and mechanical changes, resulting in decreased capacity and efficiency of the energy
storage system. This article investigates the modeling and control of a lithium-ion battery and
ultracapacitor hybrid energy storage system for an electric vehicle for improved battery lifespan
and energy consumption. By developing a control-oriented aging model for the energy storage
components and integrating the aging models into an energy management system, the trade-off
between battery degradation and energy consumption can be minimized. This article produces an
optimal aging-aware energy management strategy that controls both battery and ultracapacitor aging
and compares these results to strategies that control only battery aging, strategies that control battery
aging factors but not aging itself, and non-optimal benchmark strategies. A case study on an electric
bus with variously-sized hybrid energy storage systems shows that a strategy designed to control
battery aging, ultracapacitor aging, and energy losses simultaneously can achieve a 28.2% increase to
battery lifespan while requiring only a 7.0% decrease in fuel economy.

Keywords: electric vehicle; hybrid vehicle; energy management; lithium ion; ultracapacitor;
battery aging

1. Introduction

Due to their low operating speeds and frequent stopping and starting, buses are a
prime candidate for hybridization or electrification in the goal of reducing transportation
sector emissions. The stop-and-go behavior, in particular, means that regenerative braking
can recover a large portion of expended power. However, for handling bus loads and
ranges, the lithium ion batteries needed for electric vehicles (EVs) and hybrid-electric
vehicles (HEVs) can be prohibitively expensive and heavy [1]. Additionally, the large
current spikes from acceleration and deceleration can degrade the battery, reducing range,
increasing energy consumption [2,3], and, in general, adding new operational costs to
such vehicles.

One possible solution to this is to use a Hybrid Energy Storage System (HESS)—a
combination of lithium ion energy storage with an ultracapacitor (UC) sized to handle large
charge and discharge currents—in place of standard battery energy storage. In general,
lithium ion batteries have a high energy density but low power density: they can store
a large amount of charge, but cannot access it quickly without degrading. Specifically,
large currents to and from the battery cause its capacity to fade and internal resistance
to grow. High temperatures and deep discharges also contribute to battery aging. On
the contrary, ultracapacitors have a low energy density and high power density [4]. A
HESS, then, allows one to obtain the efficient storage of lithium batteries while allowing
an ultracapacitor to handle the large currents [4,5]. The aging of UCs does not depend on
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current magnitude or discharge depth, rather on time, temperature, and cell voltage [6–8];
therefore, there is not necessarily a tradeoff between battery aging and UC aging in HESSs.

Current research on HESSs considers HEV, EV, and fuel cell vehicle applications.
The bulk of the literature, for instance [9–14], is concerned with the optimal sizing of the
HESS so as to maximize the cost-effectiveness of such a system. However, battery aging
is often not considered directly in this optimization; instead, battery aging factors such
as high temperatures and currents are minimized, rather than battery aging directly, and
the benefits to overall aging are only assumed [14]. Some related works that does directly
address aging are described here. In reference [15], for instance, an optimal control policy
is developed to control UC behavior. This policy demonstrated clear aging improvements
over an uncontrolled system using passive energy management. Reference [16] used
multi-objective optimization while directly incorporating an aging model and using a
rule-based control system to govern energy management for a study on HESS sizing in
EVs. Reference [17], likewise, carried out a parametric study on battery degradation versus
UC size in EVs, using a control system based on fuzzy logic. Reference [18] considered
a HESS that used lead-acid batteries rather than lithium ion, and developed an HEV
energy management strategy that tuned for battery life extension. Notably, they found
that, for the HESS to be cost-effective, a 50% increase in battery cycle life was required.
Reference [19] compared the aging benefits of an optimally-sized HESS to the theoretical
maximum benefits—battery aging reductions with an infinitely large HESS. These benefits
were experimentally verified, with the developed approach decreasing battery power
fade and temperature rise in lithium-ion batteries on a vehicle load profile. Most notably,
references [20–22] demonstrate an optimal control strategy to directly minimize battery
aging in a HESS for a plug-in HEV.

However, the literature is lacking in direct aging control for EVs, in the impact of
ultracapacitor aging in the HESS, and in methods to assess the economic benefit of the
HESS given UC aging. Although studies on direct aging control for HEVs do exist, for
instance [2,3,23,24], EVs pose a unique control problem due to the fewer controlled vari-
ables and different component sizes. This research fills these gaps in knowledge: new
energy management strategies to control battery aging and to jointly control battery aging,
ultracapacitor aging, and energy losses are developed and compared to existing methods.
Then, the cost/benefit analysis of a HESS that considers ultracapacitor aging is performed,
and the drawbacks of overusing the ultracapacitor are discussed.

This paper begins by developing the aging models for an electric vehicle hybrid energy
storage system, with an aside showing why there must necessarily be a trade-off between
battery aging and energy consumption for this vehicle configuration. Next, energy man-
agement systems (EMS) for aging control are developed, including Deterministic Dynamic
Programming (DDP), Stochastic Dynamic Programming (SDP), and Load-Leveling (LL).
The vehicle model and aging-aware controllers are then applied to a case study of an
electric bus with a HESS, simulated for the lifespan of the battery. Finally, these simulation
results are analyzed, and conclusions are drawn regarding the benefits of optimal control
and aging-aware control for vehicle energy management.

2. Modeling

This section develops a model for an electric vehicle with a hybrid energy storage
system. Specifically, the model is of a HESS-equipped electric bus using lithium-ion
batteries for energy storage and ultracapacitor modules for handling large currents, as
depicted in Figures 1 and 2. The first subsection presents the overall vehicle model,
including vehicle dynamics, motor efficiencies, battery dynamics, and so on. The next
two subsections deal with the battery aging and ultracapacitor aging models. The final
subsection discusses why, based on the provided models, aging control can have a negative
impact on fuel economy.
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Figure 1. Powertrain of an EV with a UC.

Figure 2. Block diagram for energy management of an EV with a UC.

2.1. Vehicle Modeling
2.1.1. Vehicle Dynamics

For this study, a backwards-facing quasi-static vehicle model [25] is used to represent
the vehicle dynamics. In this model, it is assumed that the driver accurately follows the
velocity of a given drive cycle, eliminating the need for a driver model and allowing the
time-history of the electrical power demand to be calculated in advance.

This research uses a backwards-facing quasi-static vehicle model [25] to simulate the
vehicle dynamics. This method assumes that the model accurately follows a specified
velocity profile, which allows for calculating the acceleration and, therefore, the electrical
power request can be computed in advance, eliminating the need for a driver model.

The vehicle body is affected by inertial forces, aerodynamic drag, and rolling resistance,
while gravitational forces (such as those due to driving on inclines) are neglected. The drag
force is given by

Fdrag =
1
2

ρA f CD(vv)
2 (1)

where ρ, A f , CD, and vv are the air density, frontal area, drag coefficient, and vehicle
velocity, respectively. Rolling resistance is given by

Froll = MvgCR (2)

where Mv, g, and CR are the vehicle’s total mass (including components such as the
engine and generator), acceleration due to gravity, and rolling resistance coefficient. In a
backwards-facing model, the acceleration and the vehicle mass determine the inertial force
on the vehicle as

Finertial = Meq
dvv

dt
. (3)

Meq is the combined bus mass and equivalent mass due to the rotational inertia of the
motor and wheels

Meq = Mv + 4Jw

(
1

Rw

)2
+ Jm

(N f dNgb

Rw

)2

, (4)

where Jw, Rw, Jm, N f d, and Ngb are the rotational inertia of a single wheel, the wheel
radius, the rotational inertia of the motor, the final drive ratio, and the gearbox ratio for
a single-speed gearbox, respectively. The acceleration term in (3) is approximated from a
given velocity profile according to

dvv

dt
(t) ≈ vv(t + ∆t)− vv(t− ∆t)

2∆t
. (5)
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These three forces sum together to give the tractive force on the bus.

Ftraction = Finertial + Fdrag + Froll (6)

Parameter values for the vehicle model can be found in Table 1. The bus is assumed to
be fully loaded and at its maximum allowable weight. The bus’s physical parameters are
based on the existing literature on bus simulation [26–28].

Table 1. Vehicle model physical parameters.

Parameter Variable Value

Vehicle Mass Mv 18,181 kg
Frontal Area A f 8.02 m2

Drag Coefficient CD 0.55
Roll Resistance Coefficient CR 0.008

Wheel Inertia Jw 20.52 kg-m2

Motor Inertia Jm 0.277 kg-m2

Wheel Radius Rw 0.48 m
Final Drive Ratio N f d 5.1:1

Gearbox Ratio Ngb 5:1
Transmission Efficiency ηtrans 96%

2.1.2. Transmission

Next, the vehicle velocity and tractive force are equated to motor torque and angular
velocity. The motor torque is given by

τm =


(

Rw
N f d Ngb

Ftraction

)
/ηtrans, Ftraction ≥ 0(

Rw
N f d Ngb

Ftraction

)
· ηtrans, Ftraction < 0

(7)

ηtrans is the transmission efficiency, represented as torque losses. The motor speed is then
given by

ωm =
N f dNgb

Rw
vv (8)

The mechanical power Pmech needed to drive the vehicle is expressed in terms of the
above torque and angular velocity.

