
Citation: Prantikos, K.; Tsoukalas,

L.H.; Heifetz, A. Physics-Informed

Neural Network Solution of Point

Kinetics Equations for a Nuclear

Reactor Digital Twin. Energies 2022,

15, 7697. https://doi.org/10.3390/

en15207697

Academic Editor: Andrew Buchan

Received: 30 August 2022

Accepted: 14 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Physics-Informed Neural Network Solution of Point Kinetics
Equations for a Nuclear Reactor Digital Twin
Konstantinos Prantikos 1,2, Lefteri H. Tsoukalas 1 and Alexander Heifetz 2,*

1 School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906, USA
2 Nuclear Science and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA
* Correspondence: aheifetz@anl.gov

Abstract: A digital twin (DT) for nuclear reactor monitoring can be implemented using either a
differential equations-based physics model or a data-driven machine learning model. The challenge
of a physics-model-based DT consists of achieving sufficient model fidelity to represent a complex
experimental system, whereas the challenge of a data-driven DT consists of extensive training require-
ments and a potential lack of predictive ability. We investigate the performance of a hybrid approach,
which is based on physics-informed neural networks (PINNs) that encode fundamental physical
laws into the loss function of the neural network. We develop a PINN model to solve the point
kinetic equations (PKEs), which are time-dependent, stiff, nonlinear, ordinary differential equations
that constitute a nuclear reactor reduced-order model under the approximation of ignoring spatial
dependence of the neutron flux. The PINN model solution of PKEs is developed to monitor the
start-up transient of Purdue University Reactor Number One (PUR-1) using experimental parameters
for the reactivity feedback schedule and the neutron source. The results demonstrate strong agree-
ment between the PINN solution and finite difference numerical solution of PKEs. We investigate
PINNs performance in both data interpolation and extrapolation. For the test cases considered, the
extrapolation errors are comparable to those of interpolation predictions. Extrapolation accuracy
decreases with increasing time interval.

Keywords: physics-informed neural networks; point kinetics equations; nuclear reactor; stiff ordinary
differential equations; digital twin; nuclear reactor monitoring

1. Introduction
1.1. Digital Twin for Nuclear Reactor Monitoring

Advances in nuclear reactor performance efficiency can be accomplished using state-
of-the-art monitoring capabilities. The concept of a Digital Twin (DT) has been proposed
recently for process monitoring, including nuclear reactor monitoring [1]. The DT consists
of a computational model that tracks the history, and continuously adjusts the model to
detect anomalies, such as degradation and insipient signs of failure of components, ma-
terials, and sensors. Proposed approaches for the implementation of a DT involve either
a physics-based differential equations model or on data-driven machine learning (ML)
model. The challenges of using a model-based DT for nuclear reactor monitoring consist of
accounting for a-priori unknown loss terms in the complex experimental system to achieve
sufficiently close agreement between the model and observations. The data-driven ML
model captures the information about the reactor system from the experimental data used
for model training. However, unlike the model-based DT, which contains equations de-
scribing time evolution of the system, the ML-based DT has limited extrapolation capability
and, in principle, requires an arbitrarily large amount of training data [2,3]. Indeed, ML
models follow an empirical, data-driven approach in making predictions based on large
collections of historical data in order to achieve high performance. Although ML models
are computationally fast in making predictions and robust with respect to noisy data, they

Energies 2022, 15, 7697. https://doi.org/10.3390/en15207697 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15207697
https://doi.org/10.3390/en15207697
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-8891-9323
https://doi.org/10.3390/en15207697
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15207697?type=check_update&version=2

Energies 2022, 15, 7697 2 of 22

are frequently difficult to both interpret and to develop from data [2]. Furthermore, the
data commonly need to be accompanied by labels that are not easily available. In addition,
though ML models can be versatile, to a varying extent, in the resolution of input data, their
usual requirement of large volumes of training data hinders model development. On the
other hand, physics-based models can alleviate the constraint of the big data [4], as the DT
training no longer relies solely on the behavior of input–output examples. Moreover, DTs
may have to be constructed for the system where there is scarce data availability. There exist
methods, such as few-shot learning [3], which offer the potential of learning from small
datasets. However, in few-short learning, the lack of information content in short temporal
space is usually compensated with another dimension of the data (e.g., the number of
sensors). This imposes additional requirements on data collection.

Recently, a hybrid approach has emerged, consisting of physics-informed neural
networks (PINN) designed to solve differential equations. The PINNs address the need for
integrating governing physical equations of the process into ML models, which establishes
theoretical constraints and biases to supplement measurement data. The integration of
governing physical equations into ML models provides a solution to several limitations
of purely data-driven machine learning (ML) models. First, in the case of data scarcity,
most ML approaches are unable to effectively work, because there is a minimal required
data volume to train the model. In the case of PINNs, the model can be trained without
big data availability. Second, in the case of big data availability, ML approaches face
severe challenges to extract interpretable knowledge. Furthermore, using purely data-
driven models can lead to overfitting of the observations. As a result, this may introduce
physically inconsistent predictions due to extrapolation or biases, and eventually result in
low predictability. PINN performance is not directly related to the volume of data, rather
the physics underlying the behavior of the system.

The governing equations for modeling a nuclear reactor are Boltzmann neutron trans-
port and Bateman partial differential equations (PDEs). The numerical solution of these
PDEs for a typical reactor geometry requires extensive computational resources. A reduced-
order model consisting of a system of point kinetic equations (PKEs) has been developed
for the case when the spatial dependence of the neutron flux can be ignored, which is
typically valid for small reactors. In this paper, we investigate the application of PINNs
to the numerical solution of PKEs, which models the Purdue University Reactor Number
One (PUR-1) small research reactor. We develop the PINN solution of PKEs using the
experimental parameters of PUR-1, such as values of the reactivity schedule and neutron
source. The PKE case investigated in this paper involves time-dependent stiff nonlinear
ODEs, where the range of values is approximately eight orders of magnitude, during a
time interval of several hundred seconds. The results of this paper demonstrate strong
agreement between the PINN solution and the numerical solution of PKEs using the finite
difference solver.

1.2. Review of Prior Work on PINNs

The original idea of PINNs was introduced by Lagaris et al. [5] in 1998 and later
established by Raissi et al. [6,7] in 2017 for solving two main classes of problems: the
data-driven solution and data-driven discovery of differential equations. The formulation
of PINNs was performed to tackle problems involving PDEs [8]. In the existing literature,
there are many studies of PINN implementation for the solution of differential equations
arising in heat transfer [9], fluid mechanics [10], solid mechanics [11], and reactor kinetics
problems [12]. In addition, recent interest in the development of PINNs has resulted in
the development of various libraries, such as DeepXDE [13], DGM [14], and PyDEns [15],
that are built on top of TensorFlow, as well as NeuroDiffEq [16], which is built on top
of Pytorch. In addition, two more actively developed libraries are NeuralPDE [17] and
ADCME [18], which are written in Julia instead of Python. Specific examples of applica-
tions of the PINNs framework include the solution of Navier–Stokes, Allen–Cahn, and
Schrodinger equations [19,20]. Additionally, PINNs have been used for the solution of

Energies 2022, 15, 7697 3 of 22

high-dimensional stochastic PDEs [21], which suggested that PINNs can be considered as a
class of Reinforcement Learning [22].

PINNs have also been investigated for the solution of ordinary differential equations
(ODEs), where stiffness of the ODE system was the main challenge. In [23], PINNs were
applied in stiff chemical kinetics equations. A variation of PINN, called stiff-PINN, was
proposed, which showed better results than regular PINNs. Stiff-PINNs managed to
accurately predict the solutions during the entire computational domain in two different
cases, the ROBER and POLLU problems. On the other hand, regular PINNs seemed unable
to predict the solutions during most time intervals in the computational domain. This
failure was related to the stiffness of the differential equations.

Prior application of PINNs to the solution of ODEs includes the solution of PKEs. In
previous work on PINNs, most references considered simplified PKEs. There is no literature
investigating the PINN solution for six-group delayed neutron density concentration
with the temperature feedback and neutron source, which is necessary for actual reactor
monitoring. A variation of PINN, named X-TFC, was proposed in [24] to solve the PKEs.
Although some of the test cases include the six-group delayed neutron precursors, density
concentration and the temperature feedback reactivity, a neutron source term was not
included in the model. In addition, one more PINN implementation in the reactor kinetics
problem was studied in [25], with PKEs that include one-group delayed neutron precursors
density concentration, temperature reactivity feedback, and no neutron source. The results
were promising, but the computational time was deemed to be excessive for use in real-
time applications. Another investigation of PINNs performance was reported in [12], with
parameters chosen according to the real microreactor. The preliminary results showed
performance with relatively small prediction errors and relatively fast runtime.

This paper is organized as follows. Section 2 describes the theory of PINNs. Section 3
introduces the nuclear reactor mathematical modelling framework, starting from the Boltz-
mann Neutron Transport Equation and Bateman Equation, followed by the PKEs reduced
order model. Section 4 describes PUR-1 and discusses the details of experimental data
acquisition. Section 5 provides a solution to the PKEs model of PUR-1 startup transient
using the methodology of PINNs, whereas conclusions are discussed in Section 6.

2. Theory of Physics-Informed Neural Network (PINN)

PINNs are a new class of deep learning (DL) networks that are capable of encoding
differential equations (DE) that govern a data set [26]. The difference between PINNs
and traditional DE solvers [27] is that the former computes differential operators using
automatic differentiation [28]. PINNs can be applied to both supervised and unsupervised
learning tasks [29]. The PINN training procedure requires substantially less data than most
DL methods, and the data do not need to be labeled. The challenges of PINN training
consist of satisfying competing objectives: learning the DE solution within the domain,
and satisfying the initial and boundary conditions (IC and BC). This leads to unbalanced
gradients during the network training via gradient-based methods, and often causes PINNs
to have difficulties with accurately approximating the DE solution [30]. This is a known
challenge for gradient-based methods, which get stuck in limit cycles if several competing
goals are present.

PINNs take as input a point in the computational domain (collocation point), and
minimize a residual function (training step). The output is an approximate solution of
the differential equations. The key advancement of PINN is the integration of a residual
network that contains the governing equations. This network, given the output of a DL
network (surrogate), calculates a residual value (loss function). Figure 1 shows a schematic
of PINN, where the surrogate model consists of a fully connected neural network with
time and space coordinates (t, x) as inputs, and is used to construct û(x, t), which is an
approximation to the numerical solution, u(x, t). The residuals are calculated next to
obtain the loss, L, which is used for optimization of the approximation. The residual loss
comprises the differential equation’s residual L f , the initial condition’s residual Li, and the

Energies 2022, 15, 7697 4 of 22

boundary condition’s residual Lb. The loss functions are defined in Equations (4)–(7) in
Section 2.4.

Energies 2022, 15, x FOR PEER REVIEW 4 of 23

time and space coordinates (t, x) as inputs, and is used to construct 𝑢ො(𝑥, 𝑡), which is an
approximation to the numerical solution, 𝑢(𝑥, 𝑡). The residuals are calculated next to ob-
tain the loss, ℒ, which is used for optimization of the approximation. The residual loss
comprises the differential equation’s residual ℒ, the initial condition’s residual ℒ, and
the boundary condition’s residual ℒ. The loss functions are defined in Equations (4)–(7)
in Section 2.4.

