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Abstract: Modern healthcare is transforming from hospital-centric to individual-centric systems.
Emerging implantable and wearable medical (IWM) devices are integral parts of enabling afford-
able and accessible healthcare. Early disease diagnosis and preventive measures are possible by
continuously monitoring clinically significant physiological parameters. However, most IWM de-
vices are battery-operated, requiring replacement, which interrupts the proper functioning of these
devices. For the continuous operation of medical devices for an extended period of time, supplying
uninterrupted energy is crucial. A sustainable and health-compatible energy supply will ensure the
high-performance real-time functioning of IWM devices and prolong their lifetime. Therefore, har-
vesting energy from the human body and ambient environment is necessary for enduring precision
healthcare and maximizing user comfort. Energy harvesters convert energy from various sources into
an equivalent electrical form. This paper presents a state-of-the-art comprehensive review of energy
harvesting techniques focusing on medical applications. Various energy harvesting approaches,
working principles, and the current state are discussed. In addition, the advantages and limitations of
different methods are analyzed and existing challenges and prospects for improvement are outlined.
This paper will help with understanding the energy harvesting technologies for the development of
high-efficiency, reliable, robust, and battery-free portable medical devices.

Keywords: biocompatibility; energy harvesting; health monitoring; medical implants; maximum
power point tracking; precision medicine; wireless power transfer; wearable sensors

1. Introduction

Precision medicine enables individual-centric healthcare with flexibility, portability,
and reduced cost in clinical decision support systems [1]. The accurate measurements
of physiological parameters define the current health condition of the individual and
aid medical professionals in a timely clinical decision-making process. Implantable and
wearable medical (IWM) devices are a crucial part of nursing, physical activity monitoring,
rehabilitation, and clinical early diagnosis of diseases, as well as monitoring of disease
progression [2–4]. Besides extensive usage in precision medicine, IWM devices are useful
in physical and mental condition assessment in the military [5,6]. For example, wearable
photoplethysmography (PPG) sensors presented in [7] can measure the human heartbeat
extracted from the blood flow in the cardiovascular system. Smart textiles allow the
integration of wearable medical devices (WMDs) in dresses to record vital signs and
electrocardiogram (ECG) signals [8,9].

The demand for incorporating portable medical devices in healthcare is rapidly grow-
ing due to: (i) the prevalence of chronic diseases, (ii) the increase in the number of elderly
people, (iii) enabling easy accessibility to the personal health record, (iv) real-time mon-
itoring of health conditions, and (v) cost-effectiveness. In addition, recent advances in
integrated circuits, sensor technologies, and improved interfacing of biology and electron-
ics have enabled the widespread adoption of IWM devices [10–13]. The improvement in
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front-end electronics and wireless communications for bio-signal acquisition facilitates
continuous monitoring, quantitative measurements, and recording of high-quality clini-
cal data.

Uninterrupted operation of IWM devices is contingent upon continuous powering,
which is critical for many applications such as fall detection of sick people, heart activity
monitoring to prevent myocardial infarction, etc. [14]. However, energy remains the
major constraint, and most IWM devices are still battery-operated. Although significant
improvement in designing miniaturized and high-storage-capacity batteries have been
made over the past few years, the limited lifetime of batteries remains a burden. Other
limitations of powering IWM devices using batteries are (i) the requirement of recharge or
replacement often through surgery in the case of implantable medical devices (IMDs), (ii)
the increased size and weight of the IWM devices to accommodate high-capacity batteries,
resulting in user discomfort, and (iii) the requirement of manual human intervention for
continuous operation [15]. The next generation of IWM devices should include improved
functionality, ensure user comfort, and longer uninterrupted lifetime. Harvesting sufficient
energy from the human body and the environment is the most viable solution [16,17].
Integrating energy harvesting in IWM devices will reduce the device sizes and ensure
uninterrupted operation with minimal manual intervention and maintenance.

Energy harvesting is the conversion of available energy from the human body and
ambient environment into a usable electrical form to facilitate a maintenance-less, long-
lasting, and green energy supply in IWM devices. Electrical energy can be generated from
biochemical reactions and motions associated with the human body. Solar light, radio
frequency (RF) signals, etc., are a few significant environmental energy sources. The recent
advancement in energy harvesting techniques has paved the way for full or partial power
support for IWM devices.

There are a few review papers available providing detailed studies on discrete tech-
nologies such as extracting kinetic energy from body motion [18,19], wireless power trans-
fer [20–22], and scavenging energy from the environment [23–25]. However, due to the
rapid growth of energy harvesting technologies and radical paradigm shifts in implants
and wearables, a state-of-the-art review is crucial. This paper presents a comprehensive
review of the latest improvements in energy harvesting research focusing on implantable
and wearable medical devices to achieve sustainable, robust, reliable, and enduring preci-
sion healthcare.

The rest of the paper is organized into different sections. Section 2 provides an
overview of the implantable and wearable medical devices and discusses their role in preci-
sion medicine and healthcare. Section 3 discusses various energy harvesting techniques,
energy sources, wireless power transfer, and an analysis of the advantages and limitations
of each approach. Section 4 presents maximum power extraction methods from the energy
harvesters. Recently, there has been a boost in adopting machine learning (ML) techniques
in energy-harvesting-enabled IWM devices, which are included in Section 5. Section 6
discusses a few use cases and in vivo experiments of energy harvesters. The interaction of
energy harvesters with the human body and potential biological effects are explained in
Section 7. Existing challenges and future research directions are provided in Section 8. An
overall discussion is presented in Section 9, and conclusions are drawn in Section 10.

2. Implantable and Wearable Medical Devices in Precision Healthcare

Recent progress in micro-fabrication has stimulated the miniaturization of implantable
devices [26]. The pacemaker, insulin pump, neurostimulator, cochlear implant, cardiac
defibrillator, and retinal implants are a few examples of clinically well-established IMDs
used in precision healthcare [27]. An overview of different implantable and wearable
medical devices and their usual placement in the human body are presented in Figure 1. In
general, the energy system of the IMDs has three parts: energy source, storage, and power
management unit (PMU) [28]. Depending on the application, the power requirement of
implants varies from a few microwatts to milliwatts. The continuity and longevity of the
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operations of IMDs largely depend on an uninterrupted energy supply. Although the
severity of the consequences of power interruption in implants varies, sometimes, it could
lead to life-threatening events in the case of total artificial hearts, pacemakers, etc.

Figure 1. Different wearable and implantable medical devices typically used in precision healthcare.

Although wearable devices are used in daily life events and fitness tracking, the adop-
tion of wearables in healthcare is relatively slow. There are enormous opportunities to
bring wearable devices to stimulate real-time, robust, reliable, and accurate monitoring
of personalized health conditions. Driven by the increasing elderly population, increased
economic burden, and prevalence of chronic diseases, a cost-effective, portable, and easily
accessible personalized healthcare system is immensely important [2,29,30]. Therefore,
the idea of care and treatment in hospitals is transferring towards more individual-centric
healthcare services enabling early diagnosis and treatment initiatives [31,32]. Wearable
medical devices (WMDs) are the key enabling technologies of individual-centric precision
healthcare systems [33,34]. Different WMDs have been successfully implemented over the
last few years such as non-invasive monitoring of the ECG, blood pressure, oxygen satura-
tion, and respiratory rate for the prediction and prevention of diseases. Accelerometers and
gyroscopes can monitor body motion and activities for ambient assistive living [4,35–37].
Different body fluids (blood, sweat, etc.) are also actively studied using wearable sensors
to detect diabetes [38] and other metabolic disorders [39,40]. The wearables are commonly
body-worn and often integrated into gloves, textiles, headsets, and patches. Appropri-
ate management and control of many neurological and cardiovascular diseases such as
Parkinson’s disease, heart failure, etc., require early detection and continuous monitoring
of different clinical symptoms to maintain health in a stable condition. The wearable medi-
cal devices can mitigate the risk of catastrophic events from happening by (i) predicting
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disease through health monitoring, (ii) real-time diagnosis using on-site data processing,
and (iii) informing concerned caregivers through telemedicine [41,42].

3. Energy Harvesting Techniques

This review focuses on energy harvesting for IWM devices from two sources: (i) the
human body and (ii) the environment. Human body motion and heat are a few examples
of human-centric energy sources exploited for energy harvesting. A general classification
of different energy harvesting techniques is presented in Figure 2. Thermoelectric energy
generators (TEGs) use the temperature gradient between the human body and the sur-
rounding environment to scavenge energy [43]. In addition, the heat dissipated from the
human body has also demonstrated potential in energy harvesting using photovoltaic (PV)
cells [44]. Various vibrations associated with the human body such as walking, running,
and breathing are other sources of energy [45]. Researchers effectively transduced these
body vibrations into electrical energy by electrostatic, triboelectric, electromagnetic (EM),
and piezoelectric processes [46]. In addition, energy sources from the environment such
as infrared radiation, solar energy, and radio frequency (RF) signals have shown promise
as excellent sources of energy [47]. However, the reliability of environment-centric energy
sources is often contingent upon their availability and requires additional storage to facili-
tate the continuous operation of IWM devices. Energy harvesting techniques can combine
sources from the human body and the environment to obtain more robust energy solutions.
Such hybrid energy harvesters are also briefly discussed in this section.

Figure 2. Classification of human- and environment-centric energy harvesting techniques exploited
in implantable and wearable medical devices.
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3.1. Human-Centric Energy Harvesting

Human-centric energy harvesting has received significant attention in recent years.
Researchers have shown that the human body can generate 35 − 100x more energy than
a battery cell, self-sufficient to operate IWM devices [14,48]. Harvesting this energy can
minimize the burden of individuals undergoing repeated invasive procedures to replace
the batteries in IWM devices and operate without any batteries. Human-centric energy
harvesters often convert external body motion, temperature, and internal chemical reactions
into electrical energy. While motion, vibration, temperature gradients, and enzymatic
reactions can be excellent sources of energy, there is an increasing challenge because of the
size constraints of the harvester in the human scenario. However, it has been shown as
a proof-of-concept that even regular daily life activities are sources of different amounts
of energy. For example, approximately 81 mW and 1630 mW of power can be harnessed
from the human body while sleeping and walking, respectively [49]. In addition, the
biofluids in the human body can act as a source of sustainable energy through their natural
operation [50]. Major efforts have thus been put forward to harvest these human-centric
energy, be it from the chemical reactions inside the human body or its mechanical motion. In
this review, human-centric energy harvesting techniques are categorized into biochemical
and biomechanical processes.

3.1.1. Biochemical Energy Harvesting

The human body contains numerous enzymes and agents to maintain the proper
balance of biofluids [51]. Due to internal chemical reactions in the human body, the
formation and breaking of chemical bonds generate an enormous amount of energy. This
level of energy is sufficient to some extent to operate low-power implantable devices. The
amount of harvested energy depends on many factors such as age, health, and food intake.
In addition, the interaction of water with novel materials can generate usable energy using
the hydro-voltaic effect. Biochemical energy harvesting is discussed in the following two
categories: biofuel cells and hydroelectric generators (HEGs).

Biofuel Cells

Glucose in body fluid is an excellent source of energy. It releases a decent amount of
energy through redox reactions in the metabolism process. Recently, the glucose biofuel
(GBF) cell has garnered attention as an alternative energy source due to biocompatibility
and abundance in the human body [52,53]. The GBF cell can store 10× more energy
compared to conventional lithium-ion batteries. For instance, a GBF cell implanted in the
abdomen of a rat demonstrated 38.7 µW of power at the output with a power density of
193.5 µW/cm2 [54]. Experiments demonstrated that up to 100 µW/cm2 can be generated
from the GBF in the human body [55,56]. Recently, a significant improvement of the GBF
cell was achieved in [57], obtaining 3.7 mW/cm2 of power density coating a metallic cotton
fiber in glucose oxidase (GOx). However, there has been ongoing research to increase the
power density of a biofuel cells (BFCs) [58]. Researchers have loaded an oxidizing enzyme
and glucose dehydrogenase into a coating. The coating is made of redox polymers and
polyethyleneimine, which act as a supercapacitor. Charges stored in the supercapacitor
provide high-energy bursts when needed [50]. Besides, BFCs are implanted inside the
body for extracting body fuel to produce electricity [59–62]. The bio-implantable fuel cell
reported in [56] is powered by extracellular glucose in the cerebrospinal fluid surrounding
the brain. Studies have shown the conceivability of using GOx for BFCs [63,64]. For these
BFCs, the use of nanomaterial-modified electrodes with a large electrochemically active
surface area (ECSA) enables a high loading and promotes power generation. Reduced
graphene oxide (rGO) films, nickel microstructures, and Meldola’s blue-tetrathiafulvalene-
modified carbon nanotubes (MDB-TTF-CNT) for the enzymatic anode have been reported
to increase the ECSA by 3000× [65]. However, there are some limitations to the use of this
enzyme due to safety concerns. Most of the concerns include the generation of hydrogen
peroxide by GOx affecting the stability of the enzyme, which deteriorates the performance
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of the system, and most importantly, long-term use of these enzymes may be harmful to
the body [66]. A few limitations of glucose as a biofuel include: (i) temperature and pH
variation can disrupt glucose metabolism and (ii) potential chances of bacterial infection.
In addition, biofouling often occurs in GBF cells, leading to biohazards [54]. Due to safety
concerns, GBF cells are not yet usable in medical implants.

