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Abstract: A digital twin (DT) for nuclear reactor monitoring can be implemented using either a
differential equations-based physics model or a data-driven machine learning model. The challenge
of a physics-model-based DT consists of achieving sufficient model fidelity to represent a complex
experimental system, whereas the challenge of a data-driven DT consists of extensive training require-
ments and a potential lack of predictive ability. We investigate the performance of a hybrid approach,
which is based on physics-informed neural networks (PINNs) that encode fundamental physical
laws into the loss function of the neural network. We develop a PINN model to solve the point
kinetic equations (PKEs), which are time-dependent, stiff, nonlinear, ordinary differential equations
that constitute a nuclear reactor reduced-order model under the approximation of ignoring spatial
dependence of the neutron flux. The PINN model solution of PKEs is developed to monitor the
start-up transient of Purdue University Reactor Number One (PUR-1) using experimental parameters
for the reactivity feedback schedule and the neutron source. The results demonstrate strong agree-
ment between the PINN solution and finite difference numerical solution of PKEs. We investigate
PINNs performance in both data interpolation and extrapolation. For the test cases considered, the
extrapolation errors are comparable to those of interpolation predictions. Extrapolation accuracy
decreases with increasing time interval.

Keywords: physics-informed neural networks; point kinetics equations; nuclear reactor; stiff ordinary
differential equations; digital twin; nuclear reactor monitoring

1. Introduction
1.1. Digital Twin for Nuclear Reactor Monitoring

Advances in nuclear reactor performance efficiency can be accomplished using state-
of-the-art monitoring capabilities. The concept of a Digital Twin (DT) has been proposed
recently for process monitoring, including nuclear reactor monitoring [1]. The DT consists
of a computational model that tracks the history, and continuously adjusts the model to
detect anomalies, such as degradation and insipient signs of failure of components, ma-
terials, and sensors. Proposed approaches for the implementation of a DT involve either
a physics-based differential equations model or on data-driven machine learning (ML)
model. The challenges of using a model-based DT for nuclear reactor monitoring consist of
accounting for a-priori unknown loss terms in the complex experimental system to achieve
sufficiently close agreement between the model and observations. The data-driven ML
model captures the information about the reactor system from the experimental data used
for model training. However, unlike the model-based DT, which contains equations de-
scribing time evolution of the system, the ML-based DT has limited extrapolation capability
and, in principle, requires an arbitrarily large amount of training data [2,3]. Indeed, ML
models follow an empirical, data-driven approach in making predictions based on large
collections of historical data in order to achieve high performance. Although ML models
are computationally fast in making predictions and robust with respect to noisy data, they
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are frequently difficult to both interpret and to develop from data [2]. Furthermore, the
data commonly need to be accompanied by labels that are not easily available. In addition,
though ML models can be versatile, to a varying extent, in the resolution of input data, their
usual requirement of large volumes of training data hinders model development. On the
other hand, physics-based models can alleviate the constraint of the big data [4], as the DT
training no longer relies solely on the behavior of input–output examples. Moreover, DTs
may have to be constructed for the system where there is scarce data availability. There exist
methods, such as few-shot learning [3], which offer the potential of learning from small
datasets. However, in few-short learning, the lack of information content in short temporal
space is usually compensated with another dimension of the data (e.g., the number of
sensors). This imposes additional requirements on data collection.

Recently, a hybrid approach has emerged, consisting of physics-informed neural
networks (PINN) designed to solve differential equations. The PINNs address the need for
integrating governing physical equations of the process into ML models, which establishes
theoretical constraints and biases to supplement measurement data. The integration of
governing physical equations into ML models provides a solution to several limitations
of purely data-driven machine learning (ML) models. First, in the case of data scarcity,
most ML approaches are unable to effectively work, because there is a minimal required
data volume to train the model. In the case of PINNs, the model can be trained without
big data availability. Second, in the case of big data availability, ML approaches face
severe challenges to extract interpretable knowledge. Furthermore, using purely data-
driven models can lead to overfitting of the observations. As a result, this may introduce
physically inconsistent predictions due to extrapolation or biases, and eventually result in
low predictability. PINN performance is not directly related to the volume of data, rather
the physics underlying the behavior of the system.

The governing equations for modeling a nuclear reactor are Boltzmann neutron trans-
port and Bateman partial differential equations (PDEs). The numerical solution of these
PDEs for a typical reactor geometry requires extensive computational resources. A reduced-
order model consisting of a system of point kinetic equations (PKEs) has been developed
for the case when the spatial dependence of the neutron flux can be ignored, which is
typically valid for small reactors. In this paper, we investigate the application of PINNs
to the numerical solution of PKEs, which models the Purdue University Reactor Number
One (PUR-1) small research reactor. We develop the PINN solution of PKEs using the
experimental parameters of PUR-1, such as values of the reactivity schedule and neutron
source. The PKE case investigated in this paper involves time-dependent stiff nonlinear
ODEs, where the range of values is approximately eight orders of magnitude, during a
time interval of several hundred seconds. The results of this paper demonstrate strong
agreement between the PINN solution and the numerical solution of PKEs using the finite
difference solver.

1.2. Review of Prior Work on PINNs

The original idea of PINNs was introduced by Lagaris et al. [5] in 1998 and later
established by Raissi et al. [6,7] in 2017 for solving two main classes of problems: the
data-driven solution and data-driven discovery of differential equations. The formulation
of PINNs was performed to tackle problems involving PDEs [8]. In the existing literature,
there are many studies of PINN implementation for the solution of differential equations
arising in heat transfer [9], fluid mechanics [10], solid mechanics [11], and reactor kinetics
problems [12]. In addition, recent interest in the development of PINNs has resulted in
the development of various libraries, such as DeepXDE [13], DGM [14], and PyDEns [15],
that are built on top of TensorFlow, as well as NeuroDiffEq [16], which is built on top
of Pytorch. In addition, two more actively developed libraries are NeuralPDE [17] and
ADCME [18], which are written in Julia instead of Python. Specific examples of applica-
tions of the PINNs framework include the solution of Navier–Stokes, Allen–Cahn, and
Schrodinger equations [19,20]. Additionally, PINNs have been used for the solution of
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high-dimensional stochastic PDEs [21], which suggested that PINNs can be considered as a
class of Reinforcement Learning [22].