Figure 1. Schematic of a physics-informed neural network (PINN). A fully connected neural net-
work with time and space inputs (𝑡, 𝑥) is constructed to approximate the solutions of 𝑢ො(𝑡, 𝑥), which
is then used to calculate the residual loss, ℒ. The residual loss comprises the differential equation’s
residual ℒ, the initial condition’s residual ℒ, and the boundary condition’s residual ℒ. The de-
rivatives of 𝑢ො are computed by automatic differentiation. The parameters of the fully connected
network are trained using gradient-descent methods based on the back-propagation process.

2.1. Surrogate Network Implementation with Fully Connected Neural Networks (FNNs)
In this work, we implement the surrogate network of the PINN using fully connected

neural networks (FNNs). In general, a wide variety of neural networks have been devel-
oped, including the feed-forward neural network (FNN), the convolutional neural net-
work (CNN), and the recurrent neural network (RNN). In this paper, we chose to use
FNN, because it has been shown in the literature [13,26] to be efficient for the solution of
PDE problems. Additionally, due to the architecture simplicity, FNN is easier to train
compared to deep networks.

An FNN is composed of at least two layers. By convention, all networks that have at
least two layers (𝐿 2) are called deep. In general, FNN is a 𝐿-layer neural network, with (𝐿 − 1) hidden layers. An FNN is denoted by 𝒩(𝑥): ℝௗ → ℝௗೠ, where 𝑑 and 𝑑௨௧
are the dimensions of the input and output, respectively. The number of neurons in the ℓ-th layer is denoted by 𝑁ℓ. The number of neurons in the input and the output layers are
denoted by 𝑁 = 𝑑 and 𝑁 = 𝑑௨௧, respectively.

We define a weight matrix, 𝑊ℓ; a bias, 𝑏ℓ; and an activation function, 𝜎, in each
layer, ℓ. The weights of this network are trainable. The weights and biases are the neural
network parameters, 𝜃. The activation function can be chosen among other choices as the
logistic sigmoid, the hyperbolic tangent (tanh), or the rectified linear unit (ReLU). An 𝐿-
layer DNN is defined as:

Input Layer: 𝒩(𝑥) = 𝑥 ∈ ℝௗ, (1)

Hidden Layer: 𝒩ℓ(𝑥) = 𝜎൫𝑊ℓ ∙ 𝒩ℓିଵ(𝑥) + 𝑏ℓ൯ ∈ ℝேℓ, for 1 ℓ 𝐿 − 1 (2)

Output Layer: 𝒩(𝑥) = 𝑊 ∙ 𝒩ିଵ(𝑥) + 𝑏 ∈ ℝௗೠ, (3)

The FNN architecture for the implementation of the PINN surrogate model is de-
picted in Figure 2, which is an expanded version of the panel displaying the surrogate

Figure 1. Schematic of a physics-informed neural network (PINN). A fully connected neural network
with time and space inputs (t, x) is constructed to approximate the solutions of û(t, x), which is then
used to calculate the residual loss, L. The residual loss comprises the differential equation’s residual
L f , the initial condition’s residual Li, and the boundary condition’s residual Lb. The derivatives of
û are computed by automatic differentiation. The parameters of the fully connected network are
trained using gradient-descent methods based on the back-propagation process.

2.1. Surrogate Network Implementation with Fully Connected Neural Networks (FNNs)

In this work, we implement the surrogate network of the PINN using fully connected
neural networks (FNNs). In general, a wide variety of neural networks have been devel-
oped, including the feed-forward neural network (FNN), the convolutional neural network
(CNN), and the recurrent neural network (RNN). In this paper, we chose to use FNN,
because it has been shown in the literature [13,26] to be efficient for the solution of PDE
problems. Additionally, due to the architecture simplicity, FNN is easier to train compared
to deep networks.

An FNN is composed of at least two layers. By convention, all networks that have at
least two layers (L ≥ 2) are called deep. In general, FNN is a L-layer neural network, with
(L− 1) hidden layers. An FNN is denoted by N L(x) : Rdin → Rdout , where din and dout
are the dimensions of the input and output, respectively. The number of neurons in the
`-th layer is denoted by N`. The number of neurons in the input and the output layers are
denoted by N0 = din and NL = dout, respectively.

We define a weight matrix, W`; a bias, b`; and an activation function, σ, in each layer,
`. The weights of this network are trainable. The weights and biases are the neural network
parameters, θ. The activation function can be chosen among other choices as the logistic
sigmoid, the hyperbolic tangent (tanh), or the rectified linear unit (ReLU). An L-layer DNN
is defined as:

Input Layer : N 0(x) = x ∈ Rdin , (1)

Hidden Layer : N `(x) = σ
(

W`·N `−1(x) + b`
)
∈ RN` , for 1 ≤ ` ≤ L− 1 (2)

Output Layer : N L(x) = WL·N L−1(x) + bL ∈ Rdout , (3)

The FNN architecture for the implementation of the PINN surrogate model is depicted
in Figure 2, which is an expanded version of the panel displaying the surrogate network in
Figure 1. The FNN output is the predicted approximation of the DE solution, û(t, x).

Energies 2022, 15, 7697 5 of 22

Energies 2022, 15, x FOR PEER REVIEW 5 of 23

network in Figure 1. The FNN output is the predicted approximation of the DE solution, 𝑢ො(𝑡, 𝑥).

Figure 2. FNN architecture for the implementation of the PINN surrogate model. The FNN consists
of the input layer, the hidden layers (composed of weights, 𝑊ℓ; biases, 𝑏ℓ; and activation function, 𝜎), and an output layer.

2.2. Automatic Differentiation for Residual Network
PINN training involves the implementation of a framework for computing deriva-

tives. Usually, the derivatives are written in the form of Jacobians or Hessian matrices. In
general, computation methods include numerical differentiation, symbolic differentia-
tion, and automatic differentiation (AD; also called algorithmic differentiation). Numeri-
cal finite difference and symbolic differentiation could result in reduced accuracy for com-
plex functions [31]. AD automatically computes derivatives using the chain rule for the
accumulation of values, instead of relying on derivative expressions. Given that neural
networks represent a compositional function, AD applies the chain rule repeatedly to
compute the derivatives. In addition, AD uses the technique of backpropagation, which
aids in the fine tuning of a neural network’s weights, using the error obtained in the pre-
vious iteration. Choosing appropriate weights results in reduced errors, and increases the
generalization of the model. The derivative of the objective function with respect to any
weight or bias, which is backpropagated in the network, provides detailed insights into
how the changes of weights and biases affect the overall behavior of the network. AD
evaluates the derivatives in two steps. First, the forward pass calculates the values of all
variables. Second, the backward pass computes the derivatives. Therefore, AD needs only
one forward pass and one backward pass to compute all the derivatives, regardless of the
input’s dimension. On the other hand, using finite differences requires at least 𝑑 + 1
forward passes to compute all the derivatives. Hence, AD performance is more efficient
for problems with high-dimensional input.

2.3. Enforcement of Initial and Boundary Conditions
There are two steps involved in encoding the ICs and BCs into a PINN. First, each IC

and/or BC can be treated independently, with each appearing one in the loss function as
a separate term. This type of enforcement is known as soft constraint, where the goal is to
minimize each term in the loss function at the same time. PINNs use the formulation 𝑢ො(𝑥) = 𝑁(𝑥; 𝜃). This method is considered simpler to implement, and it is suitable for
high-dimensional differential equations and complex geometries.

Second, it is possible to transform the network output to some function, such that the
IC and/or BC are satisfied by the design of the neural network. For instance, PINNs can
use 𝑢ො(𝑥) = 𝑢 + 𝑥 ∙ 𝑁(𝑥; 𝜃) to always satisfy the IC 𝑢(𝑥 = 0) = 𝑢. As a result, the total
loss function includes only the losses due to the DEs. This method of enforcement is
known as hard constraint, which ensures that the IC or BC are exactly satisfied. This re-
duces the complexity of the PINN training.

Figure 2. FNN architecture for the implementation of the PINN surrogate model. The FNN consists
of the input layer, the hidden layers (composed of weights, W`; biases, b`; and activation function, σ),
and an output layer.

2.2. Automatic Differentiation for Residual Network

PINN training involves the implementation of a framework for computing deriva-
tives. Usually, the derivatives are written in the form of Jacobians or Hessian matrices. In
general, computation methods include numerical differentiation, symbolic differentiation,
and automatic differentiation (AD; also called algorithmic differentiation). Numerical
finite difference and symbolic differentiation could result in reduced accuracy for complex
functions [31]. AD automatically computes derivatives using the chain rule for the accumu-
lation of values, instead of relying on derivative expressions. Given that neural networks
represent a compositional function, AD applies the chain rule repeatedly to compute the
derivatives. In addition, AD uses the technique of backpropagation, which aids in the fine
tuning of a neural network’s weights, using the error obtained in the previous iteration.
Choosing appropriate weights results in reduced errors, and increases the generalization
of the model. The derivative of the objective function with respect to any weight or bias,
which is backpropagated in the network, provides detailed insights into how the changes of
weights and biases affect the overall behavior of the network. AD evaluates the derivatives
in two steps. First, the forward pass calculates the values of all variables. Second, the
backward pass computes the derivatives. Therefore, AD needs only one forward pass
and one backward pass to compute all the derivatives, regardless of the input’s dimen-
sion. On the other hand, using finite differences requires at least din + 1 forward passes to
compute all the derivatives. Hence, AD performance is more efficient for problems with
high-dimensional input.

2.3. Enforcement of Initial and Boundary Conditions

There are two steps involved in encoding the ICs and BCs into a PINN. First, each IC
and/or BC can be treated independently, with each appearing one in the loss function as
a separate term. This type of enforcement is known as soft constraint, where the goal is
to minimize each term in the loss function at the same time. PINNs use the formulation
û(x) = N(x; θ). This method is considered simpler to implement, and it is suitable for
high-dimensional differential equations and complex geometries.

Second, it is possible to transform the network output to some function, such that the
IC and/or BC are satisfied by the design of the neural network. For instance, PINNs can
use û(x) = u0 + x·N(x; θ) to always satisfy the IC u(x = 0) = u0. As a result, the total loss
function includes only the losses due to the DEs. This method of enforcement is known
as hard constraint, which ensures that the IC or BC are exactly satisfied. This reduces the
complexity of the PINN training.