Lactates such as sweat and saliva are another energy source available in body fluids.
For instance, in [50], a tattoo was designed to harvest energy from lactate during physical
activity, generating 70 µW/cm2. Besides, pH differences can also act as a source of electro-
static energy [67]. The soft e-skin-based BFC reported in [68] extracts chemical energy from
human sweat. This wearable e-skin-based BFC produces a power density of 1.2 mW/cm2

at 0.2 V by using sweat lactate from the human body. An extensive study on biosensor and
biofuel cells is reported in [69]. This research team developed a BFC using passive sweat
from the fingertips to continuously supply energy without requiring physical motion. In a
recent attempt, researchers showed that 13 µW of power can be achieved by a textile-based
enzymatic BFC [70]. A “wearable microgrid” shirt has also been demonstrated, which
incorporates sweat-powered BFCs, motion-powered triboelectric nanogenerators (TENGs),
and supercapacitors to store the converted electric energy [71]. Apart from the fluids, the
endocochlear potential (EP) in the inner ear can generate low power ranging between 1.1
and 6.3 nW [72].

EP found in the mammalian inner ear is a battery-like electrochemical gradient that
can be used as an energy harvester. The EP occurs due to the ionic concentration difference
between endolymph and perilymph. A CMOS integrated energy harvester was designed
in [72] that can extract a minimum of 1.12 nW of power from the EP of a guinea pig for 5 h
and also sense the change in EP.

A yarn-based biobattery utilizes the bacterial respiration system to generate green
electricity [73]. The biobattery comprises polystyrene-sulfonate-based anodic and one
cathodic yarn, which ensures maximum electron transfer from the microorganism to the
electrode. Multiple yarns are arranged in parallel, making the biobattery easily scalable.
The maximum current densities for typical 3-series, 2-parallel, and single biobatteries are
22.10 W/m3, 19.14 W/m3, and 2.12 W/m3, respectively.

Hydroelectric Generators

The use of the hydro-voltaic effect for energy harvesting is an emerging area that
falls into the biochemical category. The hydroelectric generator (HEG) uses the interaction
between the water molecules and nanomaterials [74,75]. Low-dimensional materials such
as carbon nanotubes and graphene can generate electricity at the solid–liquid interface
while interacting with the water molecules.

Electricity generation by water evaporation and humidity does not require any addi-
tional mechanical force [76,77]. For instance, the flow of water molecules in nanomaterials’
gaps in the evaporation process induce electrical voltage and current. An electrical double-
layer is formed at the channel wall surface due to the attraction between hydronium ions
and negatively charged nanocarbon layers. During evaporation, the channel hydronium
ion moves in the water flow direction, generating a potential difference and a resultant
output current flow [75]. For example, up to 1.0 V and 150 nA of current can be generated
using the water evaporation process on the annealed and plasma-treated carbon black
film surface [78]. Another electricity generator using the water evaporation process was
presented in [79], which uses silicon nanowire arrays. An output power density, current
density, and voltage of 6 µWcm−2, 55 µA cm−2, and 400 mV, respectively, were achieved
while the ambient temperature was 65 ◦C and the relative humidity was 45%. The device
used silicon nanowires as the active layer, graphite as the cathode, and silver as the anode.

The concept of humidity-induced electricity is the reversible process of hydration and
dehydration. The free hydrated ion in this process migrates due to a concentration gradient
triggered by moisture, creating an electrical output [77,80]. An output power density of
0.246 mWcm−2 is achieved in a moisture-enabled HEG utilizing humidity variation from
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5% to 95% [81]. A porous membrane captures the moisture, triggering the hydration and
ion transport, and an electric potential is generated by the movement of the cations and
anions. In an HEG using an arrangement of silver wire, graphene oxide can achieve a 0.21
µWcm−2 output power density under a 70% humidity change [81].

A wearable perspiration analyzer was presented in [82], which uses the coupling of
enzyme reactions and an HEG. The system consists of ZnO nanowire arrays modified by
lactate oxidase and a flexible PDMS substrate. While attached to the skin, sweat flows
through the microchannels to the ZnO array, producing an electrical current using the HEG
principle. An electronic sensor using moisture-induced electricity was presented in [83].
The protein films of gelatin molecules serve as the active materials and generate consid-
erable electrical output while the humidity level exceeds 55%. This device demonstrates
potential application in wearable masks to monitor users’ breathing conditions. In addition,
it finds application in evaluating the finger wound healing condition [83], detecting alcohol
consumption [84], etc.

3.1.2. Biomechanical Energy Harvesting

Human body motion can generate electrical energy. For instance, foot strikes, muscle
movements, etc., can be converted to an electrical form, sufficient to operate wearable de-
vices [85]. In addition, involuntary periodic activities such as cyclic breathing and rhythmic
heart motion can generate electric energy for implantable devices and can be enhanced
to operate on wearables. A low-power cardiac pacemaker was presented in [86], which
achieves 11.1 µJ of electrical energy from a 90 bpm heart rhythm. The air pressure gradient
due to breathing cycles develops a miniaturized wind turbine to operate wearables placed
in face masks [87]. Human-centric energy harvesting from kinetic energy is discussed in
this section identifying five techniques: piezoelectric, electrostatic, electromagnetic, ther-
moelectric, and triboelectric energy generators [88,89]. The energy conversion principles
of different biomechanical energy harvesting processes are illustrated in Figure 3 and
discussed in the subsequent sections.

Piezoelectric Energy Generators

Advancements in microelectronics led to the development of implantable electronics
(IMEs). Besides, emerging materials helped revolutionize the energy harvesting applica-
tions for IWM devices. One such material is piezoelectric materials, which directly convert
mechanical energy into electricity without requiring conversion. An electric field, thus
voltage, is generated while the piezoelectric materials experience mechanical stress, which
is used in energy harvesting [90]. A schematic illustration of the piezoelectric energy
harvesting principle is shown in Figure 3a. For instance, while running, the piezoelectric
materials integrated with the sole and heel can produce 2 mW and 8 mW of electrical power,
respectively [91,92]. In a broad sense, piezoelectric materials are classified as crystals and
ceramics [93]. The ceramic polycrystalline lead zirconate titanate (PZT) is one of the popular
materials due to its high piezoelectric coefficient and low fabrication cost [93].

Researchers have demonstrated that a magnetic microgenerator placed on the heel
can generate around 1 W of power [91]. This system is appropriate only for users capable
of walking, and the placement in shoes might induce user discomfort. An energy harvester
for a total knee replacement (TKR) implant was presented in [94], generating 4.8 mW of
power with an excitation load of 900 N using three PZT stacks. The sensitivity of ceramic
piezoelectric materials degrades over time. In recent studies, single-crystal materials such
as lead magnesium niobate–lead titanate (PMN-PT) and lead–zinc niobate–lead titanate
(PZN-PT) have demonstrated promising results [95,96]. The lead-integrated piezoelectric
materials are toxic and may stimulate health risks. Because of that, single-crystal zinc
oxide (ZnO) materials have gained attention for their non-toxic and biocompatible behavior.
In [97], ZnO-based nanogenerators harvests energy from rat heartbeat. However, the
amount of energy is insufficient to operate IMDs, and an array arrangement of ZnO
nanowires is necessary to obtain enough energy, which increases the cost [98].
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Figure 3. Schematic illustration for working principle of various types of biomechanical energy
harvesting schemes. (a) Development of electric potential while the piezoelectric crystals are com-
pressed/strained. (b) The temperature gradient between a hot and a cold surface on a thermoelectric
material develops an electric potential and a resultant current flow. (c) Charge generation at the
interface of triboelectric pair materials by contact friction. (d) Charge storage on the dielectric mate-
rial inside two metal contacts by electrostatic action. The charges deposited in the triboelectric and
electrostatic scheme store energy by capacitive coupling. (e) A moving magnet inside a coil produces
a potential difference by Faraday action.

It is to be noted that IWM devices need flexible, extremely slim, and lightweight
media for successful attachment and operation. Researchers have been developing high-
performance piezoelectric energy harvesters using organic and inorganic materials such
as polymers, ceramics, and single crystals for attaining such features. Polyvinylidene
difluoride (PVDF) is a flexible piezoelectric polymer, suitable for energy harvesting. The
limitations of piezoelectric polymers are the low power density and coupling coefficient [93].
A hybrid material using both ceramics and polymer piezoelectric materials resulted in
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improved performance showing an output of 3.8 µW/mm2 from the movement of a
hand [99]. To this date, flexible thin film piezoelectric materials remain an appropriate
choice for energy harvesting due to their soft nature and adaptability to human organ
shapes [93,100].

Mechanical-pressure-induced piezoelectricity due to blood pressure variations was
demonstrated in [101], generating 2.3 µW of power. Similar experiments were carried
out in [102] using PVDF transducers to generate energy from blood pressure gradients.
Piezoelectric ceramics embedded into orthopedic implants at different body locations have
shown promising results of 4.8 mW [103], 1.2 mW [104], and 1.81 mW [105], respectively,
depending on the size and thickness of the piezoelectric materials. In [106,107], 40 µW
and 60 µW piezoelectric generators were presented using zirconate titanate and aluminum
nitride, respectively.

A single-wire nanogenerator driven by heart muscles’ motion was designed in [97],
producing an average voltage of 3 mV and a current of 30 pA. A wearable PVDF-array-
based device developed in [108] can harvest energy during running with 8.6 mW of
output power. A belt-type piezoelectric energy harvester was presented in [109], which
generates an output from the waist movement, producing an open-circuit voltage in the
range of 1.5–1.8 V for normal and fast respiration processes. A flexible PEH-based sensor
was developed in [110], which scavenges energy from respiration or shouting and the
movement of muscles. Figure 4 presents some remarkable examples of piezoelectric energy
harvesting in IWM devices from walking, cardiac motion, and breathing with their output
characteristics. Figure 4a presents a system to harvest parasitic power in shoes. The system
holds a generator in such a way as to give full pressure to the lever at the hinged heel
plate. Figure 4b presents the resulting power delivered to the load by these systems. A
flexible energy harvester is presented in Figure 4c, which is attached to a porcine heart,
generating power from cardiac contraction and relaxation motions. The capacitor stores
energy obtained from cardiac motion, finally transmitting the data to the receiver wirelessly.
Figure 4d depicts the change in voltage activated by wireless data transmission where the
steep slope in time from 29.8 to 34 ms implies the successful transmission of data. Figure 4e
demonstrates the implantation of a single-wire generator (SWG) in a live rat to scavenge
energy generated by its breath and heartbeat. This study illustrates that harvesting low-
frequency dynamic muscle motion drives nanogenerators to bend periodically and generate
an AC power output. Figure 4f gives the I-V characteristics of the nanogenerator.

Being one of the most popular choices in biomechanical energy harvesting, the piezo-
electric nanogenerator (PENG) drew much attention in recent times. In a broad sense, the
four-circuit category has been discussed and incrementally improved over the last two
decades for coupling interfaces of PENG. These are standard energy harvesting (SEH),
synchronized charge extraction (SCE), parallel synchronized switch harvesting on inductor
(P-SSHI), and series synchronized switch harvesting on inductor (S-SSHI) circuits. Different
electro-mechanical coupling conditions can alter the charging of the energy storage ele-
ment. A numerical study was performed considering numerous design space factors [111].
Recently, a self-powered array interface circuit based on synchronized switching and
discharging a storage capacitor through an inductive coupling technique (SSDCI) was
presented [112]. The SSDCI array circuit achieves an efficiency of 82.3% and allows a gain
of up to 300% in comparison to the maximum output power generated by the full-bridge
rectifier. Furthermore, a self-adapting synchronized switching interface circuit using a
180 nm CMOS process node [113] has been reported, which could achieve 500% more
power compared to an ideal full-bridge rectifier. In principle, the piezo-electronic energy
harvester uses inductive coupling techniques for power transfer, which is discussed later
in this review.

Overall, the piezoelectric-based energy harvesters produce the highest power densities
among the energy harvesters that use human vibrations. The limitations of piezoelectric
energy harvesters are their frequency-dependent nature and inefficiency at low-frequency
human motion.
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Figure 4. (a) A shoe-mounted rotary energy generator. (b) Output power from shoe-mounted rotary
energy generator. Reprinted with permission from [91]. Copyright 1998 IEEE. (c) Flexible energy
harvester using cardiac motions with storage capacitor and wireless transmission. (d) The resultant
output voltage from the generator reported in [95]. Adapted with permission from [95]. Copyright
2017 WILEY-VCH Verlag GmbH & Co. (e) Single-wire energy generator from the beating heart of a
living rat’s diaphragm. (f) I-V characteristic of the generator. Adapted with permission from [97].
Copyright 2010 WILEY-VCH Verlag GmbH & Co.