Pmech = τm ·ωm (9)

In this formulation, Pmech is positive during acceleration. Parameter values for the
transmission can be found in Table 1.

2.1.3. Motor and Power Electronics

The motor torque and angular velocity are used to find the motor efficiency ηmotor,
which is constrained to 0 < ηmotor < 1. The motor efficiency is determined from a
static efficiency map from the National Renewable Energy Laboratory’s Advanced Vehicle
Simulator (ADVISOR) data library [29]. This efficiency includes both the motor itself as
well as the associated power electronics. The bus model in this research uses a 250 kW AC
induction motor.

Once the motor efficiency is found, it can be used to evaluate the driver’s electrical
power request, Preq.

Preq =

{
Pmech/ηmotor τm ≥ 0
Pmech · ηmotor τm < 0

(10)
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The electrical power request is met with power from the battery Pbatt and ultracapacitor
Puc. Given that this is a backwards-facing simulation, the power request must always
be met.

Preq = Pbatt + Puc (11)

In later sections, the ultracapacitor power is developed as the energy management
system’s controlled variable. Then, Pbatt is dependent on Preq and Puc, and Equation (11) is
rewritten as

Pbatt = Preq − Puc (12)

2.1.4. Battery

The EV’s lithium-ion battery cells are modeled with the simple equivalent circuit
shown in Figure 3, where Vcell is the single-cell open-circuit voltage (OCV) and Rcell is the
single-cell equivalent series resistance [4]. The individual cells are then combined into a
larger battery pack. Only one state variable is required for this model, the state of charge
(SOC). The OCV and internal resistance are variable parameters dependent on SOC. The
formulas for these parameters are given in [30], which develops a lithium-iron-phosphate
battery from experimental data.
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Figure 3. Battery pack equivalent circuit.

The battery pack equivalent resistance Req is given by

Req = Rcell ·
Nser

Npar
(13)

where Nser and Npar are the number of cells in series and in parallel, respectively. The
battery pack OCV is likewise given by

Vocv = Nser ·Vcell (14)

The battery pack’s terminal voltage is found from the OCV and battery power Pbatt
using the equivalent circuit in Figure 3.

Ibatt = Pbatt/VT (15)

VT = Vocv − Ibatt · Req (16)

Then, substituting the current equation into the voltage equation and solving yields

V2
T = Vocv ·VT − Pbatt · Req (17)

VT = 1/2
(

Vocv +
√

V2
ocv − 4 · Pbatt · Req

)
(18)
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Substituting VT into Equation (15) allows the battery current to be found explicitly.
Then, integrating the battery current yields the state of charge.

SOC(k + 1) = SOC(k) + ∆t · Ibatt
Qbatt

, (19)

where Qbatt is the battery pack’s charge capacity in coulombs and ∆t is the integration
time step.

The battery model parameters are given in Table 2. The number of cells in series
ensures that the battery pack, the OCV, is in line with the requirements of [31]. The number
of parallel cells was chosen so that the bus can meet the power requirements in [31,32] to
drive continuously on an urban bus velocity profile for four hours. Note that Table 2 only
gives the nominal values for Rcell and Vcell—in reality, these parameters vary with SOC
and other operating conditions [30].

Table 2. Battery model parameters.

Parameter Variable Value

Battery Cells in Parallel Npar 400 cells
Parallel Sets in Series Nser 100 sets
Total Charge Capacity Qbatt 340 Ah

Nominal Open Circuit Voltage Vcell 3.8 v
Nominal Equivalent Resistance Rcell 7.5 mΩ

2.1.5. Ultracapacitor

The ultracapacitor modules are modeled as the first-order equivalent circuit shown
in Figure 4. The model itself is based on the 100F ultracapacitor model derived in [33].
Ultracapacitor model parameters are given in Table 3. The ultracapacitor pack, similar
to the battery pack, consists of ultracapacitors arranged in Npc modules in a parallel set
and Nsc sets in series. The number of modules is variable so that the effectiveness and
cost-benefit of the HESS can be considered across a range of designs.

Figure 4. Ultracapacitor pack equivalent circuit.

Table 3. Ultracapacitor model parameters.

Parameter Variable Value

UC modules in Parallel Npc variable
UC Parallel Sets in Series Nsc 100 sets

Resistance Ruc 44.3 mΩ
Capacitance Cuc 105.9 F

The UC pack is connected to the DC bus through a converter, as shown in Figure 1.
The converter allows the UC pack to operate independently of the DC bus voltage. The
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ultracapacitor pack power is indicated by Puc, where Puc is positive while discharging and
negative while charging. Then, each individual module has power Puc,module given by

Puc,module =
Puc

NpcNsc
(20)

For capacitor charge quc at some given power Puc,module, the current and terminal
voltage Iuc and VT,uc are found similarly to Equations (15)–(18).

Iuc = Puc,module/VT,uc (21)

VT,uc = quc/Cuc − IucRuc (22)

Substituting Equation (21) into Equation (22) and solving yields

V2
T,uc = quc/Cuc ·VT,uc − Puc,moduleRuc (23)

VT,uc =
1
2

(
quc

Cuc
+

√
quc

Cuc
− 4Puc,moduleRuc

)
(24)

VT,uc can then be substituted back into Equation (21) to obtain the ultracapacitor current.
Then, the state equation for the capacitor is

q̇uc = Iuc −
quc

RucCuc
(25)

Then, for the complete ultracapacitor pack,

Iuc,pack = Iuc · Npc (26)

VT,uc,pack = VT,uc · Nsc (27)

Ruc,pack = Ruc ·
Nsc

Npc
(28)

where Iuc,pack is the total current going to or from the UC pack, VT,uc is the terminal voltage
of the overall UC pack, and Ruc,pack is the equivalent series resistance of the entire pack.

2.2. Battery Aging Model

This research uses the cycle-life aging model presented in Reference [34], and develops
it here into an aging model that can be used in dynamic control of the energy storage
systems. Reference [34] models the cycle life of a battery as a function of depth of discharge
DoD, charging current Ic, discharging current Id, and temperature T.

CL = g(DoD, Ic, Id, T) (29)

This model starts as a simple curve fit of cycle life to depth-of-discharge at a reference
point of Ic = 1 C, Id = 1 C, T = 25 ◦C . This baseline cycle life is denoted as CLDoD. Then,

CLDoD = a1ea2·DoD + a3ea4·DoD (30)

where the ai terms are curve fit parameters. The cycle life is then obtained by modifying
CLDoD based on the actual operating Ic, Id, and T.

CL = CLDoD · AId · AIc · AT (31)

where

AId =
a5ea6·Id + a7ea8·Id

a5ea6 + a7ea8
(32)
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AIc =
a9ea10·Ic + a11ea12·Ic

a9ea10 + a11ea12
(33)

AT =
a13T3 + a14T2 + a15T + a16

253a13 + 252a14 + 25a15 + a16
(34)

where the ai terms are, again, curve fit parameters. The a5–a8 parameters are found from
a curve fit of cycle life to varying Id for Ic = 1 C, T = 25◦, and DoD = 100%. The a9–a12
parameters are found from a curve fit of cycle life to varying Ic for Id = 1 C, T = 25◦, and
DoD = 100%. The a13–a16 parameters are found from a curve fit of cycle life to varying T
for Id = 1C, Ic = 1 C, and DoD = 100%.

The cycle life model in [34] assumes uniform charge and discharge cycles over the life
of the battery. The Palmgren–Miner (PM) rule can be used, then, to handle the non-uniform
cycles of vehicle operation. This method, originally developed for analyzing material
fatigue life, has been shown to effectively approximate the battery health over non-uniform
charge and discharge cycles [35–37]. Under the assumptions of this method, each charge
and discharge cycle damages the battery an amount equal to the inverse of the cycle life
at that cycle’s operating conditions. In other words, if we assume a cycle k with depth
of discharge DoDk, charge current magnitude Ic,k, discharge current magnitude Id,k, and
temperature Tk, then the cycle life for these operating conditions is CLk. Under the PM
rule, this cycle damages the battery an amount Dk given by

Dk = 1/CLk (35)

Damage accumulates linearly for each charge and discharge cycle. Therefore, the
damage from each individual cycle can be summed to find the total damage. The total
damage Dtot through the k-th cycle is therefore

Dtot(k) =
k

∑
i=1

Di (36)

where each Di represents the damage from a single cycle with operating conditions DoDi,
Ic,i, Id,i, and Ti. In this way, the damage of individual cycles with unique operating
conditions is summed to obtain a total measure of battery health. Zero total damage
indicates that the battery is at its beginning of life, while total damage of one indicates the
battery’s end of life. Battery end-of-life corresponds to a 20% capacity fade, therefore the
capacity fade CF can be put in terms of the damage as

CF(k) = 0.2 · Dtot(k) (37)

The above method requires full knowledge of the charge and discharge time histories,
which is not practical for use in energy management; the EMS must act at a much faster
rate than the pace at which these cycles develop. It is possible, however, that the EMS
could determine how a control decision might cause the damage from the current cycle to
lessen or grow. For instance, imagine a battery operating at conditions of DoDj, Ic,j, Id,j, Tj.
Then, let the energy management system make some decision that produces new operating
conditions of DoDk, Ic,k, Id,k, Tk. Using Equations (29) and (35), the change in damage ∆D
due to the EMS’s decision can be computed as

∆D = Dk − Dj =
1

g(DoDk, Ic,k, Id,k, Tk)
− 1

g(DoDj, Ic,j, Id,j, Tj)
(38)

Then, an energy management strategy could incorporate Equation (38) for a measure
of potential battery damage. In this way, the strategy would try to minimize the damage
from the control decision made at each time step. Note that, when controlling aging in this
manner, the EMS can only be aware of the DoD up until the current point in time and can
only assess damage relative to the current DoD, while the “true” aging depends on the size
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of the completed cycle. Despite this discrepancy, this method still proves an effective way
to control battery aging, as will be shown in later sections.