PINNs have also been investigated for the solution of ordinary differential equations
(ODEs), where stiffness of the ODE system was the main challenge. In [23], PINNs were
applied in stiff chemical kinetics equations. A variation of PINN, called stiff-PINN, was
proposed, which showed better results than regular PINNs. Stiff-PINNs managed to
accurately predict the solutions during the entire computational domain in two different
cases, the ROBER and POLLU problems. On the other hand, regular PINNs seemed unable
to predict the solutions during most time intervals in the computational domain. This
failure was related to the stiffness of the differential equations.

Prior application of PINNs to the solution of ODEs includes the solution of PKEs. In
previous work on PINNs, most references considered simplified PKEs. There is no literature
investigating the PINN solution for six-group delayed neutron density concentration
with the temperature feedback and neutron source, which is necessary for actual reactor
monitoring. A variation of PINN, named X-TFC, was proposed in [24] to solve the PKEs.
Although some of the test cases include the six-group delayed neutron precursors, density
concentration and the temperature feedback reactivity, a neutron source term was not
included in the model. In addition, one more PINN implementation in the reactor kinetics
problem was studied in [25], with PKEs that include one-group delayed neutron precursors
density concentration, temperature reactivity feedback, and no neutron source. The results
were promising, but the computational time was deemed to be excessive for use in real-
time applications. Another investigation of PINNs performance was reported in [12], with
parameters chosen according to the real microreactor. The preliminary results showed
performance with relatively small prediction errors and relatively fast runtime.

This paper is organized as follows. Section 2 describes the theory of PINNs. Section 3
introduces the nuclear reactor mathematical modelling framework, starting from the Boltz-
mann Neutron Transport Equation and Bateman Equation, followed by the PKEs reduced
order model. Section 4 describes PUR-1 and discusses the details of experimental data
acquisition. Section 5 provides a solution to the PKEs model of PUR-1 startup transient
using the methodology of PINNs, whereas conclusions are discussed in Section 6.

2. Theory of Physics-Informed Neural Network (PINN)

PINNs are a new class of deep learning (DL) networks that are capable of encoding
differential equations (DE) that govern a data set [26]. The difference between PINNs
and traditional DE solvers [27] is that the former computes differential operators using
automatic differentiation [28]. PINNs can be applied to both supervised and unsupervised
learning tasks [29]. The PINN training procedure requires substantially less data than most
DL methods, and the data do not need to be labeled. The challenges of PINN training
consist of satisfying competing objectives: learning the DE solution within the domain,
and satisfying the initial and boundary conditions (IC and BC). This leads to unbalanced
gradients during the network training via gradient-based methods, and often causes PINNs
to have difficulties with accurately approximating the DE solution [30]. This is a known
challenge for gradient-based methods, which get stuck in limit cycles if several competing
goals are present.

PINNs take as input a point in the computational domain (collocation point), and
minimize a residual function (training step). The output is an approximate solution of
the differential equations. The key advancement of PINN is the integration of a residual
network that contains the governing equations. This network, given the output of a DL
network (surrogate), calculates a residual value (loss function). Figure 1 shows a schematic
of PINN, where the surrogate model consists of a fully connected neural network with
time and space coordinates (t, x) as inputs, and is used to construct û(x, t), which is an
approximation to the numerical solution, u(x, t). The residuals are calculated next to
obtain the loss, L, which is used for optimization of the approximation. The residual loss
comprises the differential equation’s residual L f , the initial condition’s residual Li, and the
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boundary condition’s residual Lb. The loss functions are defined in Equations (4)–(7) in
Section 2.4.
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Figure 1. Schematic of a physics-informed neural network (PINN). A fully connected neural network
with time and space inputs (t, x) is constructed to approximate the solutions of û(t, x), which is then
used to calculate the residual loss, L. The residual loss comprises the differential equation’s residual
L f , the initial condition’s residual Li, and the boundary condition’s residual Lb. The derivatives of
û are computed by automatic differentiation. The parameters of the fully connected network are
trained using gradient-descent methods based on the back-propagation process.

2.1. Surrogate Network Implementation with Fully Connected Neural Networks (FNNs)

In this work, we implement the surrogate network of the PINN using fully connected
neural networks (FNNs). In general, a wide variety of neural networks have been devel-
oped, including the feed-forward neural network (FNN), the convolutional neural network
(CNN), and the recurrent neural network (RNN). In this paper, we chose to use FNN,
because it has been shown in the literature [13,26] to be efficient for the solution of PDE
problems. Additionally, due to the architecture simplicity, FNN is easier to train compared
to deep networks.

An FNN is composed of at least two layers. By convention, all networks that have at
least two layers (L ≥ 2) are called deep. In general, FNN is a L-layer neural network, with
(L− 1) hidden layers. An FNN is denoted by N L(x) : Rdin → Rdout , where din and dout
are the dimensions of the input and output, respectively. The number of neurons in the
`-th layer is denoted by N`. The number of neurons in the input and the output layers are
denoted by N0 = din and NL = dout, respectively.