Electrostatic Transduction

Mechanical vibration can generate electrical energy by transducing electrostatic energy
suitable for implantable biosensors requiring ultra-low power. Electrostatic-transduction-
based energy harvesters follow the fundamental principle of Coulomb’s Law. The capacitance
changes between two parallel plates, typically electrically separated by air, a vacuum, or a
dielectric. The forces of attraction between these oppositely charged plates vary with gap dis-
tance or area modulation. Therefore, by changing the capacitance of these vibration-dependent
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conductors, the mechanical energy from the vibrations can be converted into electrical en-
ergy. This principle is illustrated in Figure 3d. Typically, the power efficiency of electrostatic
devices is improved by lowering the surface region or volume of the plate. Hence, the elec-
trostatic generators are efficient at smaller scales and well suited to microelectromechanical
systems’ (MEMS) fabrication. For example, a MEMS sensor with a parallel plate capacitor
can generate 8 µW of power through electrostatic induction [114]. Various comb structures
have been explored such as finger teeth in an interdigitated shape [115] or a symmetrical
three-port structure to increase the power output density up to 270.22 µWcm−3 [116].

The limitations of a capacitor-based system are the requirement of recharging, low
energy efficiency, and being suitable only for low-power implants. Integrating a MEMS
with a variable capacitor ranging from 32 nF to 200 nF demonstrated 58 µW of power
generation from cardiac motion [117]. Another MEMS-based electrostatic inducer for
energy harvesting in biomedical IWM devices was presented in [118], generating 80 µW of
power. Electrostatic generators/transducers have shown promise and commercial usability
in numerous biomedical applications.

Recently, electrostatic energy harvesting has gained attention for delivering energy to
implantable medical devices. For instance, ventricular motion and heartbeat energy can pro-
duce 36 and 58 µW of power, respectively, to operate cardiac pacemakers using a variable
capacitor electrostatic generator [117]. However, the variable-capacitor-type resonant struc-
ture is ineffective in generating energy from low-frequency human motion. A non-resonant
MEMS structure was studied in [118], producing 80 µW of power from nonperiodic human
motion. In [119], generators using microfluidics were demonstrated to obtain 230 mW of
power using the electrostatic harvesting approach from chest diaphragm motion.

Apart from MEMS, inexpensive, high-performance variable capacitance mechanism
devices are an option. Such devices use printed dielectric ink made of nanocomposite mate-
rials in combination with commercially available conductive elastomers. These elastomers
utilize a dielectric membrane with flexible electrodes. The deformation of this uniform
membrane can act like a dielectric elastomer generator system (DEGS) [120]. Low leakage
current and high cycling stability have been reported for such flexible electrostatic energy
harvester prototypes. One provided a power density of 160 µWcm−3, over 1000 cycles at a
low frequency of 0.5 Hz, making the device feasible for practical wearable applications [121].
Liquid metals were recently explored to use as the electrode material in addition to a di-
electric layer. The upper limit for the relative permittivity MEMS and elastomer harvesters
is 1–3, respectively, whereas liquid metals can easily accommodate the high efficiency of
the device by using high-dielectric-constant (high-k) materials. The harvester electrodes
have been developed with mercury [122] and, subsequently, with room temperature liquid
metal alloys (Galinstan) [123]. However, mercury is a toxic material having a potential risk
of oxidation of liquid metals. Researchers are looking into replacing the droplet electrode
with an electrically conducting elastomer. Currently, with revolutionary advancements in
printed electronics, it is even possible to print complex nanocomposite formulations for
electrode structures in applications of IWM devices.

Another cutting-edge research is the electrostatic rotational energy harvester. A stochastic
model of a rotational energy harvester based on arm swing was presented in [124]. Similar
works for harvesting energy from human motion was demonstrated in [125,126] by using
metal ball bearings. The system can scavenge up to 80 µW of power from the arm swing
while walking at a speed of 1.45 m/s. One of the main disadvantages of using this technology
is the requirement of some seed input of energy. The addition of an electret layer, which acts
as a permanent charge buried within a dielectric layer made of CYTOP polymer material, has
been shown to overcome this challenge [127].

The advantages of electrostatic energy harvesters include (i) compatibility with micro-
scale IMDs, (ii) high efficiency in ultra-low-power IMDs, and (iii) high efficiency in low-
frequency human-centric (heartbeat, ankle, hip, knee, etc.) kinetic energy harvesting [26,28].
The necessity of pre-charging, the high output impedance, and the low output current are
the challenges of using electrostatic energy harvesting for IWM devices.
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Electromagnetic Induction

Oscillating magnetic fluxes induce an electric field in a winding based on Faraday’s
Law, which is the working principle of electromagnetic induction. The electrical output
is dependent on the strength of the magnetic field, the relative motion, and the number
of turns in the winding [128]. The basic working principle is shown in Figure 3e. For
instance, an electromagnetic generator was presented in [129], where a permanent magnet
in the abdomen oscillates relative to the conductive coil due to motion. The system can
generate 1.1 mW of power utilizing 0.3 Hz human motion. An electromagnetic generator
using heart motion was presented in [130], producing 6 µW of power. There has been
another demonstration of an electromagnetic generator utilizing heartbeat, sewn into
a sheep’s heart, producing 16.7 µW by the electromagnetic oscillation [86]. Blood flow
and pressure were also demonstrated to be effectively converted to 3.4 mW of power
in [131] using an electromagnetic generator. Using the heart movement to design an energy
harvester can minimize life threats, avoiding multiple replacements of cardiac pacemakers.
Energy harvester for endocardial implantation was presented in [132–134]. The device
operates on the electromagnetic induction principle, containing a microgenerator producing
4.2 µW of output power. Furthermore, the same group proposed an energy harvester, in
which an eccentric oscillating mass captures external heart excitation and converts it into
the rotation of an electromagnetic generator, harvesting an output power of 6 µW. A
curved electromagnetic energy harvesting system that can capture energy through human
oscillatory walking motion was presented in [135]. The experimental results showed that
the harvester can produce 5.185 mW of power. An energy harvester is placed in a backpack
to utilize low-frequency and high-amplitude vibrations, which leads to an output peak
power of up to 32 mW while walking at a speed of 3.58 m/s [136]. The significant weight
and flexibility of the electromagnetic energy harvester are the main challenges for proper
energy supply to IWM devices without causing damage. For the benefit of size, research
efforts have been devoted to utilizing MEMS in electromagnetic energy harvesting [137,138].
For example, a MEMS-sensor-based velocity-damped resonant generator was demonstrated
to generate 10 µW of power [139]. Similarly, 3.9 µW of power was obtained from the ankle
motion using a magnetic induction generator for miniaturized IWM devices [140]. Flexible
electromagnetic devices are gaining huge popularity due to device compatibility with
energy-scavenging applications. A low-cost, flexible electromagnetic energy harvester
was designed in [141] utilizing a polymeric magnetostrictive ribbon Fe64Co17Si7B12 and
poly-vinylidene fluoride (PVDF), which gives an output power and power density of
6.4 µW and 1.5 mW/cm2, respectively. Nonlinear dynamic characteristics are studied
in [142], where the vibration energy harvester generating an output power of 620 µW
was designed using the Terfenol-D/PZT composite proposed. A similar type of vibration
harvester was designed with micro-machined flexible polyimide films producing a 5 µW
peak output power [143]. However, MEMS fabrication is a complicated process, and the
energy efficiency is low, which limits its widespread adoption.

Furthermore, the kinetic energy associated with blood flow can be a source of energy
harvesting. An electromagnetic (EM) generator made of metal coils and permanent magnets
has been demonstrated to harvest energy from blood flow [144]. A stack of magnets
oscillating under the influence of external body acceleration would generate electrical
energy based on EM induction. An EM generator device implanted in the right ventricular
cavity of a pig and fixed on the endocardium could achieve a power of 0.78 µW. Another
EM generator placed in the pig heart through a catheter utilized intra-cardiac turbine
motion to harvest energy from blood flow [133]. The device weighed about 1.3 g and
output power in the 10.2 ± 4.8 µW range.

Over the years, EM generators have been proven to be a sustainable method for kinetic
energy harvesting. Traditionally, these energy harvesters are designed and fabricated
using a resonant structure [145]. However, the resonant frequency (100 Hz) is much higher
than the frequency of human motions (<5 Hz). This difference leads to a non-resonant
condition and may cause poor efficiency in energy conversion. Thus, they need a coupling
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interface and an energy extraction circuit for extracting magnetic flux in synchronization.
This circuit enables the rectification and the amplification of the voltages produced by an
EM energy harvester at optimum levels. Apart from the popular choice of a nonlinear
coupling interface [146], researchers have also demonstrated energy harvesting with a
linear energy extraction circuit comprising a full-wave bridge rectifier. Frequency up-
conversion structures [147] and rotational structures [148] have also been reported for
energy harvesting at an ultra-low frequency.

In general, more energy can be harvested in an electromagnetic generator compared to
an electrostatic generator. However, the reported output energy is comparatively low than
the piezoelectric energy harvesters. The limitations of electromagnetic energy harvesters
include low output power and low impedance, resulting in high output current [89].
Therefore, extra circuitry is required to obtain power conditioning. In addition, the EM
generators can cause electromagnetic interference (EMI) with other medical devices, which
can limit the application of this type of energy harvester.

Thermoelectric Methods

The concept of a thermoelectric energy harvester is the Seebeck effect, which uses
temperature differences to generate electric energy. The temperature gradient between the
body and the ambient environment is converted to a voltage output. A system overview of
this category of energy harvesting is shown in Figure 3b. Both metals and semiconductors
can be utilized to harness energy using the Seebeck effect. However, the Seebeck effect is
much more prominent in semiconductors. A basic thermoelectric generator (TEG) for IWM
devices consists of a series of connected n-type and p-type semiconductor materials, result-
ing in electron movement from the hot terminal to the cold one. Such electron movement
produces a potential difference, resulting in a current flow in the closed circuit. Bismuth
telluride, calcium manganese oxide, and lead telluride are a few examples of thermoelectric
materials. The advantages of these materials are low thermal and high electric conductivity,
compact size, light weight, long operational lifetime, and high Seebeck coefficient [27].
The output voltage of TEGs can be boosted using multiple p-n semiconductor connec-
tions in series, forming thermopiles [149]. The Seebeck effect can potentially generate
sufficient power to operate implants such as nerve and muscle stimulators, hearing aids,
etc. [150,151]. However, when the temperature gradient is below 5 K, only a few hundred
microwatts of power can be extracted from the human body. For instance, exploiting the
5 K thermal difference, 1.5 µW [152] and 1 µW [153] of power is generated using a TEG
of a size of 0.19 cm and 1 cm, respectively. A recently reported TEG demonstrated an
output power of around 30 µW, exploiting the 5 K temperature gradient. Thermopiles
can be integrated into wearable textiles to generate electrical energy from body heat [154].
For example, a cold plate of 4 cm in diameter was glued to carbon fabric, generating up
to 5 mW of power, where the ambient environment temperature varied from 15 ◦C to
27 ◦C. In [155], an IMD with an integrated accelerometer powered by a TEG to detect falls
was presented, scavenging 520 µW of power at 15 ◦C. Illustrations of different TEGs are
presented in Figure 5. Figure 5a shows an interfacing circuit for a batteryless thermometric
energy harvester fabricated in a 0.35 µm CMOS process. An efficient control circuit was
designed for transferring the obtained energy to a capacitor, which controls the output
voltage at 1.8 V. Figure 5b presents the measured output power achieved from the buck con-
verter compared to the maximum power extracted from the TEG. Figure 5c demonstrates
a wearable TEG. The non-uniformity of skin temperature is dependent on the ambient
temperature. Hence, the output power extracted from the TEG depends on the location
and clothes. Figure 5e presents the design of a TEG structure using Aluminum and Teflon.
Aluminum is used to design the hot plate for fast heat collection, while the cold plate works
as a heat diffuser. Teflon works as an insulator sandwiched between the hot and cold plates,
reducing the convection and radiation of heat to prevent warming of the device. Figure 5f
presents the output power curve, which varies between 40 µW to 520 µW.
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Flexible and wearable electronic devices have gained significant attention owing
to their light weight, easy accessibility, and ability to endure mechanical deformation.
Polymer-based TEGs have gained widespread popularity due to their low cost, light
weight, fast processing, mechanical flexibility, and low thermal conductivity. Organic
thermoelectric nanomaterials were presented in [156], where single-wall carbon nanotubes
(SWCNTs) were stabilized by poly. A high-performance thermoelectric poly (3-hexyl-
thiophene)/CNT (P3HT/CNT) nanoparticle and flexible P3HT/CNT organic TEG were
prepared in [157], using a spray-printing method, which exhibits excellent thermoelectric
performance. A printable TEG composed of organic materials, graphene, PANi, and a
double-wall nanotube (DWNT) was developed in [158] using a layer-by-layer assembly
technique. Formulating an n-type SWCNT by doping diethylenetriamine (DETA) on the
pristine SWCNT (p-type) was presented [159]. The pristine CNT presented a Seebeck
coefficient of 43 µV/K, and the DETA-doped CNT exhibited a negative Seebeck coefficient
of −33 µV/K.