The resistance growth model in Reference [34] can be treated in an identical manner
to Equations (29)–(38). The capacity fade and resistance growth models both use rainflow
counting, as in [38], to determine the aging from the irregular cycling operations experi-
enced while a vehicle is in operation. For simplicity, it is assumed that the battery operates
at a constant internal temperature of 35 ◦C.

2.3. Ultracapacitor Aging

A novel aspect of this research is that ultracapacitor aging is considered in addition to
battery aging. Reference [6] provides the following model for ultracapacitor aging. This
model is based on Eyring’s Law, a chemical rate equation which gives an ultracapacitor
lifespan based on the operating voltage and internal temperature where aging increases
exponentially as the voltage and temperature increase. Then, the aging rate at an instance
in time is based on the inverse of the lifespan at the given operating conditions. In this
model, SoA is the state of aging that characterizes both capacitance fade and resistance
growth, where a SoA of 0 indicates start-of-life and of 1 indicates end-of-life.

dSoA
dt

=
1

Tre f
li f e

· exp

(
ln(2)

θc − θ
re f
c

θ0

)
·
(

exp

(
ln(2)

V −Vre f

V0

)
+ K

)
(39)

where θc and V are the UC temperature and voltage, respectively, and the remaining
variables (Tre f

li f e, θ
re f
c , θ0, Vre f , V0, and K) are parameters fitted to experimental data. Then,

from [6], the instantaneous capacitance Cuc and internal resistance Ruc are given by

Cuc = Cuc,0 × (0.95− 0.15 · SoA) (40)

Ruc = Ruc,0 × (1− 0.3 · SoA)−1 (41)

where Cuc,0 and Ruc,0 are the initial values of Cuc and Ruc.
This model can be used in control without modification. The standard end-of-life

conditions for ultracapacitors are defined similarly to batteries: when the UC capacitance
has faded by 20% [6]. It is assumed that the ultracapacitor operates at a constant internal
temperature of 55 ◦C, estimated from the operating conditions found in [39].

2.4. Aging and Fuel Economy Trade-Off

This paper analyzes the trade-off between battery aging and energy consumption in
an electric vehicle with a HESS. This section briefly touches on why there must necessarily
be a trade-off.

Consider the two paths in which power can flow through the HESS, shown in Figure 5.
Consider the first case, where power flows primarily or entirely along the upper path,
directly between the battery and the electric motor. In this case, the ultracapacitor is used
marginally or not at all, meaning there is little to no change in either energy consumption or
battery aging compared to a conventional EV that does not include an ultracapacitor. Next,
consider a case where power flows primarily on the lower path, such that the ultracapacitor
is heavily used and acts as a buffer between the battery and the electric motor. On one
hand, the power flowing to or from the battery can be controlled to reduce aging factors
such as large currents. On the other hand, the ultracapacitor introduces new resistances to
the energy storage system as well as converter inefficiencies, resulting in increased losses.
Therefore, any use of the ultracapacitor to reduce battery aging necessarily incurs new
energy losses from the internal resistance of the ultracapacitor. In short, battery lifespan
cannot be extended without an increase in energy consumption.
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Figure 5. HESS power paths. Power on the direct path between battery and motor experiences
minimal losses, while power on the path through the UC experience additional losses from the UC
internal resistance.

3. Control

In order to fully investigate the benefits of aging-aware control, seven different types
of energy management systems are considered:

1. DDP with Battery Aging Penalty, denoted DDP-B;
2. DDP with Energy Loss Penalty and Battery and Capacitor Aging Penalties, denoted

DDP-EC;
3. DDP with Battery Power Penalty, denoted DDP-P;
4. SDP with Battery Aging Penalty, denoted SDP-B;
5. SDP with Energy Loss Penalty and Battery and Capacitor Aging Penalties, denoted

SDP-EC;
6. SDP with Battery Power Penalty, denoted SDP-P;
7. Load Leveling, denoted LL.

3.1. Dynamic Programming

The first six strategies use DP to generate an optimal controller, with the first set of
three using DDP and the second set of three using SDP. The development of DP for HEV
energy management has been covered by a variety of literature, such as [40–43]. For both
DDP and SDP, the optimization problem considers a discrete-time dynamic system

x(k + 1) = f (x(k), u(k), w(k)) (42)

where x(k) is the state vector at time k, u(k) is the control vector, and w(k) is a vector of
any inputs or disturbances. x, u, and w are assumed to exist in finite ranges x ∈ X, u ∈ U,
and w ∈W.

DDP uses exact knowledge of the driver behavior, including knowledge of future
behavior, to minimize a given cost function over the complete driving trajectory.

J =
N

∑
k=0

L(x(k), u(k), w(k)) (43)

where L(x, u, w) is an instantaneous cost function, and x, u, and w are the state variables,
controlled variables, and system inputs, respectively. Equation (43) is minimized by solving
a recursive cost-to-go function

V(x, N) = min
u∈U
{L(x, u, w(N))} (44)

V(x, k) = min
u∈U
{L(x, u, w(k)) + V( f (x, u, w(k)), k + 1)} (45)

for k = N − 1, . . . , 0

starting at k = N and working backward through time to k = 0. The key point of the DDP
method is that, at each optimization step, the entire cost from the current time k to the final
time N is minimized, not just the instantaneous cost. V(x, k) is evaluated for each x ∈ X, so
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that V( f (x, u, w(k)), k + 1) can be interpolated from the prior update. The optimal control
is found by a direct search of u ∈ U. Then, the optimal control u∗ is given by

u∗(x, k) = arg min
u∈U

{
L(x, u, w(k))+ (46)

V( f (x, u, w(k)), k + 1)
}

Meanwhile, SDP uses a stochastic model of driver behavior to anticipate the future
driver power or torque requests and minimize the expected value of a given cost function

J = E

[
N

∑
k=0

γkL(x(k), u(k), w(k))

]
(47)

where the function E[· · · ] denotes an expected value, and γ is a discount factor 0 < γ < 1
that allows the cost function to converge as k→ ∞. Equation (47) is again minimized with
a recursive cost-to-go function

V(x, w, N) = min
u∈U
{L(x, u, w)} (48)

V(x, w, k) = min
u∈U
{L(x, u, w) + γ · E[V( f (x, u, w), w, k + 1)]} (49)

for k = N − 1, . . . , 0

where, this time, the expected future costs are considered, rather than the exact future costs.
The SDP problem can be treated as a finite horizon problem, where N is a fixed

number of updates. Alternatively, it can be treated as an infinite horizon problem, where
N is arbitrarily large and the updates to the cost-to-go function are carried out until the
control policy converges, in other words

V(x, w, k) = V(x, w, k + 1) ∀ x ∈ X and u ∈ U. (50)

As noted earlier, a value of 0 < γ < 1 ensures convergence of the number as N → ∞ [44].
Then, the optimal control u∗ is given by

u∗(x, w) = arg min
u∈U
{L(x, u, w) + γ · E[V( f (x, u, w), w, 1)]}. (51)

That is, the control optimizes the final update of the cost-to-go function. Although
the SDP problem is solved backwards in time like the DDP problem, the resulting control
policy is both time-invariant and causal. This is because the SDP problem does not require
future knowledge of w; instead, it relies on the time-invariant stochastic model.

For this research, the state variables are the ultracapacitor state of charge SOCc and the
battery depth of discharge for the current cycle DoD. The controlled variable is the power
allotted to ultracapacitor Puc. The driver power request Preq is an input to the controller.
For DDP, it is a precisely known function of time, while, for SDP, the future power request
is estimated from the current driver power request and the current vehicle wheel speed
ωwh, based on a stochastic model as described in [40].

It should be noted that, in general, dynamic programming control strategies are
considered too computationally expensive to run in real time on a vehicle [5]. Instead,
the control policy must be computed off-line and be implemented on the vehicle using a
lookup table. This approach requires quantizing the variables into discrete grids of points;
linear interpolation can then be used to find the optimal control at any given operating
point. The implementation of such lookups tables has been shown to operate well in real
time [45].