We define a weight matrix, W`; a bias, b`; and an activation function, σ, in each layer,
`. The weights of this network are trainable. The weights and biases are the neural network
parameters, θ. The activation function can be chosen among other choices as the logistic
sigmoid, the hyperbolic tangent (tanh), or the rectified linear unit (ReLU). An L-layer DNN
is defined as:

Input Layer : N 0(x) = x ∈ Rdin , (1)

Hidden Layer : N `(x) = σ
(

W`·N `−1(x) + b`
)
∈ RN` , for 1 ≤ ` ≤ L− 1 (2)

Output Layer : N L(x) = WL·N L−1(x) + bL ∈ Rdout , (3)

The FNN architecture for the implementation of the PINN surrogate model is depicted
in Figure 2, which is an expanded version of the panel displaying the surrogate network in
Figure 1. The FNN output is the predicted approximation of the DE solution, û(t, x).
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2.2. Automatic Differentiation for Residual Network

PINN training involves the implementation of a framework for computing deriva-
tives. Usually, the derivatives are written in the form of Jacobians or Hessian matrices. In
general, computation methods include numerical differentiation, symbolic differentiation,
and automatic differentiation (AD; also called algorithmic differentiation). Numerical
finite difference and symbolic differentiation could result in reduced accuracy for complex
functions [31]. AD automatically computes derivatives using the chain rule for the accumu-
lation of values, instead of relying on derivative expressions. Given that neural networks
represent a compositional function, AD applies the chain rule repeatedly to compute the
derivatives. In addition, AD uses the technique of backpropagation, which aids in the fine
tuning of a neural network’s weights, using the error obtained in the previous iteration.
Choosing appropriate weights results in reduced errors, and increases the generalization
of the model. The derivative of the objective function with respect to any weight or bias,
which is backpropagated in the network, provides detailed insights into how the changes of
weights and biases affect the overall behavior of the network. AD evaluates the derivatives
in two steps. First, the forward pass calculates the values of all variables. Second, the
backward pass computes the derivatives. Therefore, AD needs only one forward pass
and one backward pass to compute all the derivatives, regardless of the input’s dimen-
sion. On the other hand, using finite differences requires at least din + 1 forward passes to
compute all the derivatives. Hence, AD performance is more efficient for problems with
high-dimensional input.

2.3. Enforcement of Initial and Boundary Conditions

There are two steps involved in encoding the ICs and BCs into a PINN. First, each IC
and/or BC can be treated independently, with each appearing one in the loss function as
a separate term. This type of enforcement is known as soft constraint, where the goal is
to minimize each term in the loss function at the same time. PINNs use the formulation
û(x) = N(x; θ). This method is considered simpler to implement, and it is suitable for
high-dimensional differential equations and complex geometries.

Second, it is possible to transform the network output to some function, such that the
IC and/or BC are satisfied by the design of the neural network. For instance, PINNs can
use û(x) = u0 + x·N(x; θ) to always satisfy the IC u(x = 0) = u0. As a result, the total loss
function includes only the losses due to the DEs. This method of enforcement is known
as hard constraint, which ensures that the IC or BC are exactly satisfied. This reduces the
complexity of the PINN training.

2.4. Loss Function and Metrics for Evaluation

Loss function measures the discrepancy between the neural network, û, and the
constraints imposed by the DEs and their respective IC and/or BC. We define the loss
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function as the weighted summation of the L2 norm of residuals for the DE and IC/BC, in
the form of a Mean Squared Error (MSE), as:

L(θ; T) = w fL f

(
θ; Tf

)
+ wiLi(θ; Ti) + wbLb(θ; Tb), (4)

where w f , wi, and wb are the scalar weights for the DE, IC, and BC, respectively. The scalar
weights are specified before training, and they are used to rank the importance of each loss
term. The variables Tf , Ti, and Tb are the training points inside the domain, at the IC and
on the boundary. These sets of points are usually referred to as the sets of residual points.
The terms L f , Li, and Lb are the MSE of the residuals for the DE, IC, and BC, respectively.
These are computed as:

L f

(
θ; Tf

)
=

1∣∣∣Tf

∣∣∣ ∑
xεTf

∣∣∣∣∣∣∣∣ f(x;
dû
dx

)
|
∣∣∣∣2
2

(5)

Li(θ; Ti) =
1
|Ti| ∑

xεTi

||I(û, x)||22 (6)

Lb(θ; Tb) =
1
|Tb| ∑

xεTb

||B(û, x)||22, (7)

The derivatives in the loss function terms are calculated with automatic differentiation.
To measure the initial and final performances of the trained model, two metrics are

used. The first metric is the value of the loss function in Equation (4). The second metric
is the relative error, L2, with respect to a reference solution, u(x). The reference solution,
u(x), is usually obtained from a high-fidelity numerical solution of the DE. The relative L2
error is defined as:

L2(u(x), û(x)) =
||u(x)− û (x)||2
||u (x)||2

, (8)

where ||·|| 2 denotes the standard L2 norm. It is important to note that the error in the loss
function, L, measures the degree to which the governing equation is satisfied, not the error
of the solution, û, with respect to the reference solution, u.

2.5. Activation Function

Activation function is used to map an input, x, to an output, y. In general, different
activation functions may be used in different parts of the FNN. The activation function in
the hidden layer controls how well the network model learns the training dataset, whereas
the activation function in the output layer defines the type of predictions the model can
make. Some of the most popular activation functions used in ML are the sigmoid, the
hyperbolic tangent (tanh), and the Rectified Linear Unit (ReLU).

The ReLU activation function, defined as y = max{0, x}, has the advantage of com-
putational speed, as compared to those of sigmoid or tanh units. ReLU is less susceptible
to vanishing gradients that affect deep model training. Besides the accelerated training pro-
cess, ReLU avoids saturation with large positive numbers [32]. In addition, the nonlinearity
allows to conserve and learn patterns in the data. However, for regression applications, the
ReLU function suffers from diminishing accuracy for second and higher-order derivatives.

Sigmoid activation function, also called the logistic sigmoid, takes any real value as the
input, and produces output values in the range of 0 to 1. The sigmoid activation function is
defined as σ(x) = 1/(1 + e−x) and has an S-shaped graph. The larger the input, the closer
the output value will be to 1, whereas the smaller the input, the closer the output will be to
0. Additionally, in contrast to the ReLU activation function, the sigmoid activation function
can overcome the diminishing higher-order derivatives problem.

