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Abstract

:

At present, establishing a multidimensional characteristic model of a boiler combustion system plays an important role in realizing its dynamic optimization and real-time control, so as to achieve the purpose of reducing environmental pollution and saving coal resources. However, the complexity of the boiler combustion process makes it difficult to model it using traditional mathematical methods. In this paper, a kind of hyper-parameter self-optimized broad learning system by a sparrow search algorithm is proposed to model the NOx, SO2 emissions concentration and thermal efficiency of a circulation fluidized bed boiler (CFBB). A broad learning system (BLS) is a novel neural network algorithm, which shows good performance in multidimensional feature learning. However, the BLS has several hyper-parameters to be set in a wide range, so that the optimal combination between hyper-parameters is difficult to determine. This paper uses a sparrow search algorithm (SSA) to select the optimal hyper-parameters combination of the broad learning system, namely as SSA-BLS. To verify the effectiveness of SSA-BLS, ten benchmark regression datasets are applied. Experimental results show that SSA-BLS obtains good regression accuracy and model stability. Additionally, the proposed SSA-BLS is applied to model the combustion process parameters of a 330 MW circulating fluidized bed boiler. Experimental results reveal that SSA-BLS can establish the accurate prediction models for thermal efficiency, NOx emission concentration and SO2 emission concentration, separately. Altogether, SSA-BLS is an effective modelling method.
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1. Introduction


Nowadays, the heat and electricity we use are mainly generated through power plants. During the combustion process of a station boiler, large amounts of polluting gases are produced, such as NOx, SO2 and CO2, that cause great harm to the human living environment. Simultaneously, a large amount of coal is consumed. Coal resources are becoming increasingly scarce; the goals of saving energy and emission reduction are imminent. The realization of dynamic multi-objective optimal control of boiler combustion process under variable loads is an effective method to reduce environmental pollution and save coal resources, and is called the boiler combustion optimization problem [1,2]. In order to solve the problem, the first priority is to establish the multi-dimensional feature model of the boiler combustion system. However, the boiler combustion system has complex characteristics with nonlinearity, strong coupling and large hysteresis, making it difficult to be modeled by traditional mathematical mechanistic methods. Zhou et al. have successively applied artificial neural networks or support vector machines (SVM) [3,4] combined with swarm intelligence optimization algorithms to model boiler combustion systems [5,6,7,8,9,10]. For example, ref. [5] combined ANN with genetic algorithms (GA), ref. [7] combined SVM and a meta-genetic algorithm (MGA), and ref. [9] combined SVM and ant colony optimization (ACO) [11]. These research results showed that good prediction results could be obtained via applying artificial neural networks and support vector machines. Li and Ma et al. applied various improved extreme learning machine (ELM) models [12,13,14] to establish prediction models for boiler thermal efficiency, NOx emission concentration or SO2 emission concentration [15,16,17,18,19,20,21]. For example, Li et al. proposed the fast-learning networks (FNN) by connecting the input and output layers of ELM and implemented the fast modeling of boiler combustion systems; Ma et al. proposed an improved online sequential ELM and implemented the real-time modeling of boiler combustion systems. However, it was proven that in traditional ANN and ELM there exists an over-fitting problem when solving small sample data regression problems. In addition, the model computation speed of SVM is slow when solving the large sample data regression problem. This paper firstly uses a newly neural network, called broad learning system [22], to solve the modeling problem of boiler combustion systems.



Broad learning system (BLS), as a new neural network algorithm proposed in 2018, has greater advantages in multi-dimensional feature learning and computing time compared to other deep learning algorithms, such as deep belief network (DBN) [23], deep boltzmann machine (DBM) [24] and convolutional neural network (CNN) [25]. Chen et al. [26] proposed several variants of BLS to solve regression problems, and experimental results showed that BLS variants had better performance than other state-of-the-art methods, such as conventional BLS, ELM and SVM. BLS has been researched and applied in many fields in recent years [27,28,29,30,31,32,33,34]. For example, Shuang and Chen [33] combined fuzzy system with BLS, proposed a new neuro-fuzzy algorithm, and applied it to solve regression and classification problems. Zhao et al. [34] extended BLS using a stream regularization framework and proposed a new algorithm for semi-supervised learning to solve complex data classification problems. However, the hyper-parameters of BLS could seriously affect its model performance. If the hyper-parameters are set too large, BLS encounters an over-fitting problem and spends more computation time. If the hyper-parameters are set too small, the generalization ability of BLS is weakened. BLS has more hyper-parameters, and every hyper-parameter needs to be set in a wide range, so the optimal combination of several hyper-parameters is difficult to determine by using traditional methods. It is of great research value to design a method to optimize the hyper-parameters of BLS to ensure its good model performance. Nacef et al. [35] leverages deep learning and network optimization techniques to solve various network configuration and scheduling problems, enabling fast self-optimization and the lifecycle management of networks, and demonstrating the great role of optimization techniques in saving runtime and reducing computational costs. In addition, swarm intelligence optimization algorithms can provide substantial benefits in reducing computational effort and improving system performance without a priori knowledge of the system parameters [36]. To address the above-mentioned problem, this paper proposes a kind of hyper-parameter self-optimized broad learning system, namely SSA-BLS. The proposed method mainly introduces the optimization mechanism of sparrow search algorithm [37] to determine the optimal hyper-parameter combination of BLS through three different behaviors of the sparrow population during foraging, i.e., sparrows as explorers provide search directions and regions for the optimal hyper-parameter combinations, sparrows as followers search through the guidance of explorers, and sparrows as vigilantes rely on anti-predation strategy to avoid hyper-parameter combinations from falling into local optima. The sparrow search algorithm (SSA) is a new swarm intelligence optimization algorithm proposed in 2020. Compared with particle swarm optimization (PSO) [38,39], gravitational search algorithm (GSA) [40] and grey wolf optimization (GWO) [41], the SSA had better computation efficiency. This paper combines SSA with BLS to automatically adjust the hyper-parameters and obtain the optimal hyper-parameter combination. In SSA-BLS, a mechanism to achieve automatic optimization of hyperparameters with the objective of minimizing the average root-mean-square-error (RMSE) of the testing set after ten-fold cross-validation [42] is proposed in order to obtain better model accuracy and model stability.