The fabrication of p- and n-type thin films for thermoelectric applications was demon-
strated in [160] by doping tetrathiotetracene (TTT). A novel wet-spinning process was
explained in [161] to develop an organic TEG using nanocomposite materials. The de-
sign of flexible thermoelectric threads using 3D-printable composite inks was introduced
in [162]. A TEG prototype based on nanofibers was assembled in [163], which generated
an output power density of 0.273 µWcm−2 from human body heat. This work forms the
pathway to developing high-performance polymeric and flexible materials for TEGs.

Because of the low conversion efficiency, it is crucial to have a well-designed power
conditioning module and coupling interface. Researchers have demonstrated a CMOS
interface circuit in the 130 nm process, gaining up to 90% efficiency employing a single
inductor-based buck–boost converter [164]. The proposed system also employed an auto-
mated zero-crossing detection feedback scheme to improve power efficiency. In addition,
there has been a demonstration of an all-integrated MEMS thermoelectric power chip [165].

The limitations of TEGs are their low conversion efficiency and the high cost of
realizing these devices. For instance, with a 5 K temperature gradient in the human
abdomen, one thousand thermocouples are needed to achieve 100 µW of power, requiring
an area of 1.3 cm2 [166]. These large area requirements in implantable and wearable devices
are not practically feasible. In addition, due to low output voltage, TEGs require extra
circuitry for boosting the converter, control, and initial start-up.

In achieving a high power density, researchers have been looking for newer materials.
In simulation, different emerging materials are explored for better efficiency. It has been
reported that phase-change materials can be used to enhance the thermal performance
of a TEG by around 30% when the heat input is at around 0.2 W [167]. Therefore, im-
proved power conditioning methods, low-power start-up, efficient MPPT design, and
novel thermoelectric material design are a few research prospects to commercialize TEGs.

Triboelectric Energy Harvesting

Triboelectric energy harvesting is an emerging technique to meet the energy needs of
implantable and wearable medical devices [168]. The triboelectric nanogenerator (TENG)
uses the electrification effect to generate energy. The charge is produced by the friction at
an interface of two different materials, also called the triboelectric pair [169]. Electrodes
are placed on each material, and the electrification effect is combined with the electrostatic
induction to obtain a usable amount of power [170]. A representative working principle is
shown in Figure 3c. Significant improvement has been observed in TENGs over the last
few years, enabling the conversion of energy from gentle touches [171], palm tapping or
walk [172], eye blinks [173], and vibration [174] into electrical energy. For example, human
motion due to mild running at a speed of 5 m/s can generate 5.28 µW of power [175]. A
biodegradable TENG made of organic materials based on gelatin film was shown in [176].
This prototype can generate an output voltage, current, and power density of up to 500 V,
10.6 mA/m2, and 5 W/m2, respectively.
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Figure 5. (a) Interface circuit of thermal energy harvester where the inset presents the thermoelectric
generator (TEG) chip worn on the arm. (b) Measured electrical power from the buck converter vs.
maximum power available from the TEG. Reprinted with permission from [149]. Copyright 2010
IEEE. (c) Wearable TEGs with a 3 × 3 × 1.5 cm radiator. (d) Output power variation with ambient
temperature for a TEG. Reprinted with permission from [154]. Copyright 2013 IEEE. (e) A prototype
of a TEG, harvesting energy from the human body. (f) Output power obtained from a TEG at different
loading conditions. Reprinted with permission from [155]. Copyright 2009 IEEE.

Triboelectric materials are flexible and cost-effective. In addition, the high power den-
sity, pressure sensitivity, and conversion efficiency of TENGs have made them a promising
energy harvesting technique for IWM devices [170]. For instance, a heart rate monitor
was presented in [177] using a TENG to meet the energy need. The system can generate
2.28 mW of power, having an excellent 57.9% conversion efficiency using human walking
motion of 10 Hz. However, the surface charge density retained in the dielectric layer of the
TENG depends on the dielectric breakdown of the air, limiting the amount of harvested
energy [178]. There has been ongoing research for various composite materials for TENGs.
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Nanowire arrays made of cobalt selenide on a Kevlar fiber and reduced graphene oxide
dispersed in PDMS have been reported to output 1.1 mW cm−2, even at a low frequency of
5 Hz [179].

In addition, the pulsed output power, low current, and frictional damage in the contact
surface are a few other limitations of TENGs. The triboelectric energy harvesting technique
is still in the development phase and improvements are necessary to adopt it in powering
IWM devices.

A summary of representative research in biomechanical energy harvesting is presented
in Table 1. There is a lack of a universal figure of merit (FOM) for a fair comparison of energy
harvesters. The performance of energy harvesters often depends on techniques, device
architectures, materials, circuits, and various operational modes. The output power per
unit volume, termed output power density, is a widely used metric for energy harvesters.
Energy conversion efficiency is another FOM, which is the ratio of the output of the
electrical form to the input, which can be biochemical, mechanical, light, heat, etc. The
output voltage, current, power, power conversion efficiency, device dimension, weight,
open circuit voltage, operating frequency, etc., are often used to quantify the performance
of different energy harvesters. Due to wide acceptability and availability in the literature,
the output power density is summarized in this review paper to provide an idea of the
performance of representative energy harvesting research.

Overall, biomechanical systems utilizing the kinetic energy from human body motion
require a relatively larger size, producing low power. The output power of thermoelectric
generators is low, which is insufficient for most IWM devices. There are challenges, as well
as research opportunities to improve these energy harvesting techniques, as discussed in
Section 8.

3.2. Environment-Centric Energy Harvesting

Energy harvesting from the environment scavenges electrical energy from various
sources, including solar, infrared, RF, and wireless power transfer (WPT). This section
presents different energy sources and state-of-the-art research to harvest energy from
the environment.

3.2.1. Infrared Radiation

Earth continuously emits infrared heat into outer space in the range of Gigawatts [180].
Capturing even a fraction of that would end energy woes. Like the Seebeck effect in TEGs,
whenever heat flows from a hotter to a colder body, energy can be harvested. One way
to attain this is to treat waste or infrared heat as high-frequency EM waves. Appropriate
antennas can collect these EM waves for further processing and use in IWM devices.

Some implantable devices have experimented with harvested energy from infrared
radiation such as cardiac and brain-implanted pacemakers. A photodiode is usually
implemented as part of implantable medical devices to capture infrared radiation [181]. For
example, an implantable cardiac pacemaker presented in [182] achieved 4 mW of power
from infrared radiation. Biological tissue works as a source of wireless power transfer
(WPT) in the near-infrared region (NIR) within the optical range of 650–1350 nm [183–185].

Figure 6 illustrates the concept of NIR subcutaneous energy harvesting in human,
mouse, and output power variation in a photovoltaic (PV) cell implanted in a chicken
breast. Silicon or GaAs PV cells convert energy in the NIR with an approximate external
quantum efficiency of 100% [186,187]. As NIR can penetrate through the skin, researchers
demonstrated its application in powering biomedical devices [188–193]. An artificial NIR
light is attached outside the skin, which can be used as a reliable energy source. A recent
work in this area presented a design of a rear reflector based on the bandgap of implanted
PV cell materials, which utilize the transmission efficiency of NIR light underneath the skin
[194]. The design in [192] includes a PV cell for biomedical implants, which uses infrared
irradiation (850 nm), giving an output power density below 1.06 µW/mm2. Figure 6b
illustrates the dissected sample of mouse placed between the LED and PV cell. Extracted
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energy is measured using LED irradiance and PV cells placed underneath the mouse.
Relevant work on subcutaneous infrared energy harvesting for IMDs is reported in [190,191]
with an output power of 60 µW and 8.2 µW, respectively. However, the limitations of using
infrared radiation for IWM devices include increased skin heating, stimulating tissue
damage, a low amount of harvested energy, and large device size occupying a large area,
resulting in high power consumption.

Table 1. Summary of representative research on human-centric biomechanical energy harvesting.

Energy Harvesting
Techniques Energy Source

Output
Power
(µW)

a Output Power
Density

(µW/mm3)

b Size
(mm3)

Piezoelectric

Hand motion [99] 15.2 3.8 µW/mm2 4 cm2

Human walking [195] 2000 0.25 µW/mm2 100 × 80 mm2

Finger tapping [196] – 1.754 × 105 140 nm ×5 µm

Porcine heart
motion [95]

0.73 7.3 × 10−3 100 mm2

Elbow bending [96] 0.167 6.7 × 10−3 24.276

Human walking [197] 30.55 – –

Human knee [94] 4800 0.8 2000

Electrostatic

Knee joint
motion [198]

9.75 × 103 78 125

Heartbeat vibration [199] 10 0.074 –

Chest motion [119] 230 × 103 1840 125

Waist motion [200] 40 0.044 900 mm2

Electromagnetic

Blood flow and
pressure [131]

3400 1.076 3.16 × 103

Finger rubbing [201] 0.32 8.88 × 10−3 36

Knee [202] 3.6 × 106 5.614 145 × 66 × 67

Foot [203] 4.1 × 103 0.086 64 × 40 × 20

Heart muscle [86] 16.7 0.1429 116.86 mm2

Thoracic diaphragm [129] 1100 0.069 1.6 × 104

Thermoelectric
Human wrist [204] 100 0.20 µW/mm2 20 × 25 mm2

Human body [205] 2.1 8.4 × 10−4 µW/mm2 50 × 50 mm2

Radial artery [206] 100 5.71 µW/mm2 175.2

Triboelectric

Handwriting [207] – 1.8 µW/mm2 1 × 1, 2 × 2, 3 × 3 cm2

Human vibration [208] – 0.7261 µW/mm2 –

Human body [209] – 3.3 µW/mm2 –

Cardiac motion [210] 5 – 2.5 × 1 × 0.15 cm3

Body motion [211] – 360 µW/mm2 5 × 10 cm2

a The output power density is expressed as power per unit volume (µW/mm3) and power per unit area (µW/mm2).
b Size represents area or volume.

IR transmission possesses several advantages in terms of the design of the coupling
interface. These advantages include simple and relatively low-cost circuit fabrication,
low power consumption, high noise immunity, etc. Infrared or near-infrared is usually
employed for harvesting energy for under-skin IMDs. For those applications, regular
IR transmitter–receiver systems have shown satisfactory performance [181]. It has been
reported that transmitted power is dissipated in tissue by radiation and in coupling [212],
causing permanent tissue damage. The transmitted IR radiation heavily depends on the
distance between the source and target. The coupling interface and power transfer in IR
are active research areas.
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Figure 6. (a) Schematic of photovoltaic energy harvesting through subcutaneous tissue. (b) NIR
energy measurement from photovoltaic cells implanted in mouse. (c) Incident versus output power
of a silicon photovoltaic cell implanted at a 5 mm depth in porcine skin and a 10 mm depth in chicken
breast using low-level laser therapy. Adapted with permission from [192]. Copyright 2017 IEEE.

3.2.2. Radio Frequency Signal

Due to the widespread deployment and recent advancement in wireless communica-
tions technologies, energy harvesting from RF is gaining attention [213]. The EM waves
used in wireless communications are available in ample amounts, which can be used in
energy harvesting. For selecting a suitable operating frequency, different compact rectifying
antennas (rectennas) have been designed using techniques such as dual polarization [214]
or using emerging materials such as graphene [215]. The conversion performance of the
designed rectenna is 80.23% with a signal input power of 2 dBm. The size constraint of
these invasive foreign substances in the human body led researchers to look into more
compact solutions. A nanocomposite single-sided printed antenna can obtain an efficiency
of 62.5% at 1.8 GHz [215]. However, the implantation of the rectenna is always a concern,
leading to the proposal of a textile-based rectenna array [216]. The rectenna array could
achieve a conversion efficiency of 70%. It has been demonstrated as a proof-of-concept
that the system could power three LEDs at a distance of 60 cm. A complete textile-based
approach with an RF energy harvester and supercapacitor was shown in [217]. The system
achieved a power conversion efficiency (PCE) of up to 80%. It can charge the supercapacitor
to 1.5 V in four minutes at a distance of 4.2 m from the source. Moreover, wireless radio
power and control systems employing thin, mechanically soft, implantable, stretchable RF
energy harvesting schemes were used in neural implants using light-sensitive proteins [65].
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An in-vivo demonstration in rat implants showed that the system successfully modulated
peripheral and spinal pain circuitry.

One of the main limitations in an RF system is that it requires much peripheral
circuitry, and sometimes, the size of those additional things might be even bigger than the
sensor itself [65]. For that, researchers have looked into solid-state electronics solutions.
For instance, Schottky barrier diodes are popular choices in rectification due to their low
built-in voltage [218]. In [219], a wearable sensor tag was designed, which can monitor
physiological signals such as PPG, body temperature, blood pressure, and respiratory
sounds. The wearable sensors are powered by harvesting the RF energy from an 800 mW
source using a two-stage CMOS rectifier, generating 15 µW power at a 3.1 m distance.
Similar technologies were studied in [220,221], harvesting RF energy at different frequencies
using CMOS circuits to power up IWM devices.