Hyperbolic tangent (tanh) activation function is very similar to the sigmoid activation
function. The tanh activation function is defined as tanh(x) = (ex − e−x)/(ex + e−x) and
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has an S-shaped graph. Tanh takes any real value as the input, and produces output values
in the range of −1 to 1. Similar to sigmoid activation function, tanh can overcome the
problems related to diminishing higher-order derivatives. In general, both sigmoid and tanh
activation functions are commonly used for classification problems due to their sensitivity
around a central point, and their ability to categorize elements into different classes.

2.6. Optimization

An optimization algorithm accelerates the training procedure by using an algorithm
to incrementally change the network weights to minimize a loss function. This is usually
accomplished by using gradient-based optimizers, which compute the gradients of the
loss functions with respect to all weights and biases. The gradients are computed in the
direction from the output to the input, by applying the chain rule layer-by-layer. The
backward flow of the gradients is the reason for naming the process as backward pass or
backpropagation. In general, there are two optimizers that are used most frequently, the
Adam optimizer and the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
optimizer.

The Adam (acronym of “adaptive moment estimation”) optimization algorithm is an
extension to the stochastic gradient descent. The Adam algorithm updates the network
weights iteratively during training by performing two operations. The first, called the
momentum, calculates the exponentially weighed average of the gradients [33]. The
second, called root mean square propagation (RMSP), calculates the exponential moving
average. By using averages, the algorithm converges faster towards the minima. This is
accomplished through minimizing oscillations when approaching the global minimum,
while taking large enough steps to escape from the local minima.

The L-BFGS optimization algorithm is a quasi-Newton method that approximates the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using less computer memory. L-BFGS
uses an estimate of the inverse Hessian matrix, H−1, to steer its search through parameter
space, and stores only a few vectors that represent the approximation implicitly. Because
of linear memory scaling, the L-BFGS method is particularly well suited for optimization
problems with many variables.

2.7. Initialization

Optimization algorithms require a starting set of weight values with which to begin
the optimization process. The selection of initial values could impact convergence of the
optimization algorithm, with incorrect selection possibly resulting in complete convergence
failure [34,35]. DNNs without proper weight initialization may suffer from vanishing or
exploding gradients, which happens when the signal transmitted from layer-to-layer stops
flowing or becomes saturated. To prevent the occurrence of such problems, the variance
of the outputs of each layer should be equal to the variance of its inputs. Accordingly, the
variance of the gradients should be equal before and after flowing through a layer during
backpropagation. Two of most frequently used initialization techniques are the Glorot (also
known as Xavier) initialization and the Kaiming (also known as He) initialization.

The initialization scheme named after Xavier Glorot initializes the weights of the
neural network such that the variance of the activation functions is the same across each
layer. As a result, constant variance leads to smooth gradient updates and overcomes the
problem of exploding or vanishing gradients. Biases are initialized to zero, whereas the
weights are initialized randomly at each layer as: Wij = U

[
−1/
√

n, 1/
√

n
]
, where U is a

uniform probability distribution, and n is the size of the previous layer.
The Kaiming He initialization scheme is similar to Glorot initialization. In this method,

the weights in each layer are initialized considering the values of the previous layer, thus
achieving a global minimum of the cost function faster and more efficiently. The weights
are random, but differ in range depending on the values of the previous layer of neurons.
Biases are initialized to zero, whereas the weights are initialized randomly at each layer
as: Wij = G

[
0,
√

2/
√

n
]
, where G is a Gaussian probability distribution and, n is the size
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of the previous layer. He Normal initialization is commonly used in conjunction with the
ReLU activation function.

3. Point Kinetics Equations (PKEs)

The PKEs and delayed neutron precursor concentrations are reduced-order models of
the Neutron Transport Equation and the Bateman equation, respectively. The point kinetics
are derived under the approximation that the shape of the neutron flux and the neutron
density distribution are ignored, thus assuming that the reactor acts as a point. The delayed
neutron precursor concentrations are described by a set of differential equations that arise
from simplifications of the Bateman equation. PKEs are a system of coupled nonlinear
differential equations, which describe the kinetics of reactor variables, such as neutron
density concentration, the delayed neutron precursor density concentration, and reactivity.
Reactivity, ρ, defined as the deviation of an effective multiplication factor, ke f f , from unity,
is a measure of the state of the reactor relative to the critical state [35]. When ρ < 0, the
reactor is subcritical; when ρ = 0, the reactor is critical; and when ρ > 0, the reactor is
supercritical. Reactivity is a dimensionless number, but it is commonly expressed in per
cent mile or pcm units.

Changing the reactivity provides the means to control the reactor power. The solution
of PKEs provides information on the nuclear reactor power level and the power fluctuation
during the reactivity transient. The PKEs for several groups of delayed neutrons are given
as [36]:

dn(t)
dt

= S0 +
ρ(t, T)− β

Λ
·n(t) + ∑

i
λi·ci(t), (9)

dci(t)
dt

=
βi
Λ
·n(t)− λi·ci(t), (10)

where n represents the neutron density concentration; ci is the delayed neutron precursor
density concentration for the group, i; ρ is the reactivity feedback, which is a function of
temperature, T; βi is the delayed neutron fraction for each group; β = ∑ βi is the sum of
the delayed neutron fractions. In addition, Λ is the mean neutron lifetime in the reactor core;
λi is the mean neutron precursor lifetime for each group, i; and S0 is the time-independent
neutron source. At time t = 0, the reactor is in steady state, and we use the following initial
conditions [36]:

n(0) = n0, (11)

ci(0) = ci0 =
βi

λι·Λ
·n0, (12)

where the values of βi, λi, and Λ are suggested by the experimental data. In most systems,
βi

λι ·Λ � 1, and, therefore, under steady state conditions, we obtain ci � n [36]. Because of
the stiffness of the ODE system, the numerical solution of the PKEs requires using relatively
small time steps in the computational domain to achieve an accurate solution.