2.4. Loss Function and Metrics for Evaluation

Loss function measures the discrepancy between the neural network, û, and the
constraints imposed by the DEs and their respective IC and/or BC. We define the loss

Energies 2022, 15, 7697 6 of 22

function as the weighted summation of the L2 norm of residuals for the DE and IC/BC, in
the form of a Mean Squared Error (MSE), as:

L(θ; T) = w fL f

(
θ; Tf

)
+ wiLi(θ; Ti) + wbLb(θ; Tb), (4)

where w f , wi, and wb are the scalar weights for the DE, IC, and BC, respectively. The scalar
weights are specified before training, and they are used to rank the importance of each loss
term. The variables Tf , Ti, and Tb are the training points inside the domain, at the IC and
on the boundary. These sets of points are usually referred to as the sets of residual points.
The terms L f , Li, and Lb are the MSE of the residuals for the DE, IC, and BC, respectively.
These are computed as:

L f

(
θ; Tf

)
=

1∣∣∣Tf

∣∣∣ ∑
xεTf

∣∣∣∣∣∣∣∣ f(x;
dû
dx

)
|
∣∣∣∣2
2

(5)

Li(θ; Ti) =
1
|Ti| ∑

xεTi

||I(û, x)||22 (6)

Lb(θ; Tb) =
1
|Tb| ∑

xεTb

||B(û, x)||22, (7)

The derivatives in the loss function terms are calculated with automatic differentiation.
To measure the initial and final performances of the trained model, two metrics are

used. The first metric is the value of the loss function in Equation (4). The second metric
is the relative error, L2, with respect to a reference solution, u(x). The reference solution,
u(x), is usually obtained from a high-fidelity numerical solution of the DE. The relative L2
error is defined as:

L2(u(x), û(x)) =
||u(x)− û (x)||2
||u (x)||2

, (8)

where ||·|| 2 denotes the standard L2 norm. It is important to note that the error in the loss
function, L, measures the degree to which the governing equation is satisfied, not the error
of the solution, û, with respect to the reference solution, u.

2.5. Activation Function

Activation function is used to map an input, x, to an output, y. In general, different
activation functions may be used in different parts of the FNN. The activation function in
the hidden layer controls how well the network model learns the training dataset, whereas
the activation function in the output layer defines the type of predictions the model can
make. Some of the most popular activation functions used in ML are the sigmoid, the
hyperbolic tangent (tanh), and the Rectified Linear Unit (ReLU).

The ReLU activation function, defined as y = max{0, x}, has the advantage of com-
putational speed, as compared to those of sigmoid or tanh units. ReLU is less susceptible
to vanishing gradients that affect deep model training. Besides the accelerated training pro-
cess, ReLU avoids saturation with large positive numbers [32]. In addition, the nonlinearity
allows to conserve and learn patterns in the data. However, for regression applications, the
ReLU function suffers from diminishing accuracy for second and higher-order derivatives.

Sigmoid activation function, also called the logistic sigmoid, takes any real value as the
input, and produces output values in the range of 0 to 1. The sigmoid activation function is
defined as σ(x) = 1/(1 + e−x) and has an S-shaped graph. The larger the input, the closer
the output value will be to 1, whereas the smaller the input, the closer the output will be to
0. Additionally, in contrast to the ReLU activation function, the sigmoid activation function
can overcome the diminishing higher-order derivatives problem.

Hyperbolic tangent (tanh) activation function is very similar to the sigmoid activation
function. The tanh activation function is defined as tanh(x) = (ex − e−x)/(ex + e−x) and

Energies 2022, 15, 7697 7 of 22

has an S-shaped graph. Tanh takes any real value as the input, and produces output values
in the range of −1 to 1. Similar to sigmoid activation function, tanh can overcome the
problems related to diminishing higher-order derivatives. In general, both sigmoid and tanh
activation functions are commonly used for classification problems due to their sensitivity
around a central point, and their ability to categorize elements into different classes.

2.6. Optimization

An optimization algorithm accelerates the training procedure by using an algorithm
to incrementally change the network weights to minimize a loss function. This is usually
accomplished by using gradient-based optimizers, which compute the gradients of the
loss functions with respect to all weights and biases. The gradients are computed in the
direction from the output to the input, by applying the chain rule layer-by-layer. The
backward flow of the gradients is the reason for naming the process as backward pass or
backpropagation. In general, there are two optimizers that are used most frequently, the
Adam optimizer and the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
optimizer.

The Adam (acronym of “adaptive moment estimation”) optimization algorithm is an
extension to the stochastic gradient descent. The Adam algorithm updates the network
weights iteratively during training by performing two operations. The first, called the
momentum, calculates the exponentially weighed average of the gradients [33]. The
second, called root mean square propagation (RMSP), calculates the exponential moving
average. By using averages, the algorithm converges faster towards the minima. This is
accomplished through minimizing oscillations when approaching the global minimum,
while taking large enough steps to escape from the local minima.

The L-BFGS optimization algorithm is a quasi-Newton method that approximates the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using less computer memory. L-BFGS
uses an estimate of the inverse Hessian matrix, H−1, to steer its search through parameter
space, and stores only a few vectors that represent the approximation implicitly. Because
of linear memory scaling, the L-BFGS method is particularly well suited for optimization
problems with many variables.

2.7. Initialization

Optimization algorithms require a starting set of weight values with which to begin
the optimization process. The selection of initial values could impact convergence of the
optimization algorithm, with incorrect selection possibly resulting in complete convergence
failure [34,35]. DNNs without proper weight initialization may suffer from vanishing or
exploding gradients, which happens when the signal transmitted from layer-to-layer stops
flowing or becomes saturated. To prevent the occurrence of such problems, the variance
of the outputs of each layer should be equal to the variance of its inputs. Accordingly, the
variance of the gradients should be equal before and after flowing through a layer during
backpropagation. Two of most frequently used initialization techniques are the Glorot (also
known as Xavier) initialization and the Kaiming (also known as He) initialization.

The initialization scheme named after Xavier Glorot initializes the weights of the
neural network such that the variance of the activation functions is the same across each
layer. As a result, constant variance leads to smooth gradient updates and overcomes the
problem of exploding or vanishing gradients. Biases are initialized to zero, whereas the
weights are initialized randomly at each layer as: Wij = U

[
−1/
√

n, 1/
√

n
]
, where U is a

uniform probability distribution, and n is the size of the previous layer.
The Kaiming He initialization scheme is similar to Glorot initialization. In this method,

the weights in each layer are initialized considering the values of the previous layer, thus
achieving a global minimum of the cost function faster and more efficiently. The weights
are random, but differ in range depending on the values of the previous layer of neurons.
Biases are initialized to zero, whereas the weights are initialized randomly at each layer
as: Wij = G

[
0,
√

2/
√

n
]
, where G is a Gaussian probability distribution and, n is the size

Energies 2022, 15, 7697 8 of 22

of the previous layer. He Normal initialization is commonly used in conjunction with the
ReLU activation function.

3. Point Kinetics Equations (PKEs)

The PKEs and delayed neutron precursor concentrations are reduced-order models of
the Neutron Transport Equation and the Bateman equation, respectively. The point kinetics
are derived under the approximation that the shape of the neutron flux and the neutron
density distribution are ignored, thus assuming that the reactor acts as a point. The delayed
neutron precursor concentrations are described by a set of differential equations that arise
from simplifications of the Bateman equation. PKEs are a system of coupled nonlinear
differential equations, which describe the kinetics of reactor variables, such as neutron
density concentration, the delayed neutron precursor density concentration, and reactivity.
Reactivity, ρ, defined as the deviation of an effective multiplication factor, ke f f , from unity,
is a measure of the state of the reactor relative to the critical state [35]. When ρ < 0, the
reactor is subcritical; when ρ = 0, the reactor is critical; and when ρ > 0, the reactor is
supercritical. Reactivity is a dimensionless number, but it is commonly expressed in per
cent mile or pcm units.

Changing the reactivity provides the means to control the reactor power. The solution
of PKEs provides information on the nuclear reactor power level and the power fluctuation
during the reactivity transient. The PKEs for several groups of delayed neutrons are given
as [36]:

dn(t)
dt

= S0 +
ρ(t, T)− β

Λ
·n(t) + ∑

i
λi·ci(t), (9)

dci(t)
dt

=
βi
Λ
·n(t)− λi·ci(t), (10)

where n represents the neutron density concentration; ci is the delayed neutron precursor
density concentration for the group, i; ρ is the reactivity feedback, which is a function of
temperature, T; βi is the delayed neutron fraction for each group; β = ∑ βi is the sum of
the delayed neutron fractions. In addition, Λ is the mean neutron lifetime in the reactor core;
λi is the mean neutron precursor lifetime for each group, i; and S0 is the time-independent
neutron source. At time t = 0, the reactor is in steady state, and we use the following initial
conditions [36]:

n(0) = n0, (11)

ci(0) = ci0 =
βi

λι·Λ
·n0, (12)

where the values of βi, λi, and Λ are suggested by the experimental data. In most systems,
βi

λι ·Λ � 1, and, therefore, under steady state conditions, we obtain ci � n [36]. Because of
the stiffness of the ODE system, the numerical solution of the PKEs requires using relatively
small time steps in the computational domain to achieve an accurate solution.

4. Purdue University Reactor Number One (PUR-1)

In this work, we develop a PINN model to monitor the start-up transient of Purdue
University Reactor Number One. PUR-1 is an all-digital 10 kWth material test reactor
(MTR)—pool type, with flat-plate-type fuel by BWXT Technologies [37,38]. The fuel mate-
rial consists of high-essay, low-enriched uranium (19.75% 235U) in the form of U3Si2—Al.
There are 16 total assemblies, where each standard assembly has up to 14 fuel elements.
The core is submerged into a 5.2 m deep water pool, where water is used for both neutron
moderation and fuel heat removal. The average thermal neutron flux in the fuel region
is 1.2× 1010 n/cm2·s, with the maximum thermal flux reaching the value of 2.1× 1010

n/cm2·s. The reactor power is controlled with three control rods. Two of them are borated
stainless steel shim safety rods (SS1 and SS2), and the third one is a 304 stainless steel
regulating rod (RR). A schematic drawing of PUR-1 is shown in Figure 3. An inset panel in
Figure 3 shows the relative locations of the fuel elements and control rods.

Energies 2022, 15, 7697 9 of 22

Energies 2022, 15, x FOR PEER REVIEW 9 of 23

In this work, we develop a PINN model to monitor the start-up transient of Purdue
University Reactor Number One. PUR-1 is an all-digital 10 kWth material test reactor
(MTR)—pool type, with flat-plate-type fuel by BWXT Technologies [37,38]. The fuel ma-
terial consists of high-essay, low-enriched uranium (19.75% 235U) in the form of U3Si2—Al.
There are 16 total assemblies, where each standard assembly has up to 14 fuel elements.
The core is submerged into a 5.2 m deep water pool, where water is used for both neutron
moderation and fuel heat removal. The average thermal neutron flux in the fuel region is 1.2 × 10ଵ n/cm2·s, with the maximum thermal flux reaching the value of 2.1 × 10ଵ
n/cm2·s. The reactor power is controlled with three control rods. Two of them are borated
stainless steel shim safety rods (SS1 and SS2), and the third one is a 304 stainless steel
regulating rod (RR). A schematic drawing of PUR-1 is shown in Figure 3. An inset panel
in Figure 3 shows the relative locations of the fuel elements and control rods.

To obtain the solution of PKEs, one has to have an auxiliary equation describing the
evolution of reactivity in time. In PUR-1 operation, reactivity is changed by the movement
of control rods. In principle, only one control rod (SS1 or SS2) is sufficient to shut down
the reactor completely. When the reactor is shut down, the control rods are inserted into
the reactor core, and the reactivity has a large negative value. During PUR-1 startup, con-
trol rods are slowly withdrawn from the core, which gradually increases reactivity until
the reactor becomes critical. The operating speed of SS1 and SS2 is 11 cm/min, whereas
the speed of RR is 45 cm/min. The typical startup time for PUR-1 is approximately 4 min.
In general, reactivity is a function of temperature. However, because the temperature of
the PUR-1 pool remains close to room temperature value during startup and normal op-
eration, the dependence of reactivity on temperature is negligible.