RF can provide a relatively predictable amount of energy, unlike other energy sources,
which are dependent on natural forces. The near-field and far-field RF signals utilize
different coupling interfaces. Inductive and magnetic resonance coupling is used in the
near-field RF to extract the energy. In the near-field, a power conversion efficiency (PCE) of
up to 50% can be achieved while having a limited transmission distance [222]. On the other
hand, far-field RF harvesting technology uses radiative coupling. Power transfer in the
electric field of the propagated waves can be specifically suitable for IMDs. However, this
technology needs extra assisting circuitry such as a buck–boost converter, rectenna, and
supercapacitor as coupling interfaces [223].

Wide abundance of RF sources is main advantage of harvesting energy from RF
signals. However, the devices have low efficiency; the output efficiency sometimes can be
unpredictable and depends on the distance between the source and the harvester and many
other factors. The types of diodes used in the rectifier block and the impedance matching
network, the shape, and the antenna’s size are a few of the challenging design blocks in
the system.

3.2.3. Solar Energy Harvesting

Solar energy harvesters are a mature technology on the macro scale inspired by the
photosynthesis process in plants. In a regular solar cell, an anode and a cathode are placed in
a molecular dye. This arrangement can readily convert solar energy into electrons, thereby
electrical energy, upon the availability of proper sunlight. Three types of materials widely
used in solar energy harvesting in photovoltaic cells are amorphous, monocrystalline,
and polycrystalline silicon. Amorphous silicon is suitable for wearable devices due to its
flexibility, low cost, and high sensitivity to natural light, but it lacks widespread adoption
because of its low energy efficiency of around 10%. On the other hand, crystalline silicon
has a high conversion efficiency of approximately 15–20% in outdoor solar lights. The
amount of harvested electrical energy is linearly related to the size of the solar cell and
the amount of light illumination. For example, up to 100 mW/cm2 of energy with an
efficiency of 15–20% can be achieved during the daytime [224]. For an indoor environment,
the conversion efficiency of 8% and an energy density ranging from 10–100 µW/mm2

is achievable.
Consumer electronics such as calculators and wristwatches have efficiently been

using solar energy for several decades [225]. Although solar energy is considered one of
the prominent renewable energy sources, sufficient electrical energy can be harvested in
miniaturized photovoltaic cells to operate low-power electronics. The typical solar cell
consists of nonlinear semiconductor devices that generate electricity while exposed to light.

Although solar energy harvesting for IMDs remains challenging, the high conversion
efficiency and availability make solar energy an attractive source for wearable devices. For
instance, a wearable medical device was presented in [226], which uses monocrystalline
PV cells for energy harvesting. The device can continuously monitor heart rate and blood
oxygen saturation. An onboard 20 mAh LiPo battery and a supercapacitor (which can
deliver 13.7 mW of power for up to 4 h) are charged when solar energy is available. A
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solar powered cardiac pacemaker and a flexible PV cell in a wristband are presented in
Figure 7 with their output characteristics. Figure 7a presents a battery-less single-chamber
pacemaker driven by solar energy harvesting. The PV cells are placed under pig skin flaps
and exposed to different irradiation. The measured median output power presented in
Figure 7b was found to be 1963 µW/mm2, 206 µW/mm2, and 4 µW/mm2 for full sunlight
outdoors, shade outdoors, and indoors, respectively. Figure 7c presents a wearable pulse
oximeter with a flexible thin film amorphous silicon PV module. A flexible thin film
lithium-ion battery was designed to operate this pulse oximeter. Since the PV module and
battery were designed with flexible material, the system can be bent and attached to curved
surfaces. Figure 7d illustrates the current–voltage (I-V) characteristics of the PV module
under three lighting conditions.

Amorphous silicon has allowed the development of flexible photovoltaic cells suitable
for wearable devices [227,228]. For instance, a flexible printed circuit board (PCB) was
presented in [228] to monitor body temperature, powered by solar energy. The excess
energy is stored by incorporating a power management circuit. The device can operate
uninterrupted for up to 15 h in indoor environments, requiring only about 320 lux of light
intensity. In addition, it can wirelessly transmit recorded information to a remote node
at a 2.4 GHz frequency. Moreover, incorporating flexible PV cells facilitates the reduced
size and weight of the wearable device. Another flexible wearable device was presented
in [229], which monitors heart rate, while an integrated accelerometer is employed for
fall detection. Researchers have also explored organic materials as energy sources for
IMDs. They offer cost-effectiveness, superior biocompatibility, and high sensitivity to NIR
light. For example, printed organic solar cells have shown 7.6% PCE and 2.9% storage
efficiency of supercapacitors for retinal implant, generating 13.3 mJ of energy and 2.8 mW
of power [230].

In the NIR, the skin and subcutaneous tissues of the human body behave transparently
to light illumination [192]. Hence, solar energy can be effectively converted to electrical
energy in IMDs, using the photoelectric effects. Due to recent advances in CMOS technology,
on-chip photovoltaic cells are feasible [231]. A PCE of 17% and 31% is achievable in silicon
and GaAs PV cells, respectively, using 1.06 µW/mm2 NIR light at a wavelength of 850 nm.
However, the GaAs material is toxic to the human body and requires proper encapsulation.
Polymers such as silicone [232,233], polydimethylsiloxane [193], and diamond are often
used in encapsulation due to their high flexibility.

The characteristic features of photovoltaic energy harvesting are high output power
density, low fabrication cost, and telemedicine capacity through the optical link. However,
the low irradiance in indoor conditions and internal non-uniform body temperature result
in low output power and poor energy conversion efficiency. In addition, the irradiance
might be interrupted by the clothing and placement of the IWM devices, which becomes
prominent in small-scale devices. Moreover, the PV-powered implantable devices cannot
be placed deep inside the body due to area constraints and the decrease in incident solar
energy with tissue thickness. Due to the nonlinear characteristics of PV cells, maximum
power point tracking (MPPT) is often incorporated into solar energy harvesting to maximize
conversion efficiency. However, the requirement of additional circuitry and the power
consumption of MPPT limit their applications in IWM devices.

3.2.4. Wireless Power Transfer

Wireless power transfer (WPT) is a sustainable powering solution for IWM devices.
WPT minimizes the finite capacity of batteries problem and avoids transdermal wiring,
which can cause infection. WPT works on Faraday’s concept of transferring power from
one coil to another without requiring any conducting medium. Initial works on powering
transcutaneous implants were based on building a near-field inductive coupling between
transmitting and receiving coils at resonance. Three categories of WPT for IWM devices
are discussed in this section.
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Figure 7. (a) A batteryless solar-powered cardiac pacemaker prototype; the rear part is lithium-
polymer storage (silver color). (b) Boxplot demonstrates the output power at various irradiances.
Reprinted from [232]. (c) Photovoltaic energy harvesting system with the flexible battery mounted on
the curved surface (sleeves). (d) I-V characteristics of photovoltaic cell charging the flexible battery.
Adapted from [227].

Ultrasonic Techniques

Energy harvesting using sound waves is comparatively safe for the human body with
minimal chances of electrical interference with other medical devices. Pulsed ultrasonic
waves were studied in [234] to provide currents in the milliampere range in piezoelectric
devices. Generating high-frequency current using ultrasound waves was demonstrated
in [235]. The ultrasound wave generator is placed on the skin to couple energy to a
MEMS sensor implanted inside the body, providing electrical charge output. Another
significant improvement in this area was presented in [236], generating 21.4 nW of power
in an implanted sensor using ultrasound waves. A MEMS-based piezoelectric ultrasonic
energy harvester (PUEH) was reported in [237], which increased the battery lifetime of
a pacemaker.

Figure 8 shows the concept of a PUEH driving a pacemaker inside the human body.
The reported PUEH collects energy from an external ultrasound transducer used in hospi-
tals for diagnostic purposes. The designed harvester provides a large bandwidth due to the
two overlapping resonant modes, which increase the power density from 0.59 µW/mm2 to
3.75 µW/mm2 at an ultrasound intensity of 1 mW/cm2. A novel Samarium (Sm)-doped
Pb(Mg1/3Nb2/3O3 − PbTiO3 (Sm-PMN-PT) implantable PUEH was introduced in [238],
giving an output power density of 1.1 W/cm2. Electrophysiological experiments on rats
confirmed its sustainability for deep brain stimulation and analgesia applications. A
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flexible-membrane-based PUEH was studied in [239], where the wireless charging is per-
formed via ultrasound, producing a continuous voltage and current outputs of 2 Vpp and
4 µA, respectively, on both planar and curved surfaces. A multilayered PUEH presented
in [240] gives a peak output power of around 13.13 mW. However, the ultrasound energy
harvesting to operate IWM devices is still in its infancy and limited by the insignificant
amount of harvested energy and the requirement of large MEMS devices.

Figure 8. (a) Ultrasonic energy harvester integrated with a pacemaker; the fabricated chip is shown
at the right side. (b) Frequency adjustment for achieving high transfer power and efficiency due to
breathing and muscle movement for a 1 mm fluctuation in distance. Reprinted from [237].

Capacitive Coupling

The basic principle of capacitive coupling to power IMDs is parallel plate capacitors.
One of the plates is placed on the external skin, and the other is internal to the human
body and attached to the implants. For instance, capacitive coupling was used in [241] to
transfer power to implantable devices. The skin in between the parallel plates behaves
like the dielectric, and the electric field works as the carrier to transfer power. A new
approach to capacitive power transfer for implants was presented in [242]. The system
transfers the power through a tissue layer, which acts as a return path for the current. This
method reduces the size of the IMD while increasing power transmission efficiency. The
data transmission through a capacitive coupling link between brain implants was studied
in [243]. The designed capacitive link uses metal plates to attach to the bottom and side
wall of the implant. The reported minimum input power required to establish the data link
is 31 nW at an operating frequency of 915 MHz. The limitations of capacitive coupling for
WPT are tissue heating and user discomfort [244].

Inductive Coupling

The concept of inductive coupling is the use of magnetic fields to provide sufficient
power to the IMDs [245]. Most inductive coupling techniques operate below a 20 MHz
frequency to avoid tissue heating [246,247]. The overall system comprises two inductive
coils: one placed outside the human body, while the other is attached to the implants. Both
coils should be tuned at the same resonant frequency to achieve an efficient power transfer.
The amount of power transfer is controllable by varying the number of coil turns and shapes.
Most studies on inductive links reported a frequency range lower than 20 MHz [247,248]
for avoiding tissue heating, which results from power absorption in tissue. The efficiency of
the power transmission of a system depends on the coil shapes and sizes, the quality factor
of the coil, the coupling coefficient, and alignment location. A hybrid inductive–ultrasonic
wireless power transmission link was proposed in [249] for biomedical implants, which can
achieve high power transfer efficiency. For instance, at 1.1 MHz, it can wirelessly power
a 1 mm3 ultrasonic transducer. The wireless inductive power transmission system finds
potential application in the brain and spinal cord stimulants. A stimulator was designed
in [250], operating at a 198 MHz resonant frequency at a distance of 14 cm from the
body. The designed stimulator collects the energy from a switched capacitor and supplies
it for boosting the output when the voltage reaches its threshold. Another inductive
coupling work was presented in [251] to operate electromyography (EMG) implants in the
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gastrocnemius muscle of a rat. The system achieves a power transfer efficiency of 2.4% at
60 MHz and provides 1.3 mW of output power to the implanted device.

Table 2 summarizes the state-of-the-art environment-centric energy harvesting meth-
ods, generated output power, power density, and sizes. For subcutaneous IMDs, inductive
coupling is a suitable technique at the ISM frequency band. On the other hand, several
methods including capacitive coupling are still in the development phase and potentially
can cause hazards to the human body.

Table 2. Summary of representative works on environment-centric energy harvesting techniques.

Energy
Harvesting
Techniques

IWM Device/
Placement/
Application

Output
Power
(mW)

Output Power
Density

(mW/cm2)

Size/
Diameter (mm)

Infrared

Pacemaker [182] 4 22 5 × 4 × 0.7 cm3

Porcine skin
and fat [190]

0.06 – 390 × 410 × 1.5 µm3

Skin-attachable
patch [191]

0.0082 0.0741 11.1 mm2

Radio
Frequency

WMDs [252] – 1 × 10−5 –
1 × 10−4

25–100 m
distance

Solar

Outdoor/
Cardiac [188]

– 4.94 –

WMDs [253] 16 (Outdoor)
0.21 (Indoor)

– –

Cochlear [254] – 9.35 –

Retina [255] – 44.12 –

Retina [256] – 3.84 –

Ultrasonic

Skin [237] – 0.00375

Brain [238] 0.28 1100 13.4 × 9.6 × 2.1 mm3

Nerve [240] 13.13 – –

Inductive

Retina [257] 98.8 31.49 20

Pacemaker [258] 0.040 0.0905 7.5

Retina [259] 50 17.63 19

Heart [260] 5 × 103–
30 × 103

78–780 70

Nerve [261] 105–127 33.4–40.4 20

3.3. Hybrid Energy Harvesting

Hybrid energy harvesting incorporates multiple energy sources to generate a larger
electrical output. For example, the solar cell uses only a portion of the incident light, and
photons outside the PV cell material band gap are wasted as heat dissipation. Therefore,
combining photovoltaic systems with thermoelectric methods can utilize most of the inci-
dent energy, which increases the output power [262]. The PV-TEG combination requires a
sufficient temperature gradient across TEGs [263]. The mathematical modeling and numer-
ical analysis of heat transfer and temperature distribution to calculate the PV-TEG hybrid
energy generation were presented in [264]. An energy efficiency of 23% is theoretically
possible in PV-TEGs, higher than a single energy harvesters. A flexible PV-TEG was pre-
sented in [265], which utilizes solar energy and the human body dissipated heat to provide
power support to WMDs. A lossless coupling is feasible in the PV-TEG combination. The
system can achieve a power conversion efficiency of 16.3% utilizing a 15 ◦C temperature
gradient in a TEG with a PV system [266]. As the PV-TEG combination is power-efficient
and inexpensive, it can serve the energy demands of WMDs.