The three strategies employed by DDP and SDP in this research have a component
of their respective instantaneous cost functions L(x, u, w) to penalize battery aging and a
component to penalize deviation of the UC SOC from a target value SOCc,tgt = 60%. The
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SOC deviation penalty serves two purposes: first, it helps to maintain the UC’s readiness
to handle large currents. If the UC is near its maximum charge, it may be unable to accept
a large charging power request, and if the UC is near its minimum, it will be unable to
accept a large discharging power request, both of which can strain the battery. Keeping the
charge near a central value combats this problem. Second, by varying the penalty on the
deviation from the target value, the extent to which the ultracapacitor is used for aging
control can be tuned, allowing for a better comparison of lifespan improvements between
simulation cases. The manner in which the instantaneous cost functions penalize aging
varies, as described below.

The first strategy, employed by DDP-B and SDP-B, directly penalizes battery aging
according to

L(x, u, w) = (SOCc − SOCc,tgt)
2 + Q1,∆D · ∆D (52)

where ∆D is the damage to the battery as a result of a given control decision, as given in
Equation (38), and Q1,∆D is a tuned weighting parameter. This strategy is denoted as DP-B
when referring to the DDP-B and SDP-B types together.

The second, used for DDP-EC and SDP-EC, penalizes a combination of battery aging,
ultracapacitor aging rate, and electrical energy losses according to

L(x, u, w) = Q2,SOC(SOCc − SOCc,tgt)
2 + Q2,∆D · ∆D + Q2,SOA ·

dSoA
dt

+ Q2,lossEloss (53)

where Eloss is the energy losses from the battery and ultracapacitor, obtained from

Eloss = Req I2
batt + Ruc,pack I2

uc,pack (54)

where Req is the battery pack series resistance, Ibatt is the current through the battery,
Ruc,pack is the ultracapacitor pack series resistance, and Iuc,pack is the current through the
ultracapacitor pack, per the models presented in Section 2.1. Returning to Equation (53),
the Q2,i terms are weighting parameters for their respective elements in the cost function.
The three weighting parameters Q2,∆D, Q2,SOA, and Q2,loss are set according to industrial
average prices for lithium-ion batteries, ultracapacitors, and energy from the electrical
grid [46,47], such that the battery aging, ultracapacitor aging, and energy loss terms are
all equally weighted based on their real-world values. Then, the remaining term Q2,SOC is
used to tune the strategy. This strategy is denoted as DP-EC when referring to the DDP-EC
and SDP-EC types together.

The third and final strategy does not directly penalize aging but rather penalizes large
power going to or from the battery

L(x, u, w) = (SOCc − SOCc,tgt)
2 + Q3,P · P2

Batt (55)

where Q3,P is a tuned weighting parameter and Pbatt is the power going to or from the bat-
tery, per Equation (12). In this way, we limit battery damage using only simple knowledge
of how the battery ages—that large currents to and from the battery degrade it. Thus, we
can distinguish the benefits of direct aging control in the DDP,-B, SDP-B, DDP-EC, and
SDP-EC strategies from the benefits of DP control generally. This strategy is denoted as
DP-P when referring to the DDP-P and SDP-P types together.

In this research, DDP is used to obtain the global-optimal control strategy for a
given cost function and represents the best-case scenario for a controller type. SDP, on
the other hand, represents a causal, implementable controller and offers a more realistic
understanding of the capabilities of a given cost function design. Because it is causal, it
is also a better comparison to the Load Leveling controller. It should be noted that it is
possible to adapt the results of DDP optimization into a causal rule base; however, this
method is not used in this research.
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3.2. Load-Leveling

The final strategy considered is a simple method called “Load-Leveling.” In this
method, the battery is assigned a maximum allowable current for charging and discharging,
Ib,max, which corresponds to minimum and maximum battery powers Pb,min and Pb,max.
Pb,min provides the limit on power going into the battery while charging (negative values
of Pbatt) and Pb,max provide the limit on discharging. Any power request from the driver
that exceeds the allowable amount is handled by the ultracapacitor.

Puc =


Preq − Pb,max, Preq > Pb,max
Preq − Pb,min, Preq < Pb,min
Preset, otherwise

(56)

where Preset is a small amount of power from the battery used to return the ultracapacitor
SOC to a target value of SOCc,tgt = 60%.

Preset =


13 kW, SOCc > SOCc,tgt
−13 kW, SOCc < SOCc,tgt
0 otherwise

(57)

The 13 kW value corresponds approximately to a 0.1 C battery charge or discharge
rate, considered sufficiently low to not majorly affect the battery aging. The particular
value of Ib,max is varied to tune the response of the controller.

This controller serves as a lower bound for EMS performance, as it has neither an
aging model nor any form of optimal control.

4. Case Study

The model and developed controllers are, in this section, used for a case-study analysis
of aging-aware energy management: simulation is used to determine how the various
strategies perform relative to each other.

Each strategy is simulated on the Manhattan Bus Cycle (MBC) drive cycle [48] for an
array of different controller tunings.

1. DDP-B and SDP-B had the Q1,∆D parameter varied from 104 to 1010;
2. DDP-EC and SDP-EC had the Q2,SOC parameter varied from 10−4 to 102;
3. DDP-P and SDP-P had the Q3,P parameter varied from 10−14 to 10−11;
4. LL has the Ib,max parameter varied from 2 C to 0.8 C.

The range of weights is determined by looking at orders of magnitude of the element
of the cost functions. For instance, for Equation (55), the (SOCc − SOCc,tgt)2 term has an
order of magnitude of, at most, 10−2, while the P2

batt term can have an order of magnitude
of up to 1010. Thus, tuning of Q3,P begins at Q3,P = 10−12 and is varied from that point.

Additionally, a single baseline case that does not use the ultracapacitor is simulated.
This corresponds to Q1,∆D = 0, Q2,SOC → ∞, Q3,P = 0, or Pmax → ∞.

Simulations begin with both the battery and ultracapacitor at the beginning of their life.
After each full discharge cycle, the aging of the battery and ultracapacitor are measured,
and the capacity, capacitances, and resistances of the HESS are updated. For the purpose
of measuring aging, the battery is assumed to recharge at a rate of 0.5 C. Simulations are
then repeated until the battery reaches the end of its life, at which point the cycle life,
ultracapacitor state-of-aging, and average energy consumption are measured and recorded.

The above is repeated for three HESS designs: a small ultracapacitor unit Npc = 10, a
middle-sized ultracapacitor unit Npc = 40, and a large ultracapacitor unit Npc = 100. Both
DDP and SDP simulations are performed for the Npc = 100 case, in order to establish that
the SDP controllers will closely follow the DDP results. For the Npc = 10 and Npc = 40,
only the causal controllers (SDP-B, SDP-EC, SDP-P, and LL) are simulated.

Energy consumption is measured in equivalent miles per gallon (MPGe), while battery
aging is measured in capacity loss per mile. For ease of interpretation, the battery cycle life
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is converted to an approximate lifespan using an estimate of the average number of miles
driven per year, Davg-year = 34,000 [49].

Finally, the cost-benefit of the HESS is determined. First, the value of the HESS is
determined based on the industrial average price per kWh of $300/kWH for lithium
ion batteries and $15, 000/kWh ultracapacitors from [46] and on the battery and ultra-
capacitor size given in Section 2.1. This gives a battery value of Vbatt = $38,760 and an
ultracapacitor value of Vuc = $13,021. Additionally, an average electrical energy price of
Vnrg = $0.1065/kWh for the U.S. is obtained from [47]. Costs and benefits are normalized
by mile driven for a fair comparison between configurations. Then, the battery cost per
mile (BCPM) is determined from the miles driven over the life of the battery, denoted as
“battery lifetime miles driven” (BLMD).

BCPM =
Vbatt

BLMD
(58)

The ultracapacitor cost per mile (UCCPM) is similarly determined, this time including
a term for the ultracapacitor state of aging at the battery end-of-life (BEOL), SoABEOL.

UCCPM = SoABEOL ×
Vuc

BLMD
(59)

Finally, the energy costs per mile (ECPM) are given as

ECPM =
Vnrg × GGE

MPGe
(60)

where GGE is the gasoline gallon equivalent to convert from gallons of gasoline to kWh,
GGE = 33.41 kWh/gal. gasoline.

Then, the cost or benefit of the HESS can be determined by comparing the result to
the nominal case where no UC is present. Letting the subscript nom denote the nominal
case and (k) denote any particular simulation, the benefit per mile (BPM) is given by

BPM(k) = (BCPMnom − BCPM(k))−UCCPM(k) + (ECPMnom − ECPM(k)) (61)

where a positive benefit per mile indicates that value is being added to the system, while a
negative value indicates that the cost of the UC outweighs the benefit it adds.

Finally, the payback time Tpayback (in years) for the HESS can be estimated from the
UC value, average miles driven per year, and the benefit per mile.

Tpayback = Vuc ×
1

BPM(k)
× 1

Davg-year
(62)

Payback time assumes a positive benefit per mile. If the BPM is zero or negative, then
a payback time does not exist.