In order to verify the effectiveness of SSA-BLS, it was applied to ten benchmark regression datasets. Compared with BLS, RELM [43] and KELM [44,45], SSA-BLS can achieve the best model accuracy and model stability whose hyper-parameters are determined by using the nested cross-validation method [46].



Simultaneously, the proposed SSA-BLS was applied to establish the prediction comprehensive model of thermal efficiency, NOx emission concentration and SO2 emission concentration. Compared with conventional BLS, the proposed SSA-BLS has better model accuracy and stronger stability. The experimental results reveal that the model accuracy can reach 10−2-10−3 by SSA-BLS.



The contributions of this paper are summarized as follows:




	(1)

	
A novel optimized BLS is proposed. SSA is firstly used to optimize the hyper-parameters of BLS, which can determine the optimal hyper-parameter combination.




	(2)

	
The proposed SSA-BLS is used to solve the regression problem of ten benchmark datasets.




	(3)

	
The proposed SSA-BLS and traditional BLS are firstly applied to establish the prediction conventional model of one circulation fluidized bed boiler combustion system.









The structure of this paper is as follows: basic knowledge and related works are given in Section 2; the proposed SSA-BLS is given in Section 3; Section 4 shows the performance evaluation of the SSA-BLS; Section 5 addresses the real-world modelling problem; the conclusion of this paper is in Section 6.




2. Basic Knowledge and Related Works


2.1. Broad Learning System


Broad learning system (BLS), as a novel artificial neural network algorithm, is capable of replacing deep architecture. It adds a dynamic stepwise update mechanism and a sparse self-coding algorithm to the random vector functional-link neural network (RVFLNN) [47,48,49], which greatly improves the model computing efficiency.



As opposed to RVFLN, BLS replaces the input layer with the mapping layer. The mapping layer of BLS is obtained by sparse representation and linear transformation of the input layer data. The augmentation layer is obtained by applying a nonlinear transformation to the activation function mapping layer. BLS connects the mapping layer and the enhancement layer together with the output layer to solve the connection weight of the neural networks. The structure diagram of BLS is shown in Figure 1.



Where   X ∈  R  N × M     is the input data with sample size  N  and dimension  M , and   Y ∈  R  N × 1     is the output data with sample size  N  and dimension 1.



Assuming that the network structure has  n  feature mappings and each feature mapping has  k  feature nodes, the expression of the  i th feature mapping    Z i    is shown in Equation (1).


   Z i  =        ϕ i     x 1   W  i 1   +  β  i 1        ⋯     ϕ i     x N   W  i 1   +  β  i 1          ⋮   ⋱   ⋮       ϕ i     x 1   W  i k   +  β  i k        ⋯     ϕ i     x N   W  i k   +  β  i k           =  ϕ i    X  W  e i   +  β  c i     , i = 1 , 2 , ⋯ , n  



(1)




where    ϕ i    denotes the feature mapping function,    W  i k   ∈  R  M × K     is the connection weight of the  i th group of feature mappings to all input data and    β   c i    ∈  R  1 × K     is the bias of the  i th group of feature mappings, then the expression of all feature mappings    Z n    in the feature node layer is shown in Equation (2).


   Z n  =          ϕ 1    X  W  e 1   +  β  e 1            ϕ 2    X  W  e 2   +  β  e 2          ⋮       ϕ n    X  W  e n   +  β  e n            T  =          Z 1   Z 2  ⋯  Z n          , j = 1 , 2 , … , m  



(2)







Similarly, the expression for the  j th group of enhanced nodes    H j    is shown in Equation (3).


   H j  =        ζ j     Z 1   W  j 1   +  β  j 1        ⋯     ζ j     Z n   W  j 1   +  β  j 1          ⋮   ⋱   ⋮       ζ j     Z 1   W  j l   +  β  j l        ⋯     ζ j     Z n   W  j l   +  β  j l           =  ζ j     Z n   W  h j   +  β  h j     , j = 1 , 2 , ⋯ , m  



(3)




where    ζ j    denotes the activation function,  l  is the number of the  j th group of augmented nodes and    W  h j   ∈  R  k n × l     and    β  h j   ∈  R  1 × l     are the connection weights and