4. Purdue University Reactor Number One (PUR-1)

In this work, we develop a PINN model to monitor the start-up transient of Purdue
University Reactor Number One. PUR-1 is an all-digital 10 kWth material test reactor
(MTR)—pool type, with flat-plate-type fuel by BWXT Technologies [37,38]. The fuel mate-
rial consists of high-essay, low-enriched uranium (19.75% 235U) in the form of U3Si2—Al.
There are 16 total assemblies, where each standard assembly has up to 14 fuel elements.
The core is submerged into a 5.2 m deep water pool, where water is used for both neutron
moderation and fuel heat removal. The average thermal neutron flux in the fuel region
is 1.2× 1010 n/cm2·s, with the maximum thermal flux reaching the value of 2.1× 1010

n/cm2·s. The reactor power is controlled with three control rods. Two of them are borated
stainless steel shim safety rods (SS1 and SS2), and the third one is a 304 stainless steel
regulating rod (RR). A schematic drawing of PUR-1 is shown in Figure 3. An inset panel in
Figure 3 shows the relative locations of the fuel elements and control rods.
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To obtain the solution of PKEs, one has to have an auxiliary equation describing the
evolution of reactivity in time. In PUR-1 operation, reactivity is changed by the movement
of control rods. In principle, only one control rod (SS1 or SS2) is sufficient to shut down the
reactor completely. When the reactor is shut down, the control rods are inserted into the
reactor core, and the reactivity has a large negative value. During PUR-1 startup, control
rods are slowly withdrawn from the core, which gradually increases reactivity until the
reactor becomes critical. The operating speed of SS1 and SS2 is 11 cm/min, whereas the
speed of RR is 45 cm/min. The typical startup time for PUR-1 is approximately 4 min. In
general, reactivity is a function of temperature. However, because the temperature of the
PUR-1 pool remains close to room temperature value during startup and normal operation,
the dependence of reactivity on temperature is negligible.

From PUR-1 benchmarks, Λ = 8.13·10−5 s and S0 = 107 n/cm2·s. The values of
PUR-1 parameters βi and λi for six groups are listed in Table 1. We chose the value of
n0 = 7× 104 n/cm2·s.

Table 1. Parameters of PUR-1.

Variable Value (s)

Term 1 2 3 4 5 6
βi 0.000213 0.001413 0.001264 0.002548 0.000742 0.000271
λi 0.01244 0.0305 0.1114 0.3013 1.1361 3.013

An experiment was performed to obtain time-dependent values of reactivity during
the start-up process of PUR-1. We used the SS2 control rod only because of its location near
the edge of the core, as compared to location of SS1. At the start of the experiment, the SS1
and RR control rods were fully withdrawn, whereas the SS2 was fully inserted into the
reactor core. Then, the SS2 control rod was withdrawn until criticality was reached. We list
the data acquired from the experiment along with reactivity estimations in Table 2.
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Table 2. Reactivity values during the start-up of PUR-1 by withdrawing the SS2 control rod.

SS2 (cm) Reactivity (pcm) Uncertainty (pcm)

0 −1168.496 97
10 −983.580 74
20 −870.513 80
30 −431.857 78
40 −31.009 90

The first column of Table 2 lists the location of SS2 relative to the core measured at
selected points. When the SS2 control rod is withdrawn 40 cm out of the core, the reactor is
critical. The second column lists the estimated reactivity values, which are calculated using
PUR-1 benchmarks for the Inhour equation. The third column of Table 2 lists the uncertainty
values of the reactivity. The time needed to complete the start-up of PUR-1 was measured
to be 3 min and 37 s or 217 s. This is consistent with the SS2 movement speed of 11 cm/min
or 4.4 in/min. It should be noted that the reactivity insertion of 10 pcm is considered a very
small value in practice, whereas the reactivity insertion of the order of 1 pcm is practically
unrealizable in commercial light water reactors (LWRs). The mean reactivity uncertainty
for all five reactivity insertion steps is 83.8 pcm. This can be considered a relatively small
number when compared to the first three cases of reactivity insertion, which were measured
with an uncertainty lower than 10%. The last two reactivity insertion steps, at locations
30 cm and 40 cm, were measured with larger reactivity uncertainty values, which could
hinder the validity of the reactivity model. However, the calculated results are in close
agreement with PUR-1 validation data, which include the reactor period and reactor power
schedules. Therefore, it is safe to conclude that the reactivity uncertainty values can be
neglected without affecting the reactivity model accuracy.

The solution of PKEs requires a continuous function of reactivity transient [39]. To
obtain ρ(x), we fitted a polynomial curve to the experimental points in Table 2. The graphs
of the interpolated or S-curve (blue) and the polynomial fit (orange) are shown in Figure 4.
The best fit was obtained using the 4th-order polynomial with the correlation:

ρ(x) = −0.0032× x4 + 0.2564× x3 − 5.8336× x2 + 54.353× x− 1168.5, (13)

where ρ(x) is the reactivity, and x is the distance of the SS2 control rod withdrawal from
the core of the reactor.
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The operating speed of the SS2 is v = 11 cm/min. Therefore, to obtain ρ(t), we
substitute x = vt in Equation (13) to arrive at the following equation:

ρ(t) = −0.0032·
(

11
60
× t
)4

+ 0.2564·
(

11
60
× t
)3
− 5.8336·

(
11
60
× t
)2

+ 54.353·
(

11
60
× t
)
− 1168.5, (14)

where t is the time measured in seconds. The reactivity transient in the time interval
t ∈ [0, 217]s is plotted in Figure 5.
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is reached.