5. Results

The simulation results are analyzed as follows: first, it is verified that the SDP con-
trollers closely follow the DDP controllers. Next, the impact of aging-aware control on the
causal controllers is assessed. Then, the effect of overuse of the ultracapacitor is discussed.
Finally, the cost-benefit of the HESS is analyzed and discussed.

5.1. Verification of DP Controllers

First, the DDP and SDP methods are compared for the Npc = 100 case for each of
the three DP cost functions, as given in Equations (52)–(55). These simulation results are
shown in Figure 6. In the case of the DP methods with an incorporated aging model, the
SDP controller closely tracks the global optimal DDP controller. For the cases that use a
battery aging model, the lifespan of the SDP-controlled battery is typically within 1% of
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the DDP result for a given MPGe, while the difference is greater for the controller that only
limits battery power, especially near the peak. These results demonstrate that the causal
SDP controllers are able to closely match the DDP global optima and indicate that the SDP
controllers behave as intended.
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Figure 6. Energy consumption and battery aging for the DP-based methods for Npc = 100.

The DP results are summarized in Table 4. Note that the value for “Mean Life Dif-
ference” is the average difference in lifespan of an SDP controller compared to a DDP
controller at any given operating MPGe value between the nominal point and the DDP
peak. Again, the key result of these data is that the SDP controllers follow the DDP con-
trollers within 1.7%, and within 1.0% for the aging-aware control specifically. Comparisons
of the different cost functions are discussed next.

Table 4. Comparison of DP Controllers for Npc = 100.

Type
DDP Max MPGe at SDP Lifespan Difference Mean Life
Lifespan DDP Peak at DDP Peak at Peak Difference
(Years) (MPGe) (Years) (%) (%)

DP-B 5.47 9.54 5.46 −0.27 −0.45
DP-EC 5.76 9.65 5.73 −0.51 −0.95
DP-P 5.20 9.49 5.04 −3.11 −1.67

5.2. Effect of Aging-Aware Control

Next, all four causal strategies (SDP-B, SDP-EC, SDP-P, and Load Leveling) are com-
pared. The Npc = 10 case is shown in Figure 7, the Npc = 40 case is shown in Figure 8, and
the Npc = 100 case is shown in Figure 9.

First, it can be seen that a larger HESS allows for greater improvements to battery
lifespan. This is expected—the Npc = 10 UC can only reduce current to or from the battery
by approximately 0.5 C, while the largest power request from the driver corresponds to
2.5 C. On the other hand, the Npc = 100 case can handle much larger power requests and
can do much more to limit large battery current. However, these additional improvements
come with a monetary cost, which is discussed more at the end of this section.

It is found across all three HESS sizing cases that the SDP-EC does the most
to improve battery lifespan, offering a peak lifespan of 4.69 years at 10.15 MPGe,
5.16 years at 9.81 MPGe, and 5.72 years at 9.72 MPGe for the Npc = 10, Npc = 40, and
Npc = 100 cases, respectively.
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Figure 7. Comparison of energy consumption and battery aging for the four causal control methods,
Npc = 10.
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Figure 8. Comparison of energy consumption and battery aging for the four causal control methods,
Npc = 40.

The SDP-B offers substantial lifespan improvements as well, however, not to the
degree of SDP-EC. SDP-B exceeds the performance of the the two non-SDP strategies but
does not improve lifespan as well as the SDP strategies that include direct aging control.
Although SDP-P does substantially increase battery lifespan, it does not “understand” the
aging mechanics—such as the different effect of charging and discharging currents, or
how damage from large currents is multiplied at high DoD—resulting in smaller lifespan
increases than the strategies that control aging directly. The performances of SDP-EC and
SDP-B relative to SDP-P clearly indicate the power of aging-aware energy management.

Not only does SDP-EC offer the best increase in battery lifespan, it offers the best
improvements to the overall energy consumption/battery aging trade-off. That is, for
all three HESS sizes and for any given rate of energy consumption, the SDP-EC strategy
offers the largest improvements to battery lifespan; further increases to lifespan incur the
smallest increases to energy consumption. Not only is the peak lifespan improvements for
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the SDP-EC method higher than SDP-B and SDP-P, it reaches that peak at a lower MPGe
than the peaks of the SDP-B and SDP-P curves. The performance of SDP-EC compared to
SDP-B indicates the value of controlling ultracapacitor aging and energy losses in addition
to battery aging.
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Figure 9. Comparison of energy consumption and battery aging for the four causal control methods,
Npc = 100.

The baseline case, Load Leveling, does not perform well: in the Npc = 10 and
Npc = 40 cases, it offers virtually no lifespan improvement at all. With the large HESS,
although it is able to match the SDP performance at low levels of UC usage, it quickly
reaches its peak before dropping off. In this case, Load Leveling offers a peak lifespan of
only 4.58 years.

The average change in ultracapacitor state of aging, measured at the end of battery
life, is plotted in Figure 10 for Npc = 40 as a representative case. Nominal aging—the
aging of an ultracapacitor that is stored at the target SOC and at the temperature given
in Section 2.3, and is otherwise unused—is found to be ∆SoA per year = 4.064%. At low
degrees of UC usage, all three SDP methods are shown to have UC aging near the nominal.
However, as UC usage increases, the SDP-B and SDP-P methods are seen to have the UC
aging rate grow—SDP-B, in fact, reaches a peak UC aging rate of 4.415% at 9.19 MPGe. On
the other hand, SDP-EC is shown to have measurably less UC aging at high levels of UC
usage. This is expected, as SDP-EC seeks to limit UC aging while SDP-B does not.

The Npc = 10 and Npc = 100 cases are not presented here; however, similar trends in
UC aging per controller type are observed.

Taken together, these results indicate a clear benefit to using strategies with predictive
power, and that predictive power combined with energy storage aging models incorporated
into the control strategy offers the best way to increase battery lifespan. The results of
the four causal strategies are summarized in Table 5 for the Npc = 10 case, Table 6 for the
Npc = 40 case, and Table 7 for the Npc = 100 case.
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Figure 10. Comparison of energy consumption and UC aging for the four causal control methods,
Npc = 40.

Table 5. Comparison of Causal Controllers, small HESS (Npc = 10).

Type
Peak MPGe Lifespan MPGe vs. UC ∆SoA

Lifespan at Peak vs. Nominal Nominal Per Year
(Years) (MPGe) (%) (%) at Peak

Nominal 4.47 10.43 – – 4.064
SDP-B 4.68 9.81 4.7 –5.9 6.633

SDP-EC 4.69 10.14 5.1 –2.8 4.587
SDP-P 4.58 10.18 2.5 –2.4 4.105

LL 4.47 10.43 – – 4.064

Table 6. Comparison of Causal Controllers, mid-sized HESS (Npc = 40).

Type
Peak MPGe Lifespan MPGe vs. UC ∆SoA

Lifespan at Peak vs. Nominal Nominal Per Year
(Years) (MPGe) (%) (%) at Peak

Nominal 4.47 10.43 – – 4.064
SDP-B 5.12 9.62 14.7 –7.8 4.138

SDP-EC 5.16 9.81 15.6 –6.0 4.091
SDP-P 4.87 9.71 9.0 –6.9 4.093

LL 4.48 10.40 0.4 –0.3 4.063

Table 7. Comparison of Causal Controllers, large HESS (Npc = 100).

Type
Peak MPGe Lifespan MPGe vs. UC ∆SoA

Lifespan at Peak vs. Nominal Nominal Per Year
(Years) (MPGe) (%) (%) at Peak

Nominal 4.47 10.43 – – 4.064
SDP-B 5.48 9.51 22.6 –8.9 4.100

SDP-EC 5.73 9.71 28.2 –7.0 4.060
SDP-P 5.07 9.32 13.4 –10.7 4.057

LL 4.58 10.09 2.6 –3.3 4.046
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5.3. Ultracapacitor Overuse

In Section 2.4, it was established that there is necessarily a trade-off between battery
aging and energy consumption when using a HESS to limit battery aging. A consequence of
this is seen in every simulated controller, shown in Figures 6–9, at the tail end of each curve:
as the ultracapacitor is used more and more extensively, energy consumption increases as
more energy is lost from the ultracapacitor internal resistance. These losses must be made
up for by discharging the battery more deeply—depth of discharge being a key aging factor,
per the model presented in Section 2.2. At some point, increases to the DoD aging factor
outweigh the impact of decreases in the other aging factors, and battery lifespan eventually
begins to decrease rather than increase. Thus, in cases where the ultracapacitor is used
very heavily, attempts to control battery aging can have the opposite of the intended effect.

The Npc = 100 SDP-P results for energy losses are shown in Figure 11 as a represen-
tative example. Energy losses increase with increasing ultracapacitor usage, eventually
leading to a decreased lifespan. This behavior emphasized the importance of tuning the
energy management strategy properly. With poor tuning, it is possible for the HESS to do
more harm than good. Similar trends are seen with the other control methods and other
HESS sizes, but are not shown here.