Figure 3. Schematics of PUR-1.

From PUR-1 benchmarks, 𝛬 = 8.13 ∙ 10ିହ s and 𝑆 = 10 n/cm2·s. The values of
PUR-1 parameters 𝛽 and 𝜆 for six groups are listed in Table 1. We chose the value of 𝑛 = 7 × 10ସ n/cm2·s.

Figure 3. Schematics of PUR-1.

To obtain the solution of PKEs, one has to have an auxiliary equation describing the
evolution of reactivity in time. In PUR-1 operation, reactivity is changed by the movement
of control rods. In principle, only one control rod (SS1 or SS2) is sufficient to shut down the
reactor completely. When the reactor is shut down, the control rods are inserted into the
reactor core, and the reactivity has a large negative value. During PUR-1 startup, control
rods are slowly withdrawn from the core, which gradually increases reactivity until the
reactor becomes critical. The operating speed of SS1 and SS2 is 11 cm/min, whereas the
speed of RR is 45 cm/min. The typical startup time for PUR-1 is approximately 4 min. In
general, reactivity is a function of temperature. However, because the temperature of the
PUR-1 pool remains close to room temperature value during startup and normal operation,
the dependence of reactivity on temperature is negligible.

From PUR-1 benchmarks, Λ = 8.13·10−5 s and S0 = 107 n/cm2·s. The values of
PUR-1 parameters βi and λi for six groups are listed in Table 1. We chose the value of
n0 = 7× 104 n/cm2·s.

Table 1. Parameters of PUR-1.

Variable Value (s)

Term 1 2 3 4 5 6
βi 0.000213 0.001413 0.001264 0.002548 0.000742 0.000271
λi 0.01244 0.0305 0.1114 0.3013 1.1361 3.013

An experiment was performed to obtain time-dependent values of reactivity during
the start-up process of PUR-1. We used the SS2 control rod only because of its location near
the edge of the core, as compared to location of SS1. At the start of the experiment, the SS1
and RR control rods were fully withdrawn, whereas the SS2 was fully inserted into the
reactor core. Then, the SS2 control rod was withdrawn until criticality was reached. We list
the data acquired from the experiment along with reactivity estimations in Table 2.

Energies 2022, 15, 7697 10 of 22

Table 2. Reactivity values during the start-up of PUR-1 by withdrawing the SS2 control rod.

SS2 (cm) Reactivity (pcm) Uncertainty (pcm)

0 −1168.496 97
10 −983.580 74
20 −870.513 80
30 −431.857 78
40 −31.009 90

The first column of Table 2 lists the location of SS2 relative to the core measured at
selected points. When the SS2 control rod is withdrawn 40 cm out of the core, the reactor is
critical. The second column lists the estimated reactivity values, which are calculated using
PUR-1 benchmarks for the Inhour equation. The third column of Table 2 lists the uncertainty
values of the reactivity. The time needed to complete the start-up of PUR-1 was measured
to be 3 min and 37 s or 217 s. This is consistent with the SS2 movement speed of 11 cm/min
or 4.4 in/min. It should be noted that the reactivity insertion of 10 pcm is considered a very
small value in practice, whereas the reactivity insertion of the order of 1 pcm is practically
unrealizable in commercial light water reactors (LWRs). The mean reactivity uncertainty
for all five reactivity insertion steps is 83.8 pcm. This can be considered a relatively small
number when compared to the first three cases of reactivity insertion, which were measured
with an uncertainty lower than 10%. The last two reactivity insertion steps, at locations
30 cm and 40 cm, were measured with larger reactivity uncertainty values, which could
hinder the validity of the reactivity model. However, the calculated results are in close
agreement with PUR-1 validation data, which include the reactor period and reactor power
schedules. Therefore, it is safe to conclude that the reactivity uncertainty values can be
neglected without affecting the reactivity model accuracy.

The solution of PKEs requires a continuous function of reactivity transient [39]. To
obtain ρ(x), we fitted a polynomial curve to the experimental points in Table 2. The graphs
of the interpolated or S-curve (blue) and the polynomial fit (orange) are shown in Figure 4.
The best fit was obtained using the 4th-order polynomial with the correlation:

ρ(x) = −0.0032× x4 + 0.2564× x3 − 5.8336× x2 + 54.353× x− 1168.5, (13)

where ρ(x) is the reactivity, and x is the distance of the SS2 control rod withdrawal from
the core of the reactor.

Energies 2022, 15, x FOR PEER REVIEW 11 of 23

Figure 4. S curve of the SS2 control rod (cm) with respect to the reactivity (pcm) is depicted by the
blue-colored line. Curve fitting of the obtained S curve is depicted by the orange-colored dotted line.
The error bar due to uncertainty is depicted by the black-colored line.

The operating speed of the SS2 is 𝑣 = 11 cm/min. Therefore, to obtain 𝜌(𝑡), we sub-
stitute 𝑥 = 𝑣𝑡 in Equation (13) to arrive at the following equation: 𝜌(𝑡) = −0.0032 ∙ ൬1160 × 𝑡൰ସ + 0.2564 ∙ ൬1160 × 𝑡൰ଷ − 5.8336 ∙ ൬1160 × 𝑡൰ଶ + 54.353 ∙ ൬1160 × 𝑡൰ − 1168.5, (14)

where 𝑡 is the time measured in seconds. The reactivity transient in the time interval 𝑡 ∈ሾ0, 217ሿ𝑠 is plotted in Figure 5.

Figure 5. Reactivity insertion at each second in the time interval of 𝑡 ∈ ሾ0, 217ሿ𝑠 until steady state
is reached.

To find the reference solution of all seven differential equations in the system of
PKEs, we used the finite difference solver “solve_ivp” (from SciPy Python library) that
integrates a system of ordinary differential equations given an initial value. The “LSODA”
integration method was used, which is an Adams/BDF method with automatic stiffness
detection and switching, based on the Fortran solver from ODEPACK.

5. PINN Solution of the PKE Model of PUR-1
5.1. PINN Model Development and Training

A PINN model was developed for the solution of PKEs with six groups of neutron
precursor density concentrations, using the neutron source value and startup reactivity
transient of PUR-1. Besides the PKEs, the problem contains ICs, which are treated as a

Figure 4. S curve of the SS2 control rod (cm) with respect to the reactivity (pcm) is depicted by the
blue-colored line. Curve fitting of the obtained S curve is depicted by the orange-colored dotted line.
The error bar due to uncertainty is depicted by the black-colored line.

Energies 2022, 15, 7697 11 of 22

The operating speed of the SS2 is v = 11 cm/min. Therefore, to obtain ρ(t), we
substitute x = vt in Equation (13) to arrive at the following equation:

ρ(t) = −0.0032·
(

11
60
× t
)4

+ 0.2564·
(

11
60
× t
)3
− 5.8336·

(
11
60
× t
)2

+ 54.353·
(

11
60
× t
)
− 1168.5, (14)

where t is the time measured in seconds. The reactivity transient in the time interval
t ∈ [0, 217]s is plotted in Figure 5.

Energies 2022, 15, x FOR PEER REVIEW 11 of 23

Figure 4. S curve of the SS2 control rod (cm) with respect to the reactivity (pcm) is depicted by the
blue-colored line. Curve fitting of the obtained S curve is depicted by the orange-colored dotted line.
The error bar due to uncertainty is depicted by the black-colored line.

The operating speed of the SS2 is 𝑣 = 11 cm/min. Therefore, to obtain 𝜌(𝑡), we sub-
stitute 𝑥 = 𝑣𝑡 in Equation (13) to arrive at the following equation: 𝜌(𝑡) = −0.0032 ∙ ൬1160 × 𝑡൰ସ + 0.2564 ∙ ൬1160 × 𝑡൰ଷ − 5.8336 ∙ ൬1160 × 𝑡൰ଶ + 54.353 ∙ ൬1160 × 𝑡൰ − 1168.5, (14)

where 𝑡 is the time measured in seconds. The reactivity transient in the time interval 𝑡 ∈ሾ0, 217ሿ𝑠 is plotted in Figure 5.

Figure 5. Reactivity insertion at each second in the time interval of 𝑡 ∈ ሾ0, 217ሿ𝑠 until steady state
is reached.

To find the reference solution of all seven differential equations in the system of
PKEs, we used the finite difference solver “solve_ivp” (from SciPy Python library) that
integrates a system of ordinary differential equations given an initial value. The “LSODA”
integration method was used, which is an Adams/BDF method with automatic stiffness
detection and switching, based on the Fortran solver from ODEPACK.

5. PINN Solution of the PKE Model of PUR-1
5.1. PINN Model Development and Training

A PINN model was developed for the solution of PKEs with six groups of neutron
precursor density concentrations, using the neutron source value and startup reactivity
transient of PUR-1. Besides the PKEs, the problem contains ICs, which are treated as a

Figure 5. Reactivity insertion at each second in the time interval of t ∈ [0, 217]s until steady state
is reached.

To find the reference solution of all seven differential equations in the system of PKEs,
we used the finite difference solver “solve_ivp” (from SciPy Python library) that integrates
a system of ordinary differential equations given an initial value. The “LSODA” integration
method was used, which is an Adams/BDF method with automatic stiffness detection and
switching, based on the Fortran solver from ODEPACK.

5. PINN Solution of the PKE Model of PUR-1
5.1. PINN Model Development and Training

A PINN model was developed for the solution of PKEs with six groups of neutron
precursor density concentrations, using the neutron source value and startup reactivity
transient of PUR-1. Besides the PKEs, the problem contains ICs, which are treated as a
special type of BCs. The loss comprises only the first two terms of Equation (4). The
ICs were encoded into PINN as soft constraints. We compared the performance of PINN
using soft and hard constraints, and no significant difference was found. The loss function
involves 14 different terms, seven of them related to the ODEs, and the other seven related
to their respective ICs.

Figure 6 displays the architecture of the PINN, which consists of two interconnected
networks. The surrogate network takes as input time, t; and provides an approximation of
the PKE solution, the state vector [n(t), c1(t), c2(t), c3(t), c4(t), c5(t), c6(t)]

T . The weights of
the surrogate network are trainable. The residual network takes the approximate solution
from the surrogate network, and calculates the residual that is used as a loss function
to optimize the surrogate network. The residual network includes the governing PKE
equations and the ICs.

Energies 2022, 15, 7697 12 of 22

Energies 2022, 15, x FOR PEER REVIEW 12 of 23

special type of BCs. The loss comprises only the first two terms of Equation (4). The ICs
were encoded into PINN as soft constraints. We compared the performance of PINN using
soft and hard constraints, and no significant difference was found. The loss function in-
volves 14 different terms, seven of them related to the ODEs, and the other seven related
to their respective ICs.