To find the reference solution of all seven differential equations in the system of PKEs,
we used the finite difference solver “solve_ivp” (from SciPy Python library) that integrates
a system of ordinary differential equations given an initial value. The “LSODA” integration
method was used, which is an Adams/BDF method with automatic stiffness detection and
switching, based on the Fortran solver from ODEPACK.

5. PINN Solution of the PKE Model of PUR-1
5.1. PINN Model Development and Training

A PINN model was developed for the solution of PKEs with six groups of neutron
precursor density concentrations, using the neutron source value and startup reactivity
transient of PUR-1. Besides the PKEs, the problem contains ICs, which are treated as a
special type of BCs. The loss comprises only the first two terms of Equation (4). The
ICs were encoded into PINN as soft constraints. We compared the performance of PINN
using soft and hard constraints, and no significant difference was found. The loss function
involves 14 different terms, seven of them related to the ODEs, and the other seven related
to their respective ICs.

Figure 6 displays the architecture of the PINN, which consists of two interconnected
networks. The surrogate network takes as input time, t; and provides an approximation of
the PKE solution, the state vector [n(t), c1(t), c2(t), c3(t), c4(t), c5(t), c6(t)]

T . The weights of
the surrogate network are trainable. The residual network takes the approximate solution
from the surrogate network, and calculates the residual that is used as a loss function
to optimize the surrogate network. The residual network includes the governing PKE
equations and the ICs.
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T . The residual network
tests if the solution vector satisfies the PKE governing equations and the ICs.

For fully connected PINN implementation, a six-layer FNN with the ReLU activation
function was developed for the surrogate network. The FNN input layer consists of a single
input, which is a point in the time domain. Every hidden layer consists of 64 neurons. The
output layer consists of seven outputs, which are the neutron density concentration, n, and
the delayed neutron precursor’s density concentration, ci, for six groups. The Kaiming He
method is used to initialize the weights of the FNN, which is the most common initialization
method when using ReLU as the activation function [40]. The surrogate network calculates
the approximate solution to the problem. Then, the residual network encodes the governing
equations (PKEs) and ICs, and calculates the loss function (MSE of the residual), which
must be minimized to optimize the surrogate network.

In our implementation of PINN, the loss function is minimized by using the Adam
optimizer for 65,000 iterations, with a learning rate of λ = 0.001. The training data set
consists of 42 collocation points. Specifically, 30 points were distributed inside the solution
domain, and 12 training points were used for the ICs. The distribution of the collocation
points is drawn from the Sobol sequence. The computational domain for evaluation of the
residuals is the time domain, t ∈ [0, 217]s, which is the start-up period for PUR-1 to reach
criticality. The implementation is performed in the Python environment using the Python
library, DeepXDE [10]. The workflow for solving the PKEs using PINNs in the DeepXDE
framework is shown in Table 3.

Figure 7a shows the loss history of PINN after 65,000 iterations. The training took
approximately 62 s, on a Windows PC with AMD Ryzen 7 5800H with Radeon Graphics,
8-core processor, and 32 GB of RAM. The loss is presented as the summed-up MSE of all
terms for both training (blue) and testing (orange).
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Table 3. Workflow for solving PKEs using PINNs in DeepXDE framework.

Step # Procedure

Step 1 Specify the computational domain using the geometry module.
Step 2 Specify the system of ODEs using the grammar of Tensorflow.
Step 3 Specify the initial conditions using the IC module.

Step 4
Combine the geometry, system of ODEs, and initial conditions together
into data.PDE. Specify the training data and the training distribution, and
set the number of points to be sampled.

Step 5 Construct a feed-forward neural network using the maps module.

Step 6 Define a Model by combining the system of ODEs problem in Step 4 and
the neural network in Step 5.

Step 7
Call Model.compile to set the optimization hyperparameters, such as
optimizer and learning rate. The weights in Equation (4) can be set here by
loss_weights.

Step 8 Call Model.train to train the network from random initialization. The
training behavior can be monitored and modified using callbacks.

Step 9 Call Model.predict to predict the PDE solution at different locations.
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metric is the relative L2 error for the first ODE term.

The MSE of training starts at the value of 1.14× 1012 and decreases to 1.97× 108. It
should be noted that the large absolute value of the loss is not indicative of the ability of
PINN to make correct predictions. The fact that MSE decreased by a factor of 104 indicates
good performance of the PINN. To verify this, a numerical test was performed by reducing
the value of the source term in Equation (9) from the actual value of 107 n/cm2·s to a
hypothetical smaller value of 102 n/cm2·s. With the smaller source term, the magnitudes
of the MSE values for every ODE term were in the range 10−3 to 10−2 at the conclusion of
training, showing the same decrease, by a factor of 104, as in the case of the larger source
term. Therefore, it can be concluded that the scaling of the source term does not affect the
PINN model relative performance. In addition, by observing the pattern of the loss curve,
it can be qualitatively determined that there is no overfitting of the network. Furthermore,
the relative L2 error was calculated to evaluate the performance of the PINN. The error
metric for the neutron density concentration is shown in Figure 7b. The error starts at
the value of 100 and decreases to 1.03× 10−2 after 65,000 iterations. This indicates good
accuracy in predictions with PINN.
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5.2. PINN Solution of PKEs

Using PINN formalism, we solve the system of seven stiff nonlinear ODEs comprising
the PKEs. The results are shown in Figure 8. The left panels, Figure 8a,c,e,g,i,k,m, display
PINN predictions along with reference solutions for the neutron density concentration,
and six groups of delayed neutron precursor density concentrations, respectively. As can
be seen from the figures, PINN predictions closely approach the reference solution for
the entire computational domain, t ∈ [0, 217]s. The stiffness of the PKE system does not
prevent the PINN from capturing the basic dynamics of the system.