10-14 10-13 10-12 10-11

Q
3,P

 Parameter Value

2

4

6

8

E
n

e
rg

y
 L

o
s
s
e

s
 (

k
W

h
)

Energy Losses relationship to UC Usage and Lifespan

4

4.5

5

5.5

B
a

tt
e

ry
 L

if
e

s
p

a
n

 (
y
e

a
rs

)

Losses

Lifespan

Figure 11. Comparison of energy losses (left axis) to battery lifespan (right axis) versus the Q3,P

weighting parameter, where increasing Q3,P increases ultracapacitor usage.

5.4. Cost-Benefit Analysis

The cost–benefit of each simulated point is computed per Equations (58)–(61) and
plotted versus MPGe in Figure 12 for the Npc = 10 case, in Figure 13 for the Npc = 40 case,
and in Figure 14 for the Npc = 100 case. Positive values indicate that value is added to the
system, while negative values indicate a cost.

In general, it is observed that the SDP-EC method offers clear value over the other
methods: for any HESS sizing and for any given MPGe, the SDP-EC method offers the
highest benefit per mile. In the Npc = 10 case, it was shown to be the only method that
offered a positive return on investment. In the Npc = 40 case, the SDP-P and SDP-B
methods did offer a positive return: the SDP-EC’s maximum benefit per mile was over
50% greater than SDP-B and over 120% greater than SDP-P. The Npc = 100 case is similar
to the Npc = 10 case in terms of relative performance: only the SDP-EC offers notable
benefit. Although the SDP-B does offer a small positive return for some tunings, the
maximum benefit of the SDP-B method is less than a quarter of the maximum benefit of
the SDP-EC method.



Energies 2022, 15, 600 20 of 25

9.9 10 10.1 10.2 10.3 10.4 10.5

MPGe

-6

-4

-2

0

2

4

B
e

n
e

fi
t 

p
e

r 
M

ile
 D

ri
v
e

n
 (

$
/m

i)

10-3Cost/Benefit Comparison, Causal Controllers, N
pc

 = 10

Break-Even

SDP-P

SDP-B

SDP-EC

LL

Figure 12. Cost–benefit analysis for the four causal control methods, Npc = 10.
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Figure 13. Cost–benefit analysis for the four causal control methods, Npc = 40.

Another takeaway from Figure 12 is that the peak economic benefit occurs at a higher
MPGe (lower ultracapacitor utilization) than the peak lifespan increase. This makes
intuitive sense: lifespan improvements level off near the peak while energy consumption
continues to grow. Therefore, near the lifespan peak, the marginal improvement battery-
cost-per-mile is less than the marginal decrease in fuel economy. For the Npc = 100 SDP-EC
method, there is not much difference between the peak lifespan increase (occurring at
9.71 MPGe) and the peak benefit (occurring at 9.80 MPGe); however, for a smaller HESS or
for weaker strategies, the difference can be substantial: in the Npc = 100 case, the SDP-B
peak lifespan increase is at 9.51 MPGe, which is effectively break-even in terms of value,
while the peak benefit occurs at 9.75 MPGe. SDP-P has its peak benefit at 10.06 MPGe and
peak lifespan at 9.32 MPGe; looking at the the SDP-EC method in the Npc = 10 case, the
benefit at the peak lifespan increase is approximately half of the maximum possible benefit.
Clearly, the economic factors should be considered when deciding on the controller tuning.
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Figure 14. Cost-benefit analysis for the four causal control methods, Npc = 100.

Finally, the estimated payback time is computed for the maximum benefit of the
SDP-EC method for all three cases using Equation (62). It is found that, for the given UC,
battery, and energy costs, the small HESS (Npc = 10) has a payback time of 11.3 years,
the mid-sized HESS (Npc = 10) has a payback time of 15.6 years, and the large HESS
(Npc = 100) has a payback time of 21.6 years.

In order to observe the full trend of the payback period for different ultracapacitor
sizes, additional simulations are run for Npc equal to 2, 5, and all increments of 10 between
10 and 100. The optimal EMS and optimal Q2,SOC are recomputed and the vehicle is
simulated again for the new EMS and new UC size. The payback time and battery lifespan
at the most cost-effective tuning for each Npc are then plotted in Figure 15. This shows that,
although increasing the HESS does does improve the battery lifespan, the cost of the extra
UCs exceeds the savings of that extra lifespan.

0 10 20 30 40 50 60 70 80 90 100

Capacitors in Parallel, N
pc

6

8

10

12

14

16

18

20

22

P
a

y
b

a
c
k
 T

im
e

 (
y
e

a
rs

)

Payback time and battery lifespan for most optimal SDP-EC controller

Payback Time

Lifespan

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

L
if
e

s
p

a
n

 a
t 

M
a

x
. 

B
e

n
e

fi
t 

p
e

r 
M

ile
 (

y
e

a
rs

)

Figure 15. Estimated payback time for optimal SDP-EC controller with varying HESS size.

Finally, the authors note the sensitivity of the benefit per mile and the payback time
period to assumptions about component pricing, energy pricing, and aging mechanisms.
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For instance: this research assumes that energy is priced at the US average across all
sectors, Vnrg = $0.1067/kWh [47]. If, instead, energy was priced at the transportation
sector average for the state of Illinois (such as for a Chicago Transit Authority bus), the
energy price of Vnrg = $0.0632/kWh, also from [47], would reduce the payback time by
approximately 30%. On the other hand, the California price Vnrg = $0.1280/kWh would
increase the payback time by 30%.

Alternatively, we can consider that battery and UC components use the pricing of
reference [50] rather than [46] while maintaining Vnrg = $0.1067/kWh; the increased
battery and ultracapacitor prices from [50] result in a payback time of 6.9 years for the
Npc = 10 UC and 13.7 years for the Npc = 100 UC. On the other hand, the component
prices of [51] would indicate that the HESS is not beneficial under any circumstance.

A different battery aging model in the literature [52], used in an array of battery and
HESS control literature such as [12,15,19,23,53,54], models lithium ion phosphate batteries
as aging at up to 3× the rate of the model used in this research. If the battery ages even 1.5×
the modeled rate, then we would see a payback period of 4.8 and 8.8 years for Npc = 10
and Npc = 100, respectively.

Finally, although battery end-of-life can be considered a hard limit for battery use
based on range constraints, the ultracapacitor, on the other hand, can continue to be used
beyond 80% capacitance fade. This would not be unreasonable, considering how Figure 15
shows that the effectiveness of the proposed control method is maintained as the number of
cells (and over UC pack capacitance) is decreased. Therefore, if, for instance, the UCs were
used until 70% capacitance fade, then we would see a payback period of 7 and 12 years
for Npc = 10 and Npc = 100, respectively. One could, alternatively, assume that the UC
does not need to be replaced at all (setting UCCPM to 0), as UC life exceeds the 12 year
lifespan of an individual transit bus [55]. However, there is still value to considering these
replacement costs from the perspective of an entire vehicle fleet.

All this is to say: an engineer must take caution that a HESS is economically appropri-
ate for a given application; there may be circumstances where a HESS is highly beneficial,
and others where it may be impractical. With that said, this research has demonstrated
that, for any HESS sizing and for any given MPGe, the SDP-EC method offers a larger
increase to battery lifespan and a higher benefit per mile than the other considered methods.
The important takeaway of this analysis is how proper control of the HESS is critical for
maximizing both battery lifespan and HESS value, and that joint control of battery aging,
UC aging, and energy losses is the most effective method to manage the HESS.

6. Conclusions

This paper develops controllable battery and ultracapacitor aging models for a HESS.
Various energy management strategies are developed for the purpose of minimizing battery
aging. As a case study, these models and control strategies are applied to a simulated
electric bus to determine the battery lifespan and energy consumption of each strategy. An
array of different HESS sizes and controller tunings are simulated in order to determine the
trade-off between battery aging and energy consumption for each strategy. Additionally,
the cost–benefit of the HESS is analyzed to determine the relative economic benefit of the
proposed control strategies.

Simulation results showed that the SDP-EC method, which controls a weighted com-
bination of battery aging, ultracapacitor aging, and energy losses, offers the biggest im-
provement to the aging–energy consumption trade-off across all considered HESS sizes.
At its peak, this strategy offered a 28.2% increase in battery lifespan and required only
a 7.0% decrease in MPGe. The SDP-B method, which controls battery aging but neither
ultracapacitor aging nor energy losses, was the next most effective controller, indicating
the importance of including an aging model directly in the control.

Simulation results also demonstrated that excessive use of the ultracapacitor can, in
fact, be detrimental to the lifespan of the battery. Ultracapacitor use incurs additional
energy losses and, if the ultracapacitor is heavily used, then these losses can result in
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additional battery aging. Furthermore, the cost–benefit analysis showed that only the
strategies that included direct aging control would reliably add value to the system; the
SDP-EC method was the most proven manner of adding economic value to the HESS. These
points, taken together, indicate the importance of control strategy selection and design.