A hybrid energy harvester combining solar energy with human body motion was
presented in [266] for self-charging textiles using a supercapacitor for energy storage. It
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contains a fiber-shaped TENG to use motion energy and fiber-shaped dye-sensitized solar
cells to capture the solar energy. Due to the all-fiber structure, the system is flexible and can
be integrated into clothes to serve the energy needs of WMDs.

A hybrid architecture combining a TENG with piezoelectric nanogenerators (PENGs)
can utilize human body motion and ambient mechanical energy. For example, a TENG-
PENG combination demonstrates sufficient energy generation from wind to operate dig-
ital watches [267]. Besides, TENG-PENG hybrid energy harvesters use hand vibrations
to provide power support for cell phones [268]. Despite the increased output power,
the challenges of hybrid energy harvesters include inflexibility, high cost, and complex
mechanisms. Therefore, designing human-body-compatible hybrid energy harvesting for
precision healthcare is still in the development phase.

Hybrid energy harvesting offers an excellent solution of taking the good features of
multiple energy harvesting techniques. However, that makes the design of the coupling
interface and power conditioning circuit much more complex. The challenges of the TENG-
TEG and TENG-PV coupling effect were discussed for a metal–semiconductor interface
in [269]. It has been also demonstrated that a circuit based on parallel-synchronous switch
harvesting on an inductor (SSHI) can simultaneously harvest power from a PZT and
a TEG, this too with a single shared inductor [270]. There have been demonstrations
of highly integrated multi-source energy harvesters with the coupling technique and
multiplexing schemes, which can simultaneously contribute to triboelectric, photovoltaic,
and thermoelectric power generation [271].

4. Extraction of Maximum Power from Energy Harvesters

In IWM devices, capturing the maximum power from the harvester is immensely
important as energy harvesters intermittently generate energy based on the availability of
the source, and often, the generated power is low. To obtain the maximum power point, an
impedance matching between the energy harvester and the load is crucial [272].

The two main techniques for MPPT are perturb and observe (P&O) and fractional
open-circuit voltage (FOCV) [272,273]. The P&O method is also called the hill-climbing
technique, mainly used in large-scale energy harvesting. The harvested voltage and current
are repeatedly sensed to capture the maximum power. In addition, the duty cycle and
switching frequency of the DC-DC converter are dynamically varied [273]. The P&O
technique is highly accurate in finding the maximum power point. However, the P&O
technique is complex and power-hungry due to digital controllers. Different techniques
have been developed to minimize the power consumption of the controllers [274–276]. For
example, maintaining a low controller duty cycle to maintain a longer sleep mode and
short active period can minimize the power consumption [274,277].

The power consumption of the FOCV-based MPPT controller is relatively lower than
that of the P&O technique. The FOCV controller can be implemented using analog or
mixed signal circuitry having minimum complexity [278,279]. In the FOCV technique,
the maximum power point is a fixed ratio of the open-circuit voltage (VOC) of the en-
ergy harvester [273]. For instance, in thermoelectric, radio frequency, and piezoelectric
microgenerators, the MPP point is approximately 50% of the VOC. On the other hand, for
photovoltaic cells, the MPP point is obtained as around 75–80% of the VOC [278]. To obtain
the VOC, a voltage divider configuration or switched capacitor is frequently used [274].
The limitations of the FOCV-based MPPT method are the low conversion efficiency due to
the frequent disconnection of the energy harvester and load to measure the VOC, which, in
turn, reduces the power [279]. Table 3 presents the power consumption of different P&O-
and FOCV-based MPPT systems for energy harvesting applications.

The P&O and FOCV techniques use resistive impedance matching, which is inap-
propriate for electromagnetic and piezoelectric energy harvesters. The energy storage in
parasitic elements limits the maximum real power transfer to load using resistive impedance
matching. Different nonlinear MPPTs have been implemented in recent years. Among
them, the synchronized switch harvesting on the inductor (SSHI) and synchronous electric
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charge extraction (SECE) methods are most commonly used to overcome the limitations of
linear impedance matching [279].

Table 3. Summary of maximum power point tracking approaches and their power consumption.

MPPT
Methods

Energy Harvesting
Techniques

Power
Consumption

(µW)

FOCV

Piezoelectric [278] 5.16

Piezoelectric [280] 10

Electromagnetic [281] 0.15

Thermoelectric
+ photovoltaic [282] 0.3

Glucose biofuel [283] 0.5

P&O

Piezoelectric [274] 408

Electromagnetic [275] 0.75

Photovoltaic [276] 4.6

Thermoelectric [284] 2.1

Thermoelectric
+ photovoltaic [285] 3.48

5. Machine Learning for Emerging Energy Harvesters

Machine learning (ML) is a field of artificial intelligence that learns from data for
automatic predictions and decision-making [286]. Recent developments in ML algorithms
resulted in successful integration in precision medicine, healthcare, natural language
processing, computer vision, etc. Designing robust energy harvesters with a high output
power density, light weight, and miniaturized size requires manual analysis of numerous
design parameters. Automatic on-demand design techniques combining the power of
ML methods for structural design have shown promise in real-time adjustments [287–289].
Other applications of ML algorithms in energy harvesting include predicting the availability
of energy sources, harvested energy management, energy intensity forecasting, and weather
prediction, as discussed in the survey in [290].

Predicting the availability of energy sources is a prominent application of ML meth-
ods in energy harvesting. For instance, linear regression and artificial neural network
(ANN) were used in [291] to sense and switch between intended and unintended RF en-
ergy sources to maximize energy harvesting through the appropriate wake-up and sleep
schedule. AdaEM [292] uses ML to predict user activities, energy usage patterns, and
energy harvesting availability for energy management in wearable devices. A prototype
design demonstrated increased recharging intervals for energy harvesting from light and
motion. Materials informatics integrates ML for advanced materials search. For instance,
ML can discover novel materials for various thermoelectric energy harvesters [293]. A
vibrational energy harvester was presented in [293], which uses ML techniques for gait
signal analysis. In addition, energy harvesting signals are analyzed to find the regularities
in the environment for predicting future energy availability. Different ML algorithms
such as linear regression, support vector machine, random forest, and decision tree were
used in [294] to predict the availability of RF energy at various nodes of a wireless sensor
network. In the RF frequency band between 1805 and 1880 MHz, the linear regression
model sets a threshold to turn on the energy harvester or initiate the sleep mode to ensure
optimum usage [294]. A kinetic energy harvesting system was presented in [295], which
uses ML for energy expenditure analysis. The output voltage of the energy harvester
classifies the activity intensity. Then, activity-specific regression and random forest models
estimate calorie expenditure. This energy harvester demonstrates suitability for application
in human physical activity assessment [295].
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Wearable and assistive devices use energy harvesting to power the devices and often
integrate ML techniques for added functionalities. A walking stick was designed in [296],
which harvests energy from ultra-low frequency human walking motion using triboelectric
sensors. Deep learning (DL) facilitates identity, disability, and motion recognition for high
accuracy activity monitoring, IoT-enabled tracing, temperature, humidity sensing, etc.
Such integrated energy harvesting with DL has shown potential in building an intelligent
walking stick for motion-impaired people [296]. A glove was designed in [297], which
uses triboelectric energy harvesting. The ML methods enable the glove to recognize hand
gestures [297]. Another smart glove was designed in [298], which uses ML and haptic
feedback for object recognition and control in a game and surgical training. The constituent
elements of this glove are TENGs for sensing finger bending and palm sliding [299]. A
wearable smart sock having sensing capability was presented in [300]. The sock scavenges
energy using low-frequency human motion and are capable of powering a Bluetooth
module for wireless data transmission. This sock uses triboelectric energy harvesting
techniques and can monitor various physiological signals. Besides energy harvesting, this
sock can facilitate walking pattern recognition, gait sensing, and health monitoring [300]
using convolutional neural networks.

There are different applications of energy harvesters rather than medical purposes
such as virtual reality/augmented reality [297], voice signal, and handwritten signal recog-
nition [301]. The prediction of harvestable energy from indoor lights using supervised ML
methods was presented in [302]. The spectral information is fed into the model to classify
the energy sources. The system can make energy predictions for GaAs solar cells with less
than a 5% mean absolute error. Predicting the output power of hybrid energy harvesters
combining solar and TEG was shown in [303]. Five different combinations of hybrid energy
harvesters and eight ML models were tested. The ANN demonstrated superior perfor-
mance. A flexible hydrogen sensor operating using a TENG was presented in [304], which
uses ML for improved gas sensing. A distributed energy harvesting framework for wireless
networks was demonstrated in [305], which uses federated learning for efficient energy
management and user scheduling. Another distributed ML framework was demonstrated
in [306], where the connected devices harvest energy from the environment. In addition,
different ML algorithms have been studied to enhance MPPT performance. For example,
ML techniques for MPPT in various solar energy harvesters [307–309] and TEGs [310] have
shown promise. Although ML finds potential applications in various energy harvesting
techniques, it has high computational needs. Such a high demand for computation in-
creases energy demand. Wearable and implantable medical devices are required to have
a miniaturized size. Therefore, realizing ML techniques in energy harvesting for IWM
devices is still in its infancy.

6. Use-Cases of Energy Harvesters
6.1. Energy Harvesters in Implantable Medical Devices

Many experiments of energy-harvesting-enabled medical devices have been carried
out on animals and phantoms. Piezoelectric and triboelectric energy harvesters are suitable
to place on the heart surface or implanted in the pericardium to harvest energy from the
heartbeat to operate commercial pacemakers. In [311], a pacemaker implanted into the
pericardium of a pig harvests energy from the heartbeat using a TENG for application in
arrhythmia treatment. A TENG has also performed neuro-regulation while connected to
the brain nerves of rats [312]. Besides, a TENG has shown promising results to stimulate
gastric vagus nerves, for weight control [313], assist urination [314,315], and for leg muscle
stimulation [316,317] while placed in rat stomach, bladder, and legs, respectively. Besides
small animal experiments, researchers also experimented with energy harvesters in large
animals for different applications. For example, piezoelectric energy harvesters for moni-
toring real-time blood pressure [318] and a TENG to power commercial pacemakers [311]
are a few examples of energy harvesters in the porcine body. Despite the extensive research
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efforts in animal experiments, significant improvements are necessary to realize these
applications in the human body.

Experiments on flexible PV cells and pulse circuitry were conducted in [232] to operate
a cardiac pacemaker. The BFCs placed in lobster and human serum were reported to be
a feasible solution to power up the cardiac pacemakers [319,320]. A battery and leadless
cardiac pacemaker were presented in [133], which use a microgenerator placed on the right
ventricle to use the intracardiac blood flow for energy harvesting.

Muscle and nerve stimulators for health monitoring and rehabilitation have been
experimented with using energy harvesters. Such stimulators have extensive applications
in precision healthcare: deep brain stimulation in Parkinson’s disease treatment, spinal
cord stimulation to reduce chronic pain, and muscle stimulation to treat function loss. For
instance, piezoelectric energy harvesters can trigger the sciatic nerve of a frog [321], the
motor cortex of a rat [322], etc. The TENG demonstrates application in peripheral nerve
stimulation of rat’s leg muscles [323]. An implanted TENG was presented in [313], which
uses stomach motion for energy harvesting to stimulate nerves and control the weight of
a rat.

Muscle stimulators can rehabilitate muscle loss due to neurological imbalance and nerve
injuries. For example, a stack of TENGs can stimulate the tibia muscle of a rat [316,324].
Ultrasound energy transfer was used in [325] to trigger the spinal cord muscle of an injured
rat. Although significant research has been carried out over the past few years in energy
harvesting for nerve and muscle stimulators, the implantation of such harvesters in target
nerves and muscles remains challenging.

The TENG has successfully been used in physiological sensors implanted in different
organs to monitor heartbeat, respiration, blood pressure, etc. For example, a pressure sensor
in the left ventricle [326], detection of heart motion and blood pressure estimation [327], etc.,
are a few examples of TENG applications in medical sensors. Besides monitoring cardiovas-
cular functionalities, other applications include TENGs in bladder fullness detection [315]
and piezoelectric energy harvesting in the diaphragm for the motion detection [328] of rats.