Figure 6 displays the architecture of the PINN, which consists of two interconnected
networks. The surrogate network takes as input time, t; and provides an approximation
of the PKE solution, the state vector ሾ𝑛(𝑡), 𝑐ଵ(𝑡), 𝑐ଶ(𝑡), 𝑐ଷ(𝑡), 𝑐ସ(𝑡), 𝑐ହ(𝑡), 𝑐(𝑡)ሿ் . The
weights of the surrogate network are trainable. The residual network takes the approxi-
mate solution from the surrogate network, and calculates the residual that is used as a loss
function to optimize the surrogate network. The residual network includes the governing
PKE equations and the ICs.

Figure 6. Schematic of PINN for solving the PKEs with ICs. The input to surrogate network is time,
t, and the output is the solution vector ሾ𝑛(𝑡), 𝑐ଵ(𝑡), 𝑐ଶ(𝑡), 𝑐ଷ(𝑡), 𝑐ସ(𝑡), 𝑐ହ(𝑡), 𝑐(𝑡)ሿ். The residual net-
work tests if the solution vector satisfies the PKE governing equations and the ICs.

For fully connected PINN implementation, a six-layer FNN with the ReLU activation
function was developed for the surrogate network. The FNN input layer consists of a sin-
gle input, which is a point in the time domain. Every hidden layer consists of 64 neurons.
The output layer consists of seven outputs, which are the neutron density concentration, 𝑛, and the delayed neutron precursor’s density concentration, 𝑐 , for six groups. The
Kaiming He method is used to initialize the weights of the FNN, which is the most com-
mon initialization method when using ReLU as the activation function [40]. The surrogate
network calculates the approximate solution to the problem. Then, the residual network
encodes the governing equations (PKEs) and ICs, and calculates the loss function (MSE of
the residual), which must be minimized to optimize the surrogate network.

In our implementation of PINN, the loss function is minimized by using the Adam
optimizer for 65,000 iterations, with a learning rate of 𝜆 = 0.001. The training data set con-
sists of 42 collocation points. Specifically, 30 points were distributed inside the solution
domain, and 12 training points were used for the ICs. The distribution of the collocation
points is drawn from the Sobol sequence. The computational domain for evaluation of the
residuals is the time domain, 𝑡 ∈ ሾ0, 217ሿ𝑠, which is the start-up period for PUR-1 to reach
criticality. The implementation is performed in the Python environment using the Python
library, DeepXDE [10]. The workflow for solving the PKEs using PINNs in the DeepXDE
framework is shown in Table 3.

Figure 6. Schematic of PINN for solving the PKEs with ICs. The input to surrogate network is time, t,
and the output is the solution vector [n(t), c1(t), c2(t), c3(t), c4(t), c5(t), c6(t)]

T . The residual network
tests if the solution vector satisfies the PKE governing equations and the ICs.

For fully connected PINN implementation, a six-layer FNN with the ReLU activation
function was developed for the surrogate network. The FNN input layer consists of a single
input, which is a point in the time domain. Every hidden layer consists of 64 neurons. The
output layer consists of seven outputs, which are the neutron density concentration, n, and
the delayed neutron precursor’s density concentration, ci, for six groups. The Kaiming He
method is used to initialize the weights of the FNN, which is the most common initialization
method when using ReLU as the activation function [40]. The surrogate network calculates
the approximate solution to the problem. Then, the residual network encodes the governing
equations (PKEs) and ICs, and calculates the loss function (MSE of the residual), which
must be minimized to optimize the surrogate network.

In our implementation of PINN, the loss function is minimized by using the Adam
optimizer for 65,000 iterations, with a learning rate of λ = 0.001. The training data set
consists of 42 collocation points. Specifically, 30 points were distributed inside the solution
domain, and 12 training points were used for the ICs. The distribution of the collocation
points is drawn from the Sobol sequence. The computational domain for evaluation of the
residuals is the time domain, t ∈ [0, 217]s, which is the start-up period for PUR-1 to reach
criticality. The implementation is performed in the Python environment using the Python
library, DeepXDE [10]. The workflow for solving the PKEs using PINNs in the DeepXDE
framework is shown in Table 3.

Figure 7a shows the loss history of PINN after 65,000 iterations. The training took
approximately 62 s, on a Windows PC with AMD Ryzen 7 5800H with Radeon Graphics,
8-core processor, and 32 GB of RAM. The loss is presented as the summed-up MSE of all
terms for both training (blue) and testing (orange).

Energies 2022, 15, 7697 13 of 22

Table 3. Workflow for solving PKEs using PINNs in DeepXDE framework.

Step # Procedure

Step 1 Specify the computational domain using the geometry module.
Step 2 Specify the system of ODEs using the grammar of Tensorflow.
Step 3 Specify the initial conditions using the IC module.

Step 4
Combine the geometry, system of ODEs, and initial conditions together
into data.PDE. Specify the training data and the training distribution, and
set the number of points to be sampled.

Step 5 Construct a feed-forward neural network using the maps module.

Step 6 Define a Model by combining the system of ODEs problem in Step 4 and
the neural network in Step 5.

Step 7
Call Model.compile to set the optimization hyperparameters, such as
optimizer and learning rate. The weights in Equation (4) can be set here by
loss_weights.

Step 8 Call Model.train to train the network from random initialization. The
training behavior can be monitored and modified using callbacks.

Step 9 Call Model.predict to predict the PDE solution at different locations.

Energies 2022, 15, x FOR PEER REVIEW 13 of 23

Table 3. Workflow for solving PKEs using PINNs in DeepXDE framework.

Step # Procedure
Step 1 Specify the computational domain using the geometry module.
Step 2 Specify the system of ODEs using the grammar of Tensorflow.
Step 3 Specify the initial conditions using the IC module.

Step 4
Combine the geometry, system of ODEs, and initial conditions together
into data.PDE. Specify the training data and the training distribution, and
set the number of points to be sampled.

Step 5 Construct a feed-forward neural network using the maps module.

Step 6
Define a Model by combining the system of ODEs problem in Step 4 and
the neural network in Step 5.

Step 7
Call Model.compile to set the optimization hyperparameters, such as opti-
mizer and learning rate. The weights in Equation (4) can be set here by
loss_weights.

Step 8
Call Model.train to train the network from random initialization. The train-
ing behavior can be monitored and modified using callbacks.

Step 9 Call Model.predict to predict the PDE solution at different locations.

Figure 7a shows the loss history of PINN after 65,000 iterations. The training took
approximately 62 s, on a Windows PC with AMD Ryzen 7 5800H with Radeon Graphics,
8-core processor, and 32 GB of RAM. The loss is presented as the summed-up MSE of all
terms for both training (blue) and testing (orange).

(a) (b)

Figure 7. History of the loss function of PINN after 65,000 iterations for interpolation. (a) The train-
ing (blue) and testing (orange) loss is the summed-up MSE loss of all terms in the PKEs. (b) The test
metric is the relative ℒଶ error for the first ODE term.

The MSE of training starts at the value of 1.14 × 10ଵଶ and decreases to 1.97 × 10଼. It
should be noted that the large absolute value of the loss is not indicative of the ability of
PINN to make correct predictions. The fact that MSE decreased by a factor of 10ସ indi-
cates good performance of the PINN. To verify this, a numerical test was performed by
reducing the value of the source term in Equation (9) from the actual value of 10 n/cm2·s
to a hypothetical smaller value of 10ଶ n/cm2·s. With the smaller source term, the magni-
tudes of the MSE values for every ODE term were in the range 10ିଷ to 10ିଶ at the con-
clusion of training, showing the same decrease, by a factor of 10ସ, as in the case of the
larger source term. Therefore, it can be concluded that the scaling of the source term does
not affect the PINN model relative performance. In addition, by observing the pattern of
the loss curve, it can be qualitatively determined that there is no overfitting of the network.

Figure 7. History of the loss function of PINN after 65,000 iterations for interpolation. (a) The training
(blue) and testing (orange) loss is the summed-up MSE loss of all terms in the PKEs. (b) The test
metric is the relative L2 error for the first ODE term.

The MSE of training starts at the value of 1.14× 1012 and decreases to 1.97× 108. It
should be noted that the large absolute value of the loss is not indicative of the ability of
PINN to make correct predictions. The fact that MSE decreased by a factor of 104 indicates
good performance of the PINN. To verify this, a numerical test was performed by reducing
the value of the source term in Equation (9) from the actual value of 107 n/cm2·s to a
hypothetical smaller value of 102 n/cm2·s. With the smaller source term, the magnitudes
of the MSE values for every ODE term were in the range 10−3 to 10−2 at the conclusion of
training, showing the same decrease, by a factor of 104, as in the case of the larger source
term. Therefore, it can be concluded that the scaling of the source term does not affect the
PINN model relative performance. In addition, by observing the pattern of the loss curve,
it can be qualitatively determined that there is no overfitting of the network. Furthermore,
the relative L2 error was calculated to evaluate the performance of the PINN. The error
metric for the neutron density concentration is shown in Figure 7b. The error starts at
the value of 100 and decreases to 1.03× 10−2 after 65,000 iterations. This indicates good
accuracy in predictions with PINN.

Energies 2022, 15, 7697 14 of 22

5.2. PINN Solution of PKEs

Using PINN formalism, we solve the system of seven stiff nonlinear ODEs comprising
the PKEs. The results are shown in Figure 8. The left panels, Figure 8a,c,e,g,i,k,m, display
PINN predictions along with reference solutions for the neutron density concentration,
and six groups of delayed neutron precursor density concentrations, respectively. As can
be seen from the figures, PINN predictions closely approach the reference solution for
the entire computational domain, t ∈ [0, 217]s. The stiffness of the PKE system does not
prevent the PINN from capturing the basic dynamics of the system.

The right panels, Figure 8b,d,f,h,j,l,n, display the residual errors of neutron density
concentration and delayed neutron precursor density concentrations for six groups, re-
spectively. In most cases, the residual error is almost zero, especially in the time interval
t ∈ [0, 175]s. This phenomenon is attributed to the weak change of the gradient during that
time period, as compared to the significant change in the gradient occurring in the time
interval t ∈ [150, 217]s. The error is the largest during the time interval t ∈ [175, 217]s.
However, even for this time period, the residual errors remain small relative to the ab-
solute values. For instance, for the neutron density concentration n(t) in Figure 8a,b,
the largest value of the residual error is 6000, or 2.18% of the reference solution value
of 275,000 n/cm2·s. In the graphs of all panels in Figure 8, for each test point, one can
observe a difference of at least two orders of magnitude between the residual error and the
reference solution.

Energies 2022, 15, x FOR PEER REVIEW 14 of 23

Furthermore, the relative ℒଶ error was calculated to evaluate the performance of the
PINN. The error metric for the neutron density concentration is shown in Figure 7b. The
error starts at the value of 10 and decreases to 1.03 × 10ିଶ after 65,000 iterations. This
indicates good accuracy in predictions with PINN.

5.2. PINN Solution of PKEs
Using PINN formalism, we solve the system of seven stiff nonlinear ODEs compris-

ing the PKEs. The results are shown in Figure 8. The left panels, Figure 8a,c,e,g,i,k, and
(m), display PINN predictions along with reference solutions for the neutron density con-
centration, and six groups of delayed neutron precursor density concentrations, respec-
tively. As can be seen from the figures, PINN predictions closely approach the reference
solution for the entire computational domain, 𝑡 ∈ ሾ0, 217ሿ𝑠. The stiffness of the PKE sys-
tem does not prevent the PINN from capturing the basic dynamics of the system.