Future work for this research includes the optimization of component sizing, given
the proposed new methods of energy management. Additionally, work is ongoing to
investigate the robustness of the control strategies for uncertainty in the battery and
ultracapacitor models. Finally, other energy management strategies should be considered
and compared to the methods here, such as DDP formed into a rule base or the Equivalent
Consumption Minimization Strategy applied to aging control.
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SOA State of Aging
PM Palmgren-Miner
MPGe Miles per Gallon Equivalent
BCPM Battery Cost per Mile
UCCPM Ultracapacitor Cost per Mile
ECPM Energy Cost per Mile
GGE Gasoline Gallon Equivalent
BPM Benefit per Mile

References
1. Lee, T.K.; Filipi, Z. Impact of Model-Based Lithium-Ion Battery Control Strategy on Battery Sizing and Fuel Economy in

Heavy-Duty HEVs. SAE Int. J. Commer. Veh. 2011, 4, 198–209. [CrossRef]
2. Moura, S.J.; Stein, J.L.; Fathy, H.K. Battery-Health Conscious Power Management in Plug-In Hybrid Electric Vehicles via

Electrochemical Modeling and Stochastic Control. IEEE Trans. Control Syst. Technol. 2013, 21, 679–694. [CrossRef]
3. Suri, G.; Onori, S. A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries. Energy 2016, 96, 644–653.

[CrossRef]
4. Guzzella, L.; Sciarretta, A. Vehicle Propulsion Systems, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2013.
5. Williamson, S.S. Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles; Springer: New York, NY, USA, 2013.

http://doi.org/10.4271/2011-01-2253
http://dx.doi.org/10.1109/TCST.2012.2189773
http://dx.doi.org/10.1016/j.energy.2015.11.075


Energies 2022, 15, 600 24 of 25

6. Kovaltchouk, T.; Multon, B.; Ahmed, H.B.; Aubry, J.; Venet, P. Enhanced Aging Model for Supercapacitors Taking Into Account
Power Cycling: Application to the Sizing of an Energy Storage System in a Direct Wave Energy Converter. IEEE Trans. Ind. Appl.
2015, 51, 2405–2414. [CrossRef]

7. Kovaltchouk, T.; Ahmed, H.B.; Multon, B.; Aubry, J.; Venet, P. An aging-aware life cycle cost comparison between supercapacitors
and Li-ion batteries to smooth Direct Wave Energy Converter production. In Proceedings of the 2015 IEEE Eindhoven PowerTech,
Eindhoven, The Netherlands, 29 June–2 July 2015; pp. 1–6. [CrossRef]

8. Hammar, A.; Venet, P.; Lallemand, R.; Coquery, G.; Rojat, G. Study of Accelerated Aging of Supercapacitors for Transport
Applications. IEEE Trans. Ind. Electron. 2010, 57, 3972–3979. [CrossRef]

9. Zhang, L.; Hu, X.; Wang, Z.; Sun, F.; Deng, J.; Dorrell, D.G. Multiobjective Optimal Sizing of Hybrid Energy Storage System for
Electric Vehicles. IEEE Trans. Veh. Technol. 2018, 67, 1027–1035. [CrossRef]

10. Song, Z.; Zhang, X.; Li, J.; Hofmann, H.; Ouyang, M.; Du, J. Component sizing optimization of plug-in hybrid electric vehicles
with the hybrid energy storage system. Energy 2018, 144, 393–403. [CrossRef]

11. Eldeeb, H.H.; Elsayed, A.T.; Lashway, C.R.; Mohammed, O. Hybrid Energy Storage Sizing and Power Splitting Optimization for
Plug-In Electric Vehicles. IEEE Trans. Ind. Appl. 2019, 55, 2252–2262. [CrossRef]

12. Song, Z.; Li, J.; Hou, J.; Hofmann, H.; Ouyang, M.; Du, J. The battery-supercapacitor hybrid energy storage system in electric
vehicle applications: A case study. Energy 2018, 154, 433–441. [CrossRef]

13. Wieczorek, M.; Lewandowski, M. A mathematical representation of an energy management strategy for hybrid energy storage
system in electric vehicle and real time optimization using a genetic algorithm. Appl. Energy 2017, 192, 222–233. [CrossRef]

14. Wang, Y.; Wang, L.; Li, M.; Chen, Z. A review of key issues for control and management in battery and ultra-capacitor hybrid
energy storage systems. eTransportation 2020, 4, 100064. [CrossRef]

15. Song, Z.; Li, J.; Han, X.; Xu, L.; Lu, L.; Ouyang, M.; Hofmann, H. Multi-objective optimization of a semi-active bat-
tery/supercapacitor energy storage system for electric vehicles. Appl. Energy 2014, 135, 212–224. [CrossRef]

16. Shen, J.; Dusmez, S.; Khaligh, A. Optimization of Sizing and Battery Cycle Life in Battery/Ultracapacitor Hybrid Energy Storage
Systems for Electric Vehicle Applications. IEEE Trans. Ind. Inform. 2014, 10, 2112–2121. [CrossRef]

17. Akar, F.; Tavlasoglu, Y.; Vural, B. An Energy Management Strategy for a Concept Battery/Ultracapacitor Electric Vehicle With
Improved Battery Life. IEEE Trans. Transp. Electrif. 2017, 3, 191–200. [CrossRef]

18. Carter, R.; Cruden, A.; Hall, P.J. Optimizing for Efficiency or Battery Life in a Battery/Supercapacitor Electric Vehicle. IEEE Trans.
Veh. Technol. 2012, 61, 1526–1533. [CrossRef]

19. Zhao, C.; Yin, H.; Ma, C. Quantitative Evaluation of LiFePO Battery Cycle Life Improvement Using Ultracapacitors. IEEE Trans.
Power Electron. 2016, 31, 3989–3993. [CrossRef]

20. Du, J.; Zhang, X.; Wang, T.; Song, Z.; Yang, X.; Wang, H.; Ouyang, M.; Wu, X. Battery degradation minimization oriented energy
management strategy for plug-in hybrid electric bus with multi-energy storage system. Energy 2018, 165, 153–163. [CrossRef]

21. Hou, J.; Song, Z. A hierarchical energy management strategy for hybrid energy storage via vehicle-to-cloud connectivity. Appl.
Energy 2020, 257, 113900. [CrossRef]

22. Zhang, S.; Hu, X.; Xie, S.; Song, Z.; Hu, L.; Hou, C. Adaptively coordinated optimization of battery aging and energy management
in plug-in hybrid electric buses. Appl. Energy 2019, 256, 113891. [CrossRef]

23. Cordoba-Arenas, A.; Onori, S.; Guezennec, Y.; Rizzoni, G. Capacity and power fade cycle-life model for plug-in hybrid
electric vehicle lithium-ion battery cells containing blended spinel and layered-oxide positive electrodes. J. Power Sources 2015,
278, 473–483. [CrossRef]

24. Tang, L.; Rizzoni, G. Energy management strategy including battery life optimization for a HEV with a CVT. In Proceedings of
the 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Busan, Korea, 1–4 June 2016;
pp. 549–554.

25. Mohan, G.; Assadian, F.; Longo, S. Comparative analysis of forward-facing models vs backwardfacing models in powertrain
component sizing. In Proceedings of the IET Hybrid and Electric Vehicles Conference 2013 (HEVC 2013), London, UK, 6–7
November 2013; pp. 1–6. [CrossRef]

26. Zeng, X.; Yang, N.; Wang, J.; Song, D.; Zhang, N.; Shang, M.; Liu, J. Predictive-model-based dynamic coordination control strategy
for power-split hybrid electric bus. Mech. Syst. Signal Process. 2015, 60–61, 785–798. [CrossRef]

27. Sangtarash, F.; Esfahanian, V.; Nehzati, H.; Haddadi, S.; Bavanpour, M.A.; Haghpanah, B. Effect of Different Regenerative Braking
Strategies on Braking Performance and Fuel Economy in a Hybrid Electric Bus Employing CRUISE Vehicle Simulation. SAE Int.
J. Fuels Lubr. 2008, 1, 828–837. [CrossRef]

28. Wang, B.H.; Luo, Y.G.; Zhang, J.W. Simulation of city bus performance based on actual urban driving cycle in China. Int. J.
Automot. Technol. 2008, 9, 501–507. [CrossRef]

29. Markel, T.; Brooker, A.; Hendricks, T.; Johnson, V.; Kelly, K.; Kramer, B.; O’Keefe, M.; Sprik, S.; Wipke, K. ADVISOR: A systems
analysis tool for advanced vehicle modeling. J. Power Sources 2002, 110, 255–266. [CrossRef]

30. Erdinc, O.; Vural, B.; Uzunoglu, M. A dynamic lithium-ion battery model considering the effects of temperature and capacity
fading. In Proceedings of the 2009 International Conference on Clean Electrical Power, Capri, Italy, 9–11 June 2009; pp. 383–386.