The right panels, Figure 8b,d,f,h,j,l,n, display the residual errors of neutron density
concentration and delayed neutron precursor density concentrations for six groups, re-
spectively. In most cases, the residual error is almost zero, especially in the time interval
t ∈ [0, 175]s. This phenomenon is attributed to the weak change of the gradient during that
time period, as compared to the significant change in the gradient occurring in the time
interval t ∈ [150, 217]s. The error is the largest during the time interval t ∈ [175, 217]s.
However, even for this time period, the residual errors remain small relative to the ab-
solute values. For instance, for the neutron density concentration n(t) in Figure 8a,b,
the largest value of the residual error is 6000, or 2.18% of the reference solution value
of 275,000 n/cm2·s. In the graphs of all panels in Figure 8, for each test point, one can
observe a difference of at least two orders of magnitude between the residual error and the
reference solution.
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Figure 8. (a) Solution of neutron density concentration, n(t), in the time interval t ∈ [0, 217]s, along
with PINN prediction. (b) Residual error plot of n(t), which shows the error margin of the predictions.
(c,e,g,i,k,m) Solutions of delayed neutron precursor density concentration of c1(t), c2(t), c3(t), c4(t),
c5(t), and c6(t), respectively, in the time interval t ∈ [0, 217]s, along with PINN prediction. (d,f,h,j,l,n)
Residual error plot of c1(t), c2(t), c3(t), c4(t), c5(t), and c6(t), respectively.

Though the PINN model has shown good performance in interpolation of the data, a
more difficult challenge for all ML models is the extrapolation of the data. Therefore, as
part of this investigation, the extrapolation capability of PINNs was explored by examining
three different cases. In the first case, the model is trained in the time interval t ∈ [0, 212]s,
and the extrapolation is performed in a five-seconds interval, t ∈ [213, 217]s. In the second
case, the model is trained in the time interval of t ∈ [0, 207]s, and the extrapolation is
performed in a 10 s time interval, t ∈ [208, 217]s. In the third case, the model is trained in
the time interval t ∈ [0, 202]s, and the extrapolation is performed in a 15 s time interval,
t ∈ [203, 217]s. The results of the second case are displayed in Figures 9 and 10, whereas
the percentage error findings for the first, second, and third case are presented in Table 4,
Table 5, and Table 6 respectively.
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Figure 10. (a) Solution of neutron density concentration, n(t), in the time interval t ∈ [0, 217]s,
along with PINN prediction. (b) Residual error plot of n(t), which shows the error margin of the
predictions. (c,e,g,i,k,m) Solutions of delayed neutron precursor density concentration of c1(t),
c2(t), c3(t), c4(t), c5(t), and c6(t), respectively, in the time interval t ∈ [0, 217]s, along with PINN
prediction. (d,f,h,j,l,n) Residual error plot of c1(t), c2(t), c3(t), c4(t), c5(t), and c6(t), respectively.
The training data for interpolation are in the time interval t ∈ [0, 207]s, whereas the training data for
extrapolation are in the time interval t ∈ [208, 217]s.

Table 4. Case 1. Percentage error of extrapolation of the training data in time interval t ∈ [0, 211]s
using five testing points in time interval t ∈ [212, 217]s.

Variable Value (%)

Test Point 1 2 3 4 5
n(t) 1.237 1.382 1.468 1.488 1.434
c1(t) 0.237 0.109 0.037 0.196 0.365
c2(t) 0.144 0.443 0.748 1.056 1.360
c3(t) 1.378 1.633 1.871 2.082 2.260
c4(t) 1.067 1.173 1.243 1.268 1.241
c5(t) 1.410 1.490 1.513 1.481 1.383
c6(t) 1.559 1.868 2.118 2.298 2.404

Table 5. Case 2. Percentage error of extrapolation of the training data in time interval t ∈ [0, 207]s
using five testing points in time interval t ∈ [208, 217]s.

Variable Value (%)

Test Point 1 2 3 4 5
n(t) 2.564 1.434 1.954 2.277 2.361
c1(t) 1.190 0.032 0.478 0.994 1.565
c2(t) 1.181 0.167 1.045 1.955 2.877
c3(t) 2.500 1.503 2.456 3.345 4.138
c4(t) 2.755 1.654 2.386 2.986 3.416
c5(t) 2.433 1.197 1.675 1.980 2.072
c6(t) 2.560 1.280 1.683 1.904 1.902
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Table 6. Case 3. Percentage error of extrapolation of the training data in time interval t ∈ [0, 202]s
using five testing points in time interval t ∈ [203, 217]s.

Variable Value (%)

Test Point 1 2 3 4 5
n(t) 1.841 2.630 3.971 5.424 6.747
c1(t) 0.787 0.551 0.436 1.779 3.276
c2(t) 0.256 0.915 2.397 4.249 6.248
c3(t) 1.665 2.473 4.083 5.996 7.963
c4(t) 1.761 2.413 3.824 5.476 7.107
c5(t) 1.645 2.205 3.457 4.891 6.257
c6(t) 2.076 3.014 4.469 6.022 7.452

The model’s architecture remains as described earlier in this Section, having a six-layer
FNN with the ReLU activation function for the surrogate network. The FNN input layer
consists of a single input, whereas the output layer consists of seven outputs. Every hidden
layer consists of 64 neurons. In each case, the loss function is minimized by using the Adam
optimizer for 65,000 iterations, with a learning rate of λ = 0.001. The number of training
data inside the domain consists of 30 collocation points, whereas the distribution of the
collocation points is drawn from the Sobol sequence. The number of testing data inside
the domain consists of 120 points, and they are randomly distributed. The implementation
is performed in the Python environment using the Python library DeepXDE [10]. In the
following, the results of the second case are presented, whereas the error rate percentage of
all three cases are displayed later in different tables.

Figure 9a shows the MSE loss history of PINN after 65,000 iterations. The MSE of
training starts at the value of 1.32·1012 and decreases to 1.04× 108. Similarly, the fact that
MSE decreased by a factor of 104 indicates good performance of the PINN. In addition, the
relative L2 error was calculated to evaluate the performance of the PINN. The error metric
for the neutron density concentration is shown in Figure 9b. The error starts at the value
of 100 and decreases to 1.45× 10−2 after 65,000 iterations. This indicates good accuracy in
predictions with PINN.