6.2. Energy Harvesters in Wearable Medical Devices

TEGs can be used as self-powered temperature sensors because of their relation to
the temperature gradients in the human body [151]. BFCs can operate as self-powered
sensors to detect various body fluids such as glucose, lactate, etc. For instance, sweat
metabolism in the human body can be detected using socks with integrated BFCs [329].
The bio-mechanical energy harvesters can serve multiple functionalities by using them
for motion sensing and physiological variation monitoring of the human body. A shoe
based on a TENG and EMG can be used for foot movement analysis [330]. Skin patches
can determine the pulse and blood pressure operated using triboelectric and piezoelectric
energy harvesters [331,332]. Electronic skin using TENGs [333], electronic tattoos using
BFCs [334], and micro-needle sensors [335] are a few examples of wearable devices used to
monitor physiological signals.

A glucose sensor powered by a wearable TEG on the wrist was presented in [336],
generating 378 µW of power, while the sensor requires only 64 µW. The sensor can read
glucose values at a 1 min interval. A wearable TEG was also successfully used to power
flexible ECG sensors [337]. The system achieved a power density of 38 µW/cm2 for the
first 10 min and 13 µW/cm2 after 22 h.

Piezoelectric energy harvesters have shown promise in powering medical sensors for
health monitoring. For example, a lead-free piezoelectric sensor obtaining a 3.25 µW/m2

power density was presented in [338] for physical activity monitoring during sleep. A
PZT-based sensor can detect artery and trachea motion [332]. Pressure sensors, blood
pressure measurements, and strain sensors are a few other examples of piezoelectric energy
harvester applications.

Solar energy harvesting has also found applications in wearable medical devices. For
example, a medical bracelet was presented in [253] using flexible solar cells. In [339], a
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hybrid energy harvester based on thermoelectric and flexible solar cells was presented.
The wearable system can monitor vital signs in real-time and communicate via Bluetooth.
RF energy harvesters find applications in wearable textiles. For example, wearable tex-
tiles achieving 70% and 80% RF-DC conversion efficiency were presented in [217,340].
Tables 4 and 5 list the potential applications of human-centric and environment-centric
energy harvesting techniques, respectively.

Table 4. Summary of potential applications of human-centric energy harvesters.

Energy
Harvesting
Techniques

Biochemical Piezoelectric Electrostatic Electromagnetic Thermoelectric Triboelectric

Potential
Applications

Biosensors;
IMDs

Orthopedic
implants;

pacemaker;
pressure sensors;
accelerometers;

pulse sensor

Pacemaker;
watch;
neural

stimulator

Pacemaker;
WMDs

Pulse oximeter;
Pacemaker;
hearing aid;
ECG; EMG;

EEG

Textiles;
touchpad;

glucose
biosensor

Table 5. Summary of potential applications of environment-centric energy harvesters.

Energy
Harvesting
Techniques

Radio
Frequency

Solar Ultrasonic Inductive

Potential
Applications

Wireless
optogenetics;

WMDs

Pacemaker;
watch;
neural

stimulator;
WMDs

IMDs;
cell stimulants;
drug delivery

acoustic sensors;
catalysis

Cardioverter–
defibrillator;

neuro-stimulants;
cochlear

and retinal IMDs

7. Interaction of Energy Harvesters with the Human Body

The energy harvesting devices to be incorporated in IWM devices have certain require-
ments such as (i) safety and reliability, (ii) flexibility and durability to adapt to body/organ
shapes and to withstand muscle compression, (iii) high energy density with a miniaturized
size and low weight, and (iv) effective, flexible, and long-lasting encapsulation to avoid
corrosion from body fluids.

The biological organs are 3D in shape, soft, and curved, a limited space for the place-
ment of IWM devices to minimize the interface mismatch and ensure sufficient power
supply [341]. The requirements of the functional characteristics of energy harvesters vary
with the device types and purposes. For instance, in short- or mid-term IMDs, biodegrad-
able and bioabsorbable materials are highly desirable to avoid multiple surgeries, reducing
the potential risk of chronic inflammation [342]. For energy storage in IMDs, Li-ion batteries
are commonly used, which are inflexible, bulky, and occupy a large volume. Besides the
requirement of surgical replacement, the high chances of the leakage of toxic substances
pose a serious health risk. An alternate way for batteries is to connect the implants to
the external power source through fine wires. However, such a skin–wire interface can
cause infection. Developing biodegradable energy storage devices (batteries [341] and
supercapacitors [343]) having sufficient energy density and easy integration with the IMDs
remains challenging.

Biocompatibility, biodegradability, and bioresorbable are the three characteristics
of IWM electronic devices to ensure biosafety. The biocompatibility of an IWM device
represents its ability to remain in contact with the human body without any adverse com-
plications or biohazards. Chemical compositions, mechanical properties, and response to
biomaterials affect biocompatibility. Usually, biocompatible materials are bioinert (stainless
steel, titanium alloy, silicone rubber, hydroxyapatite ceramics, etc. [344]). Biodegrad-
able materials are disintegrated in physiological aqueous solutions at a controlled rate
after a specified time. For instance, the European Committee for Standardization defines
biodegradable as materials that will be dissolved more than 90% within six months [345].
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The recent developments in biocompatible and biodegradable materials include water-
soluble metal conductors such as magnesium, zinc, iron, molybdenum, and tungsten [346].
Dielectric polymers such as polyvinyl alcohol, poly lactic-co-glycolic acid, and polylactic
acid [347,348] are biodegradable. Their hydrolyzed products exist in the human body and
have shown promise in implant encapsulation. Bioresorbable represents decomposable
materials in which the resultant substances can be absorbed or excreted from the human
body [345]. The chemical composition of the materials, dissolution rate, and concentration
are a few considerations for bioresorbable materials.

In general, thermoelectric energy harvesters do not have any significant negative
impact on the human body. The TEG uses solid-state devices for energy conversion
without requiring any chemical reaction. Therefore, the TEG provides added benefits
such as being free of noise, vibration, and leakage. Besides flexibility and biocompatibility,
biodegradability is considered for TEGs in short- and mid-term IMDs [349]. A few natural
and cost-effective biodegradable materials are silk, cellulose, plant leaves, fish scales,
and wood [345]. Biocompatible TEGs include all-silk material TEGs [350], all-nanofiber
electronic skin TEGs [351], etc.

In piezoelectric energy harvesting, mechanical deformability, high sensitivity, and
compatibility with soft materials are critical in material selection to avoid damage to
biological organs. Biodegradable materials demonstrated promise in piezoelectric energy
harvesting for IMDs [352]. A biodegradable piezoelectric nanogenerator was presented
in [353], which uses a wood sponge to utilize walking motion. Ensuring biocompatibility
and biodegradability in piezoelectric energy harvesters remains to a challenge. For example,
the widely used PZT materials are toxic and need encapsulation with biocompatible
materials such as polyimide or SU-8 passivation epoxy [345]. On the other hand, ZnO and
PVDF have good biocompatibility, but the output energy is insignificant.

For RF energy harvesters, the IEEE standard for safe exposure to the human body
should be in the 3 kHz–100 GHz frequency range [354]. In addition, the permissible RF
exposure should not exceed a specific absorption rate of 2 Wkg−1 averaged over 10 g of
tissue in most parts of the human body. Therefore, to maintain health safety, the radiation
wireless charging using RF typically operates in a low-frequency range to provide a power
supply for IMDs. A suitable antenna design compatible with the human body is critical for
using RF energy harvesting for IWM devices.

Inductive-coupling-type WPT has found significant applications in IMDs. However,
the human body can be negatively affected by high-density electromagnetic exposure. The
overheating generated from the inductive coupling can cause irregularities in metabolic and
immune systems. In recent years, biodegradable WPT systems have shown promise [355,356].

Compared to electromagnetic coupling, ultrasound has several advantages such as
high safety and low attenuation to biological tissues and deeper penetration [345]. U.S.
Food and Drug Administration suggests ultrasound intensity be limited to 720 mW cm−2

to ensure human safety [345].
The possible impact of photovoltaic energy harvesting on the human body includes

tissue stress, tissue heating, skin perforation, patient discomfort, and thermal compatibility
issues. In addition, most photovoltaic cells are not biodegradable, limiting their applications
in temporary medical implants and bioresorbable electronic devices. There are research
efforts to design flexible, biocompatible, and transparent polymers for packaging to reduce
the toxicity of arsenic substances in typical photovoltaic cells [357].

The health issues related to wearable medical devices include skin irritation, burns,
electromagnetic field (EMF) exposure, etc. For instance, EMF can cause headaches, tingling
skin sensations, ringing ears, a static feeling in the brain, excessive fatigue, and weakened
immunity of the human body [358]. The wearables often use WiFi, which can disrupt the
blood–brain barrier, resulting in leakage, having health risks for children and pregnant
women [359]. The RF signals produce non-ionizing radiation, which can cause underdevel-
oped skulls in children. Besides, people having EMF hypersensitivity can experience DNA
damage, potential cancer risks, and neurological impairments [360].
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8. Challenges and Future Research Directions

With the recent development in sensor technology and integrated circuits, implantable
and wearable medical devices are becoming widespread [361]. In the IWM devices op-
erated by harvested energy, power management plays a significant role in regulating
the power and maximizing efficient usage. Therefore, a power management unit (PMU)
is often integrated into the IWM devices, which opportunistically ensures the optimum
functionality while the amount of energy is the least. In addition, an effective recharging
mechanism is necessary to extend the lifetime of energy storage devices. Optimization
of the use of harvested energy is a challenge. While harvesting energy for IWM devices,
several factors should be considered such as the amount of energy, the efficiency of stor-
age devices, economic aspects, and the choice of wireless communication schemes. This
section presents the open research questions and prospects for developing efficient energy
harvesting methods for IWM devices.

8.1. Efficient Power Management

Efficient power management is critical in energy harvesting to achieve sufficient energy
efficiency with minimum power consumption. Human-centric energy harvesting depends
on health conditions and body motion, while energy harvesting from the environment
can be affected by the time of day, weather, location, and many other factors. Therefore,
while choosing the energy source, the characteristics of the source need to be carefully
investigated. For instance, to maximize the energy capture from solar sources, MPPT
is frequently used. However, designing low-power MPPT circuits is a challenge. The
available MPPT systems are directly not applicable for IWM devices, as often, the power
consumption of MPPT circuits and PMU are higher than the harvested energy. A small
start-up voltage is required to operate the micro TEGs, as the temperature gradients are
sometimes inadequate to run the CMOS switches. Bulky transformers are integrated
to provide the start-up voltage, which is inappropriate for IWM devices [362]. Besides
designing low-power circuits, the efficient integration of energy harvesting into IWM
devices is a challenge. For instance, flexible PV cells are more energy efficient than rigid
body cells, as the bending angle affects the electrical output [228]. In TEGs, the interface
between the skin and microgenerators affects the power density [363]. Therefore, the
interfaces should be sufficiently large to ensure thermal matching without impacting the
user comfort. The material selection for TEGs is also critical as they are required to tolerate
thermal stress. Human-centric energy harvesting produces low energy. Thus, increasing
the conversion efficiency is a challenge [364]. The energy harvesting techniques from the
biochemical process are still not mature. Therefore, there are opportunities for improvement
as the quality of bio-substances depends on age and health conditions.

RF energy harvesting can be a safe and efficient approach to wirelessly powering
IWM devices. However, the output power density depends on the choice of antenna
and appropriate frequency selection [365]. In addition, the sources of RF energy may be
interrupted, which negatively impacts the operations of IWM devices.

8.2. Optimizing Power Consumption

The power consumption of IWM devices is an important issue when designing energy
harvesters. The power consumption of the devices should be minimum to ensure that
the generated power from energy harvesting is sufficient to meet the power budget. One
way of minimizing power consumption is optimizing the computational needs through
algorithmic optimization. The radio transceiver used in IWM devices is another major
power-consuming component. There are different techniques developed to optimize the
power consumption of radio transceivers such as duty cycle optimization [265,366,367] and
wake-up radios [368]. For instance, when the IWM devices are idle, sleep mode can turn on
to save energy [369]. The adaptive duty cycle based on the availability of energy sources is
another alternative [370]. Turning the device from sleep to wake-up mode requires energy.
Hence, there are opportunities to optimize the wake-up energy [368]. The concept of the
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wake-up radio is to set the event-driven wake-up rules of the radio transmitter and receiver
circuits. Significant attention is necessary to optimize the power consumption to meet the
energy needs of the IWM devices only through energy harvesting.

8.3. Storage of Harvested Energy

The storage of harvested energy is a critical choice in ensuring the continuous op-
eration of IWM devices. The choice of storage depends on several factors such as (i) the
type of energy source, (ii) whether the device is implantable or externally wearable, and
(ii) the severity of applications, whether the IWM is for critical health problems or simple
fitness tracking. There are a few requirements for energy storage such as (i) the energy
storage should be rechargeable as replacement is critical and (ii) the storage should be
long-lasting. For instance, batteries in cardiac pacemakers require replacement every eight
years, requiring surgery which is expensive and painful for the users [371].