31. Nelson, R.F. Power requirements for batteries in hybrid electric vehicles. J. Power Sources 2000, 91, 2–26. [CrossRef]
32. Fauvel, C..; Vikesh, N.; Aymeric, R. Medium and Heavy Duty Hybrid Electric Vehicle Sizing to Maximize Fuel Consumption Displacement

on Real World Drive Cycles; Power (W): Los Angeles , CA, USA, 2012.

http://dx.doi.org/10.1109/TIA.2014.2369817
http://dx.doi.org/10.1109/PTC.2015.7232248
http://dx.doi.org/10.1109/TIE.2010.2048832
http://dx.doi.org/10.1109/TVT.2017.2762368
http://dx.doi.org/10.1016/j.energy.2017.12.009
http://dx.doi.org/10.1109/TIA.2019.2898839
http://dx.doi.org/10.1016/j.energy.2018.04.148
http://dx.doi.org/10.1016/j.apenergy.2017.02.022
http://dx.doi.org/10.1016/j.etran.2020.100064
http://dx.doi.org/10.1016/j.apenergy.2014.06.087
http://dx.doi.org/10.1109/TII.2014.2334233
http://dx.doi.org/10.1109/TTE.2016.2638640
http://dx.doi.org/10.1109/TVT.2012.2188551
http://dx.doi.org/10.1109/TPEL.2015.2503296
http://dx.doi.org/10.1016/j.energy.2018.09.084
http://dx.doi.org/10.1016/j.apenergy.2019.113900
http://dx.doi.org/10.1016/j.apenergy.2019.113891
http://dx.doi.org/10.1016/j.jpowsour.2014.12.047
http://dx.doi.org/10.1049/cp.2013.1920
http://dx.doi.org/10.1016/j.ymssp.2014.12.016
http://dx.doi.org/10.4271/2008-01-1561
http://dx.doi.org/10.1007/s12239-008-0060-3
http://dx.doi.org/10.1016/S0378-7753(02)00189-1
http://dx.doi.org/10.1016/S0378-7753(00)00483-3


Energies 2022, 15, 600 25 of 25

33. Dougal, R.; Gao, L.; Liu, S. Ultracapacitor model with automatic order selection and capacity scaling for dynamic system
simulation. J. Power Sources 2004, 126, 250–257. [CrossRef]

34. Omar, N.; Monem, M.A.; Firouz, Y.; Salminen, J.; Smekens, J.; Hegazy, O.; Gaulous, H.; Mulder, G.; Van den Bossche, P.;
Coosemans, T.; et al. Lithium iron phosphate based battery—Assessment of the aging parameters and development of cycle life
model. Appl. Energy 2014, 113, 1575–1585. [CrossRef]

35. Safari, M.; Morcrette, M.; Teyssot, A.; Delacourt, C. Life-Prediction Methods for Lithium-Ion Batteries Derived from a Fatigue
Approach I. Introduction: Capacity-Loss Prediction Based on Damage Accumulation. J. Electrochem. Soc. 2010, 157, A713–A720.
[CrossRef]

36. Zhou, C.; Qian, K.; Allan, M.; Zhou, W. Modeling of the Cost of EV Battery Wear Due to V2G Application in Power Systems.
IEEE Trans. Energy Convers. 2011, 26, 1041–1050. [CrossRef]

37. Mallon, K.R.; Assadian, F.; Fu, B. Analysis of On-Board Photovoltaics for a Battery Electric Bus and Their Impact on Battery
Lifespan. Energies 2017, 10, 943. [CrossRef]

38. Xu, B.; Oudalov, A.; Ulbig, A.; Andersson, G.; Kirschen, D.S. Modeling of lithium-ion battery degradation for cell life assessment.
IEEE Trans. Smart Grid 2016, 9, 1131–1140. [CrossRef]

39. Lee, D.H.; Kim, U.S.; Shin, C.B.; Lee, B.H.; Kim, B.W.; Kim, Y.H. Modelling of the thermal behaviour of an ultracapacitor for a
42-V automotive electrical system. J. Power Sources 2008, 175, 664–668. [CrossRef]

40. Mallon, K.; Assadian, F. Robustification and its Implication for Hybrid Electric Vehicle Energy Management Strategies. J. Dyn.
Syst. Control. 2020, 143, 091001. [CrossRef]

41. Tate, E.D.; Grizzle, J.W.; Peng, H. Shortest path stochastic control for hybrid electric vehicles. Int. J. Robust Nonlinear Control 2008,
18, 1409–1429. [CrossRef]

42. Lin, C.C.; Peng, H.; Grizzle, J.W. A stochastic control strategy for hybrid electric vehicles. In Proceedings of the 2004 American
Control Conference, Boston, MA, USA, 30 June–2 July 2004; Volume 5, pp. 4710–4715.

43. Johannesson, L.; Asbogard, M.; Egardt, B. Assessing the Potential of Predictive Control for Hybrid Vehicle Powertrains Using
Stochastic Dynamic Programming. IEEE Trans. Intell. Transp. Syst. 2007, 8, 71–83. [CrossRef]

44. Vagg, C.; Akehurst, S.; Brace, C.J.; Ash, L. Stochastic dynamic programming in the real-world control of hybrid electric vehicles.
IEEE Trans. Control Syst. Technol. 2015, 24, 853–866. [CrossRef]

45. Opila, D.F.; Wang, X.; McGee, R.; Grizzle, J. Real-time implementation and hardware testing of a hybrid vehicle energy
management controller based on stochastic dynamic programming. J. Dyn. Syst. Meas. Control 2013, 135, 021002. [CrossRef]

46. Zhu, T.; Wills, R.G.A.; Lot, R.; Kong, X.; Yan, X. Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage
system for electric vehicles. Energy 2021, 221, 119851. [CrossRef]

47. US Energy Information Administration. July 2021 Monthly Energy Review; Technical Report; U.S. Energy Information Administra-
tion: Washington, DC, USA, 2021.

48. Barlow, T.J.; Latham, S.; Mccrae, I.S.; Boulter, P.G. A Reference Book of Driving Cycles for Use in the Measurement of Road Vehicle
Emissions; TRL Published Project Report; Transport Research Laboratory: Crothorne, UK, 2009.

49. Hughes-Cromwick, M. 2019 Public Transportation Fact Book; World Transit Research; American Public Transportation Association:
Chicago, IL, USA, 2019.

50. Min, H.; Lai, C.; Yu, Y.; Zhu, T.; Zhang, C. Comparison Study of Two Semi-Active Hybrid Energy Storage Systems for Hybrid
Electric Vehicle Applications and Their Experimental Validation. Energies 2017, 10, 279. [CrossRef]

51. Mongird, K.; Viswanathan, V.V.; Balducci, P.J.; Alam, M.J.E.; Fotedar, V.; Koritarov, V.S.; Hadjerioua, B. Energy Storage Technology
and Cost Characterization Report; Technical Report; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2019.

52. Wang, J.; Liu, P.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. Cycle-life model
for graphite-LiFePO4 cells. J. Power Sources 2011, 196, 3942–3948. [CrossRef]

53. Serrao, L.; Onori, S.; Sciarretta, A.; Guezennec, Y.; Rizzoni, G. Optimal energy management of hybrid electric vehicles including
battery aging. In Proceedings of the 2011 American Control Conference, San Francisco, CA, USA, 29 June–1 July 2011;
pp. 2125–2130. [CrossRef]

54. Lin, X.; Hao, X.; Liu, Z.; Jia, W. Health conscious fast charging of Li-ion batteries via a single particle model with aging
mechanisms. J. Power Sources 2018, 400, 305–316. [CrossRef]

55. Laver, R.; Schneck, D.; Skorupski, D.; Brady, S.; Cham, L. Useful Life of Transit Buses and Vans; Number: FTA-VA-26-7229-07.1;
National Academy of Sciences: Washington, DC, USA, 2007.

http://dx.doi.org/10.1016/j.jpowsour.2003.08.031
http://dx.doi.org/10.1016/j.apenergy.2013.09.003
http://dx.doi.org/10.1149/1.3374634
http://dx.doi.org/10.1109/TEC.2011.2159977
http://dx.doi.org/10.3390/en10070943
http://dx.doi.org/10.1109/TSG.2016.2578950
http://dx.doi.org/10.1016/j.jpowsour.2007.09.081
http://dx.doi.org/10.1115/1.4050252
http://dx.doi.org/10.1002/rnc.1288
http://dx.doi.org/10.1109/TITS.2006.884887
http://dx.doi.org/10.1109/TCST.2015.2498141
http://dx.doi.org/10.1115/1.4007238
http://dx.doi.org/10.1016/j.energy.2021.119851
http://dx.doi.org/10.3390/en10030279
http://dx.doi.org/10.1016/j.jpowsour.2010.11.134
http://dx.doi.org/10.1109/ACC.2011.5991576
http://dx.doi.org/10.1016/j.jpowsour.2018.08.030

	Introduction
	Modeling
	Vehicle Modeling
	Vehicle Dynamics
	Transmission
	Motor and Power Electronics
	Battery
	Ultracapacitor

	Battery Aging Model
	Ultracapacitor Aging
	Aging and Fuel Economy Trade-Off

	Control
	Dynamic Programming
	Load-Leveling

	Case Study
	Results
	Verification of DP Controllers
	Effect of Aging-Aware Control
	Ultracapacitor Overuse
	Cost-Benefit Analysis

	Conclusions
	References