The results of the solution of the PKEs are shown in Figure 10. The left panels,
Figure 10a,c,e,g,i,k,m, display PINN predictions along with reference solutions for neutron
density concentration, and six groups of delayed neutron precursor density concentrations,
respectively. As can be seen from the figures, PINN predictions closely approach the
reference solution for both the computational domain of interpolation, t ∈ [0, 207]s, and
extrapolation, t ∈ [208, 217]s. More specifically, in the time interval of t ∈ [208, 217]s, the
predictions seem to experience their lowest accuracy in the final second of the solution,
whereas they maintain high accuracy in the rest time interval, even comparable to the
interpolation case. Similar to before, the stiffness of the PKE system does not prevent the
PINN from capturing the basic dynamics of the system.

The right panels, Figure 10b,d,f,h,j,l,n, display the residual errors of neutron density
concentration and delayed neutron precursor density concentrations for six groups, respec-
tively. The testing points used for interpolation are shown in red, and the testing points
used for extrapolation are shown in gray. In every case, the largest error in extrapolation is
greater than the largest error in interpolation. However, in most cases, the errors in extrap-
olation are comparable to errors in interpolation. Therefore, based on cases considered in
the study, the PINN’s capacity to perform extrapolation is reasonably good compared to
the interpolation capability.

The percentage error of extrapolation predictions for the first, second, and third cases
are presented in Table 4, Table 5, and Table 6, respectively. Case 1 has the lowest prediction
errors. This is to be expected because the extrapolation time interval is the shortest. The
model achieved a percentage error varying from 0.037% to 2.404%. It has to be noted that
the error did not exceed the 0.75% threshold for 8 out of 35 tests. The error remained in the
1–2% range for 27 out of 35 tests, and exceeded the 2% threshold only for 5 out of 35 tests.
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Case 2 errors were in the range of 0.032% to 4.138%. The errors are distributed as: less
than 1% threshold for 4 out of 35 tests, between 1% to 2% for 16 out of 35 tests, between
2–3% for 12 out of 35 tests, and above 3% threshold for 3 out of 35 tests.

Case 3 errors were in the range of 0.256% to 7.963%. The errors are distributed as: less
than 1% threshold for 5 out of 35 tests, between 1% to 2% for 5 out of 35 tests, between
2–3% for 6 out of 35 tests, between 3–4% for 5 out of 35 tests, between 4–5% for 4 out of
35 tests, between 5–6% for 3 out of 35 tests, and above 6% threshold for 7 out of 35 tests.

The extrapolation errors for all three cases are comparable to interpolation errors. The
findings imply that the PINN model extrapolation ability is directly correlated with the
computational interval size. The smaller the size of the forecasting interval, the better the
extrapolation accuracy.

6. Conclusions

This paper presents a new approach for developing a nuclear reactor digital twin
(DT) based on physics-informed neural network (PINN), which uses machine learning
methods to solve governing differential equations. Using PINN is a hybrid approach
that provides alternatives to a purely physics-model-based DT, which has challenges in
modelling complex experimental systems, and a purely data driven machine-learning-
based DT, which relies on training data and has challenges with extrapolation.

In this work, we develop a PINN model for the solution of point kinetic equations
(PKEs), which represent a reduced order model of a nuclear reactor. PKEs consist of a
system of coupled nonlinear stiff ordinary differential equations. The surrogate model of a
PINN is implemented with a feed-forward fully connected network. In training the PINN
model, collocation points are selected from the Sobol Sequence distribution. All differential
operators are implemented using automatic differentiation, which offers a mesh-free and
time-efficient solution. The approximate solutions satisfying both the differential operator
and the initial conditions are obtained via tuning the deep neural network hyperparameters.
This is accomplished during training by minimizing the residuals’ loss function over the
entire computational domain. In particular, the initial conditions are satisfied as soft
constraints by adding a term for each to the loss function. The resulting loss function is
used as the objective for minimization.

The effectiveness of the PINN method has been demonstrated by solving the PKEs
that model the start-up transient of the PUR-1 water pool-type research reactor. The reactor
power in PUR-1 is controlled through the insertion or withdrawal of control rods from the
core. PUR-1 time-dependent reactivity was obtained from measurements during the reactor
start-up transient. The PINN solution was obtained for PKEs with six groups of neutron
precursor density concentrations, using the neutron source value and experimental startup
reactivity transient of PUR-1. The results obtained with PINNs are in close agreement with
solution of PKEs obtained with a conventional numerical integration approach.

As part of this work, we investigated the extrapolation capability of PINNs by con-
sidering several cases of a progressively increasing forecasting time interval. In general,
for the intervals considered, the forecasting error in extrapolation was relatively small, as
compared to interpolation errors. The findings indicate that the PINN model extrapolation
ability is correlated with the computational interval size. The extrapolation accuracy is
higher for the shorter forecasting time interval.

The main advantages of PINNs over the standard numerical methods are that PINNs
do not require the time-consuming construction of elaborate grids, and offer low compu-
tational time, and can, therefore, be applied more efficiently to the solution in irregular
and high-dimensional domains. Fast computations with PINN are particularly beneficial
for real-time reactor operation monitoring. As shown in this work, given a reactivity
schedule and initial values, PINNs execute rapidly on a regular PC, without resorting
to high-performance computing hardware. Future work will consider using PINNs for
monitoring different transients of PUR-1, including real-time monitoring and the detection
of reactor operational anomalies. Whereas this paper serves as an investigation of PINN
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performance in solving ODEs, in the future, we will investigate the development of a
PINN for the solution of auxiliary PDEs for structural health monitoring (heat transfer,
Allen–Cahn, etc.) for a comprehensive reactor digital twin.
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