The right panels, Figure 8b,d,f,h,j,l,n, display the residual errors of neutron density
concentration and delayed neutron precursor density concentrations for six groups, re-
spectively. In most cases, the residual error is almost zero, especially in the time interval 𝑡 ∈ ሾ0, 175ሿ𝑠. This phenomenon is attributed to the weak change of the gradient during
that time period, as compared to the significant change in the gradient occurring in the
time interval 𝑡 ∈ ሾ150, 217ሿ𝑠 . The error is the largest during the time interval 𝑡 ∈ሾ175, 217ሿ𝑠. However, even for this time period, the residual errors remain small relative
to the absolute values. For instance, for the neutron density concentration n(t) in Figure
8a,b, the largest value of the residual error is 6000, or 2.18% of the reference solution value
of 275,000 n/cm2·s. In the graphs of all panels in Figure 8, for each test point, one can ob-
serve a difference of at least two orders of magnitude between the residual error and the
reference solution.

(a)

(b)

(c)

(d)

Figure 8. Cont.

Energies 2022, 15, 7697 15 of 22Energies 2022, 15, x FOR PEER REVIEW 15 of 23

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure 8. Cont.

Energies 2022, 15, 7697 16 of 22Energies 2022, 15, x FOR PEER REVIEW 16 of 23

(m)

(n)

Figure 8. (a) Solution of neutron density concentration, 𝑛(𝑡), in the time interval 𝑡 ∈ ሾ0, 217ሿ𝑠, along
with PINN prediction. (b) Residual error plot of 𝑛(𝑡), which shows the error margin of the predic-
tions. (c,e,g,i,k,m) Solutions of delayed neutron precursor density concentration of 𝑐ଵ(𝑡), 𝑐ଶ(𝑡), 𝑐ଷ(𝑡), 𝑐ସ(𝑡), 𝑐ହ(𝑡), and 𝑐(𝑡), respectively, in the time interval 𝑡 ∈ ሾ0, 217ሿ𝑠, along with PINN pre-
diction. (d,f,h,j,l,n) Residual error plot of 𝑐ଵ(𝑡), 𝑐ଶ(𝑡), 𝑐ଷ(𝑡), 𝑐ସ(𝑡), 𝑐ହ(𝑡), and 𝑐(𝑡), respectively.

Though the PINN model has shown good performance in interpolation of the data,
a more difficult challenge for all ML models is the extrapolation of the data. Therefore, as
part of this investigation, the extrapolation capability of PINNs was explored by examin-
ing three different cases. In the first case, the model is trained in the time interval 𝑡 ∈ሾ0, 212ሿ𝑠, and the extrapolation is performed in a five-seconds interval, 𝑡 ∈ ሾ213, 217ሿ𝑠. In
the second case, the model is trained in the time interval of 𝑡 ∈ ሾ0, 207ሿ𝑠, and the extrap-
olation is performed in a 10 s time interval, 𝑡 ∈ ሾ208, 217ሿ𝑠. In the third case, the model is
trained in the time interval 𝑡 ∈ ሾ0, 202ሿ𝑠, and the extrapolation is performed in a 15 s time
interval, 𝑡 ∈ ሾ203, 217ሿ𝑠. The results of the second case are displayed in Figures 9 and 10,
whereas the percentage error findings for the first, second, and third case are presented
in Tables 4, 5, and 6 respectively.

The model’s architecture remains as described earlier in this Section, having a six-
layer FNN with the ReLU activation function for the surrogate network. The FNN input
layer consists of a single input, whereas the output layer consists of seven outputs. Every
hidden layer consists of 64 neurons. In each case, the loss function is minimized by using
the Adam optimizer for 65,000 iterations, with a learning rate of 𝜆 = 0.001. The number
of training data inside the domain consists of 30 collocation points, whereas the distribu-
tion of the collocation points is drawn from the Sobol sequence. The number of testing
data inside the domain consists of 120 points, and they are randomly distributed. The
implementation is performed in the Python environment using the Python library
DeepXDE [10]. In the following, the results of the second case are presented, whereas the
error rate percentage of all three cases are displayed later in different tables.

Figure 9a shows the MSE loss history of PINN after 65,000 iterations. The MSE of
training starts at the value of 1.32 ∙ 10ଵଶ and decreases to 1.04 × 10଼. Similarly, the fact
that MSE decreased by a factor of 10ସ indicates good performance of the PINN. In addi-
tion, the relative ℒଶ error was calculated to evaluate the performance of the PINN. The
error metric for the neutron density concentration is shown in Figure 9b. The error starts
at the value of 10 and decreases to 1.45 × 10ିଶ after 65,000 iterations. This indicates
good accuracy in predictions with PINN.

Figure 8. (a) Solution of neutron density concentration, n(t), in the time interval t ∈ [0, 217]s, along
with PINN prediction. (b) Residual error plot of n(t), which shows the error margin of the predictions.
(c,e,g,i,k,m) Solutions of delayed neutron precursor density concentration of c1(t), c2(t), c3(t), c4(t),
c5(t), and c6(t), respectively, in the time interval t ∈ [0, 217]s, along with PINN prediction. (d,f,h,j,l,n)
Residual error plot of c1(t), c2(t), c3(t), c4(t), c5(t), and c6(t), respectively.

Though the PINN model has shown good performance in interpolation of the data, a
more difficult challenge for all ML models is the extrapolation of the data. Therefore, as
part of this investigation, the extrapolation capability of PINNs was explored by examining
three different cases. In the first case, the model is trained in the time interval t ∈ [0, 212]s,
and the extrapolation is performed in a five-seconds interval, t ∈ [213, 217]s. In the second
case, the model is trained in the time interval of t ∈ [0, 207]s, and the extrapolation is
performed in a 10 s time interval, t ∈ [208, 217]s. In the third case, the model is trained in
the time interval t ∈ [0, 202]s, and the extrapolation is performed in a 15 s time interval,
t ∈ [203, 217]s. The results of the second case are displayed in Figures 9 and 10, whereas
the percentage error findings for the first, second, and third case are presented in Table 4,
Table 5, and Table 6 respectively.

Energies 2022, 15, x FOR PEER REVIEW 17 of 23

(a) (b)

Figure 9. History of the loss function of PINN after 65,000 iterations for extrapolation. (a) The train-
ing (blue) and testing (orange) loss is the summed-up MSE loss of all terms in the PKEs. (b) The test
metric is the relative ℒଶ error for the first ODE term.

The results of the solution of the PKEs are shown in Figure 10. The left panels, Figure
10a,c,e,g,i,k,m, display PINN predictions along with reference solutions for neutron den-
sity concentration, and six groups of delayed neutron precursor density concentrations,
respectively. As can be seen from the figures, PINN predictions closely approach the ref-
erence solution for both the computational domain of interpolation, 𝑡 ∈ ሾ0, 207ሿ𝑠, and ex-
trapolation, 𝑡 ∈ ሾ208, 217ሿ𝑠. More specifically, in the time interval of 𝑡 ∈ ሾ208, 217ሿ𝑠, the
predictions seem to experience their lowest accuracy in the final second of the solution,
whereas they maintain high accuracy in the rest time interval, even comparable to the
interpolation case. Similar to before, the stiffness of the PKE system does not prevent the
PINN from capturing the basic dynamics of the system.

The right panels, Figure 10b,d,f,h,j,l,n, display the residual errors of neutron density
concentration and delayed neutron precursor density concentrations for six groups, re-
spectively. The testing points used for interpolation are shown in red, and the testing
points used for extrapolation are shown in gray. In every case, the largest error in extrap-
olation is greater than the largest error in interpolation. However, in most cases, the errors
in extrapolation are comparable to errors in interpolation. Therefore, based on cases con-
sidered in the study, the PINN’s capacity to perform extrapolation is reasonably good
compared to the interpolation capability.

(a)

(b)

Figure 9. History of the loss function of PINN after 65,000 iterations for extrapolation. (a) The training
(blue) and testing (orange) loss is the summed-up MSE loss of all terms in the PKEs. (b) The test
metric is the relative L2 error for the first ODE term.

Energies 2022, 15, 7697 17 of 22

Energies 2022, 15, x FOR PEER REVIEW 17 of 23

(a) (b)

Figure 9. History of the loss function of PINN after 65,000 iterations for extrapolation. (a) The train-
ing (blue) and testing (orange) loss is the summed-up MSE loss of all terms in the PKEs. (b) The test
metric is the relative ℒଶ error for the first ODE term.

The results of the solution of the PKEs are shown in Figure 10. The left panels, Figure
10a,c,e,g,i,k,m, display PINN predictions along with reference solutions for neutron den-
sity concentration, and six groups of delayed neutron precursor density concentrations,
respectively. As can be seen from the figures, PINN predictions closely approach the ref-
erence solution for both the computational domain of interpolation, 𝑡 ∈ ሾ0, 207ሿ𝑠, and ex-
trapolation, 𝑡 ∈ ሾ208, 217ሿ𝑠. More specifically, in the time interval of 𝑡 ∈ ሾ208, 217ሿ𝑠, the
predictions seem to experience their lowest accuracy in the final second of the solution,
whereas they maintain high accuracy in the rest time interval, even comparable to the
interpolation case. Similar to before, the stiffness of the PKE system does not prevent the
PINN from capturing the basic dynamics of the system.

The right panels, Figure 10b,d,f,h,j,l,n, display the residual errors of neutron density
concentration and delayed neutron precursor density concentrations for six groups, re-
spectively. The testing points used for interpolation are shown in red, and the testing
points used for extrapolation are shown in gray. In every case, the largest error in extrap-
olation is greater than the largest error in interpolation. However, in most cases, the errors
in extrapolation are comparable to errors in interpolation. Therefore, based on cases con-
sidered in the study, the PINN’s capacity to perform extrapolation is reasonably good
compared to the interpolation capability.

(a)

(b)

Energies 2022, 15, x FOR PEER REVIEW 18 of 23

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 10. Cont.

Energies 2022, 15, 7697 18 of 22
Energies 2022, 15, x FOR PEER REVIEW 19 of 23

(k)

(l)

(m)

(n)

Figure 10. (a) Solution of neutron density concentration, 𝑛(𝑡), in the time interval 𝑡 ∈ ሾ0, 217ሿ𝑠,
along with PINN prediction. (b) Residual error plot of 𝑛(𝑡), which shows the error margin of the
predictions. (c,e,g,i,k,m) Solutions of delayed neutron precursor density concentration of 𝑐ଵ(𝑡), 𝑐ଶ(𝑡), 𝑐ଷ(𝑡), 𝑐ସ(𝑡), 𝑐ହ(𝑡), and 𝑐(𝑡), respectively, in the time interval 𝑡 ∈ ሾ0, 217ሿ𝑠, along with PINN
prediction. (d,f,h,j,l,n) Residual error plot of 𝑐ଵ(𝑡), 𝑐ଶ(𝑡), 𝑐ଷ(𝑡), 𝑐ସ(𝑡), 𝑐ହ(𝑡), and 𝑐(𝑡), respec-
tively. The training data for interpolation are in the time interval 𝑡 ∈ ሾ0, 207ሿ𝑠, whereas the training
data for extrapolation are in the time interval 𝑡 ∈ ሾ208, 217ሿ𝑠.