For IWM devices, two energy storage options are batteries and supercapacitors. For the
storage of a small amount of energy, flexible batteries are being developed that eliminate the
need for frequent recharging [372]. In addition, current collectors using advanced materials
such as carbon nanotubes [373], conductive fabrics [374], and graphene foams [375] improve
the battery storage capacity and increase the flexibility. However, the limitations of current
collectors are low conductivity, limiting the discharge rate [227], the possibility of leakage,
which can lead to tissue damage, overcharging, and the resulting elevated temperature,
which may burn the tissue. To mitigate such problems, supercapacitors have emerged as an
alternative where the electrical energy is stored in the electrode–electrolyte interface. With
high pulsed power capacity, supercapacitors can effectively handle short power surges.
Modern supercapacitors also use advanced materials such as graphene to offer flexibility
in design and increase energy density. Besides flexibility, supercapacitors have an extended
lifetime of around 10–20 years, a high power density, and a low charging time.

8.4. Energy-Efficient Communication Schemes

Building an energy-efficient network and communication schemes is necessary to
ensure the mobility of IWM devices. IWM devices measure physiological signals and
transmit them to a central processing node for medical professionals. Thus, continuous
and reliable data communication is crucial in healthcare applications. Although most IWM
devices locally store recorded data for later processing and analysis, this is not applicable
for real-time applications. In addition, retrieving data from IMDs is highly detrimental
due to repetitive surgical procedures. A wide variety of wireless communication schemes
are exploited in IWM devices. Research efforts were made in [376] to minimize the power
consumption in IMDs and propose reliable techniques ensuring portability and a low bit
error rate. Researchers also use conventional communication technologies such as WiFi,
Bluetooth, and ZigBee for IWMs [377]. WiFi works well when the IMDs are linked to an ex-
isting network. However, it can easily connect to other devices within the existing network,
which causes significant data overhead. BLE is a widely applied power-saving technology
for connecting IMDs with a designated mobile phone or computer. The MedRadio scheme
introduces a cooperative network infrastructure for reliable data communication [378]. In
the 5G era, millimeter waves are also actively investigated for energy-efficient connection
to devices using the narrow beam. High spectral efficiency is critical due to the limited
power budget in IWM devices. A customized network protocol design for data communi-
cation may reduce the energy costs. In addition, designing energy-aware routing protocols
considering mobility and channel fading remains challenging due to the increased bit error
rate caused by interference with numerous other devices. Synchronization is necessary for
communication between sensors and external processing nodes. For example, the heartbeat
follows a rhythmic pattern, which can be exploited to achieve proper time synchronization
in many IWM devices [379]. The cyclic rhythm of the heartbeat is a natural process. It may
eliminate the need for an external timing clock, extending the lifetime of IWM devices and
saving energy costs.
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8.5. Energy Need for Next-Generation IWM Devices

The recent advancement in wearable medical devices has resulted in a tremendous
amount of high-quality clinical data. Big data at the user nodes opens up new potential
for improved diagnosis, on-site decision-making, and connected precision healthcare. In
addition, multiple sensor nodes can be connected through low-power communication
protocols to ensure multi-sensory learned decisions. In addition, the implantable sensors
provide valuable health information. Bidirectional communication establishes monitoring
and control of the implants. The next generation of implantable and wearable medical
devices will be intelligent with on-device data-driven learning and decision-making ca-
pabilities [38,380]. Such intelligence is now a reality due to the immense improvement in
machine learning techniques and the emergence of various compression algorithms [286].
However, deploying artificial intelligence on the device increases power consumption.
Therefore, meeting the energy demand of the next-generation intelligent wearable medical
devices and integrating the on-site control for implantable devices are the new challenges.
In addition, the energy need increases with the increased processing power of IWM de-
vices required to build a connected wireless body sensor network. Moreover, wireless
connectivity requires energy-hungry extra circuitry and a transceiver. Thus, the future
of wearables and implants will have increased energy demand, which will facilitate the
exploration of novel research avenues to tackle such increased energy demand along with
the miniaturization trend.

9. Discussion

Different energy harvesting techniques focusing on applications in implantable and
wearable medical devices were discussed in this paper. Each technique has characteristics,
application areas, limitations, design challenges, and technical constraints. The battery is
considered to be the most reliable energy source when the IWM devices can accommodate
the battery size and proper safety is ensured through biocompatible encapsulation. However,
besides limited lifetime and functionality, there are significant health risks of batteries, requir-
ing surgical procedures for replacement if integrated into the implants. Therefore, energy
harvesting techniques to power up the IWM devices are the most promising alternative.

The selection of an appropriate energy harvesting technique depends on factors such
as IWM device size, weight, placement in the body, the probability of interference, full
duplex communication, the amount of harvested energy, etc. A comparison of different
human-centric energy harvesting approaches is presented in Table 6, including the typical
output power density, characteristic features, limitations, and potential applications. The
power requirements in IWM devices typically vary between 20 µW and 30 W. Low-power
energy harvesting techniques such as TEGs, GBF cells, electromagnetic, electrostatic, and
photovoltaic are suitable to power up the ultra-low-power IWM devices. However, for
IWM devices requiring milliwatt-level power such as neurostimulators, cochlear implants,
etc., piezoelectric methods and TENGs are the potential sources.

One of the considerations in selecting the appropriate energy harvesting technique
is determining the suitable energy source in proximity to the device placement site. For
example, a thermoelectric energy harvester is suitable for IWM devices near a higher
temperature gradient. On the other hand, electrostatic, electromagnetic, and piezoelectric
are suitable for IWM devices where the source of high motion and vibration is accessible.
For wearables, the photovoltaic energy source is a good choice. If there is no human-centric
and environment-centric energy source available, WPT is a better option to supply energy to
the device. A comparison of available environment-centric energy harvesting techniques is
presented in Table 7, summarizing the typical output power density, advantages, limitations,
and potential application areas.
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Table 6. Comparison of human-centric energy harvesting techniques considered for implantable and wearable medical devices.

Energy
Harvesting
Techniques

Typical Output
Power Density

(mW/cm2)
Features Limitations

Potential
Applications

Biochemical 2.2 × 10−3–0.194

Uses glucose, oxygen, and biofluids,
which are clean and renewable;

abundant amount of biofuel;
mostly biocompatible;

reasonable energy density

Unstable output power;
limited life-time of enzymes;

low power density; possibility
of biofouling

Self-powered
biosensors

Piezoelectric
7.3 × 10−3–

1.75 × 105 mW/cm3

Compact size; high output voltage;
high sensitivity; high power density;

simple excitation; fabrication
process is well-known;

microscale and nanoscale fabrication possible;
easy tuning to specific frequency

High impedance and low current at
output; minimal efficiency at low

frequency; some materials are poisonous;
frequency-dependent;
complex fabrication;

expensive; complex MPPT

Orthopedic implants;
pacemaker;

pressure sensors;
inertial sensors;

pulse sensor

Electrostatic 4.4 × 10−3–
1.84 × 103

Compatible to microscale
fabrication; high energy
density; low frequency;

linear change of output with frequency;
adjustable coupling coefficient

Separate voltage source needed;
parasitic elements

and leakage current decreases
efficiency; complicated MPPT;

low energy density;
high output impedance

Pacemaker;
wrist watch;

neural stimulator

Electromagnetic 8.88 × 10−3

–5.614

High output current;
high efficiency;

high power density;
robust; simple MPPT

Low efficiency at low frequency;
efficiency decreases with
miniaturization; source of
EMI; complicated MEMS

integration; low output voltage

Cardiac pacemaker;
wearable medical

devices

Thermoelectric 0.084–0.571

Cost effective; low maintenance;
lightweight; high reliability
and accessibility; long life;

frequency independent;
simplified MPPT; scalability

Low power density;
low energy conversion efficiency;
harvested power is unpredictable;

requires start-up circuit;
need boost converter; expensive

Pulse oximeter;
pacemaker;
hearing aid;

ECG; EMG; EEG

Triboelectric 0.0022–50

High output power density;
flexible; easy fabrication;

scalable; cost effective;
wide variety of materials;
frequency independent;

compatible in microscale;

Need high voltage insulation;
complex fabrication process;

high erosion of material;
limited lifetime;

high output impedance;
complicated interface circuitry

Wearable textiles;
self-powered

touchpad devices;
glucose biosensor
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Table 7. Comparison of different environment-centric energy harvesting techniques having potential application in implantable and wearable medical devices.

Energy
Harvesting
Techniques

Typical Output
Power Density

(mW/cm2)
Features Limitations Potential

Applications

Radio
frequency

0.45–84
nW/cm2

Availability
of RF sources; wide variety

of operating frequencies

Distance dependent output;
low output power;

unpredictable; low efficiency

wireless optogenetics

Solar 0.059–6.7

High power density; cost effective;
easy fabrication;

low maintenance; high
reliability and availability; easy
scalability; mature technology

Not continuous; dependence on
weather and lighting conditions;

location dependent; low
efficiency; expensive initial setup;

efficiency degrades with miniaturization

Cardiac pacemaker;
watch;

neural stimulator;
wearable medical sensors

Ultrasonic 1.2–290
High efficiency for small IMDs;

increased penetration depth;
compact design;

minimal tissue heating

Low power harvesting;
poor data transmission;

low efficiency in large IMDs;
requires propagation medium

Implantable
medical devices

Inductive 0.0764–780

Higher data rate;
batteryless operation;

bidirectional communication;
continuous supply;

efficient in small distance;
energy transfer through

tissue; high power density

Tissue absorption;
potential source of EMI;

complicated microscale fabrication;
require precise alignment of coils

Implantable
medical devices
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For implantable medical devices, another issue is the penetration depth of the device
inside the body. Electromagnetic energy harvesters and inductive power transfer are
inappropriate in the deep body due to significant heating. Similarly, the photovoltaic
energy sources are not suitable for deep implants because of the attenuation at different
levels. However, with the aid of electrical connections, sometimes, these sources can power
deep implants at the expense of the potential infection issues.

The output voltage and current obtained from the energy harvesters are seldom
compatible with the load electronics. Thus, voltage regulation is necessary to match the
source and the load. If the harvested energy is in the form of AC voltage, a rectification
step is needed to obtain the DC power supply. Sometimes, an MPPT is employed at
the cost of added complexity to achieve the highest possible output power. In addition,
nonlinear components in the equivalent systems of electrostatic, piezoelectric, TENGs, and
photovoltaic energy harvesters limit the MPPT operation.

In summary, this review will help researchers understand the current state of the
research on different energy harvesting techniques for implantable and wearable medical
devices, prospective areas of improvement, and a general guideline to consider factors to
choose an appropriate one while needed.

10. Conclusions

This paper presented a comprehensive review of energy harvesting techniques focus-
ing on wearable and implantable medical applications for precision healthcare. An IWM
device capable of continuous, pain-free, hazardless operations can significantly improve
human life. For instance, cardiac pacemakers and defibrillators save lives. New technolo-
gies such as insulin pumps for diabetes management, neurostimulators in pain therapy,
brain implants for neural stimulations, and stimulants in the throat are a few examples. The
requirements of such devices are minimum power consumption, miniaturized size, and
sufficient energy harvesting from external sources. In optimal energy harvesters, appropri-
ate energy sources, power budget, wireless communication technology, and energy-aware
network design are a few considerations. The rapid developments in integrated circuit
technologies enable ultra-low energy consumption in energy harvester circuitry towards
battery-free, long-lasting, implantable and wearable medical devices.
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Abbreviations
The following abbreviations are used in this manuscript:

IWM Implantable and wearable medical TENG Triboelectric nanogenerator
PPG Photoplethysmography PCB Printed circuit board
WMD Wearable medical device MPPT Maximum power point tracking
ECG Electrocardiogram PCE Power conversion efficiency
IMD Implantable medical device P&O Perturb and observe
RF Radio frequency FOCV Fractional open-circuit voltage
PMU Power management unit VOC Open-circuit voltage
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TEG Thermoelectric energy generators SSHI
Synchronized switch harvesting
on inductor

GBF Glucose biofuel SECE
Synchronous electric charge
extraction

PZT Polycrystalline lead zirconate titanate BLE Bluetooth low energy
TKR Total knee replacement BFC Biofuel cells
PMN-PT Lead magnesium niobate–lead titanate GOx Glucose oxidase
PZN-PT Lead–zinc niobate–lead titanate NIR Near-infrared region
ZnO Zinc oxide WPT Wireless power transfer

PVDF Polyvinylidene difluoride PUEH
Piezoelectric ultrasonic
energy harvester

MEMS Microelectromechanical systems EMG Electromyography
EP Endocochlear potential HEG Hydroelectric generator
ECSA Electrochemically active surface area rGO Reduced graphene oxide
IME Implantable electronics SWG Single-wire generator
SEH Standard energy harvesting SCE Synchronized charge extraction
EM Electromagnetic EMI Electromagnetic interference
SWCNT Single wall carbon nanotubes DWNT Double-wall nanotube
DETA Diethylenetriamine TTT Tetrathiotetracene
FOM Figure of merit PENG Piezoelectric nanogenerators
ML Machine learning ANN Artificial neural network

EMF Electromagnetic field DEGS
Dielectric elastomer generator
system
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