The percentage error of extrapolation predictions for the first, second, and third cases
are presented in Tables 4, 5, and 6, respectively. Case 1 has the lowest prediction errors.
This is to be expected because the extrapolation time interval is the shortest. The model
achieved a percentage error varying from 0.037% to 2.404%. It has to be noted that the
error did not exceed the 0.75% threshold for 8 out of 35 tests. The error remained in the 1–
2% range for 27 out of 35 tests, and exceeded the 2% threshold only for 5 out of 35 tests.

Case 2 errors were in the range of 0.032% to 4.138%. The errors are distributed as: less
than 1% threshold for 4 out of 35 tests, between 1% to 2% for 16 out of 35 tests, between
2–3% for 12 out of 35 tests, and above 3% threshold for 3 out of 35 tests.

Case 3 errors were in the range of 0.256% to 7.963%. The errors are distributed as: less
than 1% threshold for 5 out of 35 tests, between 1% to 2% for 5 out of 35 tests, between 2–
3% for 6 out of 35 tests, between 3–4% for 5 out of 35 tests, between 4–5% for 4 out of 35
tests, between 5–6% for 3 out of 35 tests, and above 6% threshold for 7 out of 35 tests.

The extrapolation errors for all three cases are comparable to interpolation errors.
The findings imply that the PINN model extrapolation ability is directly correlated with
the computational interval size. The smaller the size of the forecasting interval, the better
the extrapolation accuracy.

Figure 10. (a) Solution of neutron density concentration, n(t), in the time interval t ∈ [0, 217]s,
along with PINN prediction. (b) Residual error plot of n(t), which shows the error margin of the
predictions. (c,e,g,i,k,m) Solutions of delayed neutron precursor density concentration of c1(t),
c2(t), c3(t), c4(t), c5(t), and c6(t), respectively, in the time interval t ∈ [0, 217]s, along with PINN
prediction. (d,f,h,j,l,n) Residual error plot of c1(t), c2(t), c3(t), c4(t), c5(t), and c6(t), respectively.
The training data for interpolation are in the time interval t ∈ [0, 207]s, whereas the training data for
extrapolation are in the time interval t ∈ [208, 217]s.

Table 4. Case 1. Percentage error of extrapolation of the training data in time interval t ∈ [0, 211]s
using five testing points in time interval t ∈ [212, 217]s.

Variable Value (%)

Test Point 1 2 3 4 5
n(t) 1.237 1.382 1.468 1.488 1.434
c1(t) 0.237 0.109 0.037 0.196 0.365
c2(t) 0.144 0.443 0.748 1.056 1.360
c3(t) 1.378 1.633 1.871 2.082 2.260
c4(t) 1.067 1.173 1.243 1.268 1.241
c5(t) 1.410 1.490 1.513 1.481 1.383
c6(t) 1.559 1.868 2.118 2.298 2.404

Table 5. Case 2. Percentage error of extrapolation of the training data in time interval t ∈ [0, 207]s
using five testing points in time interval t ∈ [208, 217]s.

Variable Value (%)

Test Point 1 2 3 4 5
n(t) 2.564 1.434 1.954 2.277 2.361
c1(t) 1.190 0.032 0.478 0.994 1.565
c2(t) 1.181 0.167 1.045 1.955 2.877
c3(t) 2.500 1.503 2.456 3.345 4.138
c4(t) 2.755 1.654 2.386 2.986 3.416
c5(t) 2.433 1.197 1.675 1.980 2.072
c6(t) 2.560 1.280 1.683 1.904 1.902

Energies 2022, 15, 7697 19 of 22

Table 6. Case 3. Percentage error of extrapolation of the training data in time interval t ∈ [0, 202]s
using five testing points in time interval t ∈ [203, 217]s.

Variable Value (%)

Test Point 1 2 3 4 5
n(t) 1.841 2.630 3.971 5.424 6.747
c1(t) 0.787 0.551 0.436 1.779 3.276
c2(t) 0.256 0.915 2.397 4.249 6.248
c3(t) 1.665 2.473 4.083 5.996 7.963
c4(t) 1.761 2.413 3.824 5.476 7.107
c5(t) 1.645 2.205 3.457 4.891 6.257
c6(t) 2.076 3.014 4.469 6.022 7.452

The model’s architecture remains as described earlier in this Section, having a six-layer
FNN with the ReLU activation function for the surrogate network. The FNN input layer
consists of a single input, whereas the output layer consists of seven outputs. Every hidden
layer consists of 64 neurons. In each case, the loss function is minimized by using the Adam
optimizer for 65,000 iterations, with a learning rate of λ = 0.001. The number of training
data inside the domain consists of 30 collocation points, whereas the distribution of the
collocation points is drawn from the Sobol sequence. The number of testing data inside
the domain consists of 120 points, and they are randomly distributed. The implementation
is performed in the Python environment using the Python library DeepXDE [10]. In the
following, the results of the second case are presented, whereas the error rate percentage of
all three cases are displayed later in different tables.

Figure 9a shows the MSE loss history of PINN after 65,000 iterations. The MSE of
training starts at the value of 1.32·1012 and decreases to 1.04× 108. Similarly, the fact that
MSE decreased by a factor of 104 indicates good performance of the PINN. In addition, the
relative L2 error was calculated to evaluate the performance of the PINN. The error metric
for the neutron density concentration is shown in Figure 9b. The error starts at the value
of 100 and decreases to 1.45× 10−2 after 65,000 iterations. This indicates good accuracy in
predictions with PINN.

The results of the solution of the PKEs are shown in Figure 10. The left panels,
Figure 10a,c,e,g,i,k,m, display PINN predictions along with reference solutions for neutron
density concentration, and six groups of delayed neutron precursor density concentrations,
respectively. As can be seen from the figures, PINN predictions closely approach the
reference solution for both the computational domain of interpolation, t ∈ [0, 207]s, and
extrapolation, t ∈ [208, 217]s. More specifically, in the time interval of t ∈ [208, 217]s, the
predictions seem to experience their lowest accuracy in the final second of the solution,
whereas they maintain high accuracy in the rest time interval, even comparable to the
interpolation case. Similar to before, the stiffness of the PKE system does not prevent the
PINN from capturing the basic dynamics of the system.

The right panels, Figure 10b,d,f,h,j,l,n, display the residual errors of neutron density
concentration and delayed neutron precursor density concentrations for six groups, respec-
tively. The testing points used for interpolation are shown in red, and the testing points
used for extrapolation are shown in gray. In every case, the largest error in extrapolation is
greater than the largest error in interpolation. However, in most cases, the errors in extrap-
olation are comparable to errors in interpolation. Therefore, based on cases considered in
the study, the PINN’s capacity to perform extrapolation is reasonably good compared to
the interpolation capability.

The percentage error of extrapolation predictions for the first, second, and third cases
are presented in Table 4, Table 5, and Table 6, respectively. Case 1 has the lowest prediction
errors. This is to be expected because the extrapolation time interval is the shortest. The
model achieved a percentage error varying from 0.037% to 2.404%. It has to be noted that
the error did not exceed the 0.75% threshold for 8 out of 35 tests. The error remained in the
1–2% range for 27 out of 35 tests, and exceeded the 2% threshold only for 5 out of 35 tests.

Energies 2022, 15, 7697 20 of 22

Case 2 errors were in the range of 0.032% to 4.138%. The errors are distributed as: less
than 1% threshold for 4 out of 35 tests, between 1% to 2% for 16 out of 35 tests, between
2–3% for 12 out of 35 tests, and above 3% threshold for 3 out of 35 tests.

Case 3 errors were in the range of 0.256% to 7.963%. The errors are distributed as: less
than 1% threshold for 5 out of 35 tests, between 1% to 2% for 5 out of 35 tests, between
2–3% for 6 out of 35 tests, between 3–4% for 5 out of 35 tests, between 4–5% for 4 out of
35 tests, between 5–6% for 3 out of 35 tests, and above 6% threshold for 7 out of 35 tests.

The extrapolation errors for all three cases are comparable to interpolation errors. The
findings imply that the PINN model extrapolation ability is directly correlated with the
computational interval size. The smaller the size of the forecasting interval, the better the
extrapolation accuracy.

6. Conclusions

This paper presents a new approach for developing a nuclear reactor digital twin
(DT) based on physics-informed neural network (PINN), which uses machine learning
methods to solve governing differential equations. Using PINN is a hybrid approach
that provides alternatives to a purely physics-model-based DT, which has challenges in
modelling complex experimental systems, and a purely data driven machine-learning-
based DT, which relies on training data and has challenges with extrapolation.

In this work, we develop a PINN model for the solution of point kinetic equations
(PKEs), which represent a reduced order model of a nuclear reactor. PKEs consist of a
system of coupled nonlinear stiff ordinary differential equations. The surrogate model of a
PINN is implemented with a feed-forward fully connected network. In training the PINN
model, collocation points are selected from the Sobol Sequence distribution. All differential
operators are implemented using automatic differentiation, which offers a mesh-free and
time-efficient solution. The approximate solutions satisfying both the differential operator
and the initial conditions are obtained via tuning the deep neural network hyperparameters.
This is accomplished during training by minimizing the residuals’ loss function over the
entire computational domain. In particular, the initial conditions are satisfied as soft
constraints by adding a term for each to the loss function. The resulting loss function is
used as the objective for minimization.

The effectiveness of the PINN method has been demonstrated by solving the PKEs
that model the start-up transient of the PUR-1 water pool-type research reactor. The reactor
power in PUR-1 is controlled through the insertion or withdrawal of control rods from the
core. PUR-1 time-dependent reactivity was obtained from measurements during the reactor
start-up transient. The PINN solution was obtained for PKEs with six groups of neutron
precursor density concentrations, using the neutron source value and experimental startup
reactivity transient of PUR-1. The results obtained with PINNs are in close agreement with
solution of PKEs obtained with a conventional numerical integration approach.

As part of this work, we investigated the extrapolation capability of PINNs by con-
sidering several cases of a progressively increasing forecasting time interval. In general,
for the intervals considered, the forecasting error in extrapolation was relatively small, as
compared to interpolation errors. The findings indicate that the PINN model extrapolation
ability is correlated with the computational interval size. The extrapolation accuracy is
higher for the shorter forecasting time interval.

The main advantages of PINNs over the standard numerical methods are that PINNs
do not require the time-consuming construction of elaborate grids, and offer low compu-
tational time, and can, therefore, be applied more efficiently to the solution in irregular
and high-dimensional domains. Fast computations with PINN are particularly beneficial
for real-time reactor operation monitoring. As shown in this work, given a reactivity
schedule and initial values, PINNs execute rapidly on a regular PC, without resorting
to high-performance computing hardware. Future work will consider using PINNs for
monitoring different transients of PUR-1, including real-time monitoring and the detection
of reactor operational anomalies. Whereas this paper serves as an investigation of PINN

Energies 2022, 15, 7697 21 of 22

performance in solving ODEs, in the future, we will investigate the development of a
PINN for the solution of auxiliary PDEs for structural health monitoring (heat transfer,
Allen–Cahn, etc.) for a comprehensive reactor digital twin.

Author Contributions: Conceptualization, K.P. and A.H.; methodology, K.P. and A.H.; software, K.P.;
validation, K.P.; formal analysis, K.P. and A.H.; investigation, K.P. and A.H.; resources, L.H.T. and
A.H.; data curation, K.P.; writing—original draft preparation, K.P.; writing—review and editing, A.H.;
visualization, K.P.; supervision, A.H. and L.H.T.; project administration, A.H.; funding acquisition,
A.H. and L.H.T. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the U.S. Department of Energy, Advanced Research Projects
Agency-Energy (ARPA-E) under contract DE-AC02-06CH11357, and by a donation to AI Systems
Lab (AISL) at Purdue University by Goldman Sachs Gives.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to acknowledge PUR-1 management and staff, including
Seungjin Kim, Stylianos Chatzidakis, and True Miller.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kochunas, B.; Huan, X. Digital Twin Concepts with Uncertainty for Nuclear Power Applications. Energies 2021, 14, 4235.

[CrossRef]
2. Kim, C.; Dinh, M.-C.; Sung, H.-J.; Kim, K.-H.; Choi, J.-H.; Graber, L.; Yu, I.-K.; Park, M. Design, Implementation, and Evaluation of

an Output Prediction Model of the 10 MW Floating Offshore Wind Turbine for a Digital Twin. Energies 2022, 15, 6329. [CrossRef]
3. Li, Y.; Yang, J. Meta-Learning Baselines and Database for Few-Shot Classification in Agriculture. Comput. Electron. Agric. 2021,

182, 106055. [CrossRef]
4. Pylianidis, C.; Snow, V.; Overweg, H.; Osinga, S.; Kean, J.; Athanasiadis, I.N. Simulation-Assisted Machine Learning for

Operational Digital Twins. Environ. Model. Softw. 2022, 148, 105274. [CrossRef]
5. Lagaris, I.E.; Likas, A.; Fotiadis, D.I. Artificial Neural Networks for Solving Ordinary and Partial Differential Equations. IEEE

Trans. Neural Netw. 1998, 9, 987–1000. [CrossRef] [PubMed]
6. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial

Differential Equations. arXiv 2017, arXiv:1711.10561.
7. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial

Differential Equations. arXiv 2017, arXiv:1711.10566.
8. Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-Informed Machine Learning. Nat. Rev. Phys.

2021, 3, 422–440. [CrossRef]
9. Cai, S.; Wang, Z.; Wang, S.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks for Heat Transfer Problems. J.

Heat Transf. 2021, 143, 060801. [CrossRef]
10. Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-Informed Neural Networks (PINNs) for Fluid Mechanics: A Review.

Acta Mech. Sin. 2021, 37, 1727–1738. [CrossRef]
11. Haghighat, E.; Raissi, M.; Moure, A.; Gomez, H.; Juanes, R. A Physics-Informed Deep Learning Framework for Inversion and

Surrogate Modeling in Solid Mechanics. Comput. Methods Appl. Mech. Eng. 2021, 379, 113741. [CrossRef]
12. Prantikos, K.; Tsoukalas, L.H.; Heifetz, A. Physics-Informed Neural Network Solution of Point Kinetics Equations for Development

of Small Modular Reactor Digital Twin. In Proceedings of the 2022 American Nuclear Society Annual Meeting, Anaheim, CA,
USA, 12–16 June 2022. [CrossRef]

13. Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Rev.
2021, 63, 208–228. [CrossRef]

14. Sirignano, J.; Spiliopoulos, K. DGM: A Deep Learning Algorithm for Solving Partial Differential Equations. J. Comput. Phys. 2018,
375, 1339–1364. [CrossRef]

15. Koryagin, A.; Khudorozkov, R.; Tsimfer, S. PyDEns: A python framework for solving differential equations with neural networks.
arXiv 2019, arXiv:1909.11544.

16. Chen, F.; Sondak, D.; Protopapas, P.; Mattheakis, M.; Liu, S.; Agarwal, D.; Di Giovanni, M. NeuroDiffEq: A Python Package for
Solving Differential Equations with Neural Networks. JOSS 2020, 5, 1931. [CrossRef]

17. Zubov, K.; McCarthy, Z.; Ma, Y.; Calisto, F.; Pagliarino, V.; Azeglio, S.; Bottero, L.; Luján, E.; Sulzer, V.; Bharambe, A.; et al.
NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations. arXiv 2021, arXiv:2107.09443.

18. Xu, K.; Darve, E. ADCME: Learning Spatially-Varying Physical Fields Using Deep Neural Networks. arXiv 2020, arXiv:2011.11955.
19. Rudy, S.; Alla, A.; Brunton, S.L.; Kutz, J.N. Data-Driven Identification of Parametric Partial Differential Equations. SIAM J. Appl.

Dyn. Syst. 2019, 18, 643–660. [CrossRef]

http://doi.org/10.3390/en14144235
http://doi.org/10.3390/en15176329
http://doi.org/10.1016/j.compag.2021.106055
http://doi.org/10.1016/j.envsoft.2021.105274
http://doi.org/10.1109/72.712178
http://www.ncbi.nlm.nih.gov/pubmed/18255782
http://doi.org/10.1038/s42254-021-00314-5
http://doi.org/10.1115/1.4050542
http://doi.org/10.1007/s10409-021-01148-1
http://doi.org/10.1016/j.cma.2021.113741
http://doi.org/10.13182/T126-38405
http://doi.org/10.1137/19M1274067
http://doi.org/10.1016/j.jcp.2018.08.029
http://doi.org/10.21105/joss.01931
http://doi.org/10.1137/18M1191944

Energies 2022, 15, 7697 22 of 22

20. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving
Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]

21. Han, J.; Jentzen, A.; Weinan, E. Solving High-Dimensional Partial Differential Equations Using Deep Learning. Proc. Natl. Acad.
Sci. USA 2018, 115, 8505–8510. [CrossRef]

22. Wiering, M.; van Otterlo, M. (Eds.) Reinforcement Learning. In Adaptation, Learning, and Optimization; Springer: Berlin/Heidelberg,
Germany, 2012; Volume 12, ISBN 9783642276446.

23. Ji, W.; Qiu, W.; Shi, Z.; Pan, S.; Deng, S. Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics. J. Phys. Chem.
A 2021, 125, 8098–8106. [CrossRef] [PubMed]

24. Schiassi, E.; De Florio, M.; Ganapol, B.D.; Picca, P.; Furfaro, R. Physics-Informed Neural Networks for the Point Kinetics Equations
for Nuclear Reactor Dynamics. Ann. Nucl. Energy 2022, 167, 108833. [CrossRef]

25. Akins, A.; Wu, X. Using Physics-Informed Neural Networks to solve a System of Coupled Nonlinear ODEs for a Reactivity
Insertion Accident. In Proceedings of the 2022 Physics of Reactors, Pittsburgh, PA, USA, 15–20 May 2022.

26. Markidis, S. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers? Front. Big Data
2021, 4, 669097. [CrossRef]

27. Heifetz, A.; Ritter, L.R.; Olmstead, W.E.; Volpert, V.A. A numerical analysis of initiation of polymerization waves. Math. Comput.
Model. 2005, 41, 271–285. [CrossRef]

28. Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic Differentiation in Machine Learning: A Survey. arXiv 2015,
arXiv:1502.05767.

29. Lagari, P.L.; Tsoukalas, L.H.; Safarkhani, S.; Lagaris, I.E. Systematic Construction of Neural Forms for Solving Partial Differential
Equations Inside Rectangular Domains, Subject to Initial, Boundary and Interface Conditions. Int. J. Artif. Intell. Tools 2020, 29,
2050009. [CrossRef]

30. Wang, S.; Teng, Y.; Perdikaris, P. Understanding and Mitigating Gradient Flow Pathologies in Physics-Informed Neural Networks.
SIAM J. Sci. Comput. 2021, 43, A3055–A3081. [CrossRef]

31. Margossian, C.C. A Review of Automatic Differentiation and Its Efficient Implementation. WIREs Data Min. Knowl. Discov. 2019,
9, e1305. [CrossRef]

32. Eckle, K.; Schmidt-Hieber, J. A Comparison of Deep Networks with ReLU Activation Function and Linear Spline-Type Methods.
Neural Netw. 2019, 110, 232–242. [CrossRef]

33. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
34. Blum, A.; Hopcroft, J.E.; Kannan, R. Foundations of Data Science, 1st ed.; Cambridge University Press: New York, NY, USA, 2020;

ISBN 9781108755528.
35. Tsoukalas, L.H.; Uhrig, R.E. Fuzzy and Neural Approaches in Engineering. In Adaptive and Learning Systems for Signal Processing,

Communications, and Control; Wiley: New York, NY, USA, 1997; ISBN 9780471160038.
36. Lewis, E.E. Fundamentals of Nuclear Reactor Physics; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2008; ISBN

9780123706317.
37. Townsend, C.H. License Power Capacity of the PUR-1 Research Reactor. Master’s Thesis, Purdue University, West Lafayette, IN,

USA, 2018.
38. Pantopoulou, S. Cybersecurity in the PUR-1 Nuclear Reactor. Master’s Thesis, Purdue University, West Lafayette, IN, USA, 2021.
39. Baudron, A.-M.; Lautard, J.-J.; Maday, Y.; Riahi, M.K.; Salomon, J. Parareal in Time 3D Numerical Solver for the LWR Benchmark

Neutron Diffusion Transient Model. J. Comput. Phys. 2014, 279, 67–79. [CrossRef]
40. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Washington, DC, USA, 7–13 December
2015; pp. 1026–1034.

http://doi.org/10.1016/j.jcp.2018.10.045
http://doi.org/10.1073/pnas.1718942115
http://doi.org/10.1021/acs.jpca.1c05102
http://www.ncbi.nlm.nih.gov/pubmed/34463510
http://doi.org/10.1016/j.anucene.2021.108833
http://doi.org/10.3389/fdata.2021.669097
http://doi.org/10.1016/j.mcm.2003.11.007
http://doi.org/10.1142/S0218213020500098
http://doi.org/10.1137/20M1318043
http://doi.org/10.1002/widm.1305
http://doi.org/10.1016/j.neunet.2018.11.005
http://doi.org/10.1016/j.jcp.2014.08.037

	Introduction
	Digital Twin for Nuclear Reactor Monitoring
	Review of Prior Work on PINNs

	Theory of Physics-Informed Neural Network (PINN)
	Surrogate Network Implementation with Fully Connected Neural Networks (FNNs)
	Automatic Differentiation for Residual Network
	Enforcement of Initial and Boundary Conditions
	Loss Function and Metrics for Evaluation
	Activation Function
	Optimization
	Initialization

	Point Kinetics Equations (PKEs)
	Purdue University Reactor Number One (PUR-1)
	PINN Solution of the PKE Model of PUR-1
	PINN Model Development and Training
	PINN Solution of PKEs

	Conclusions
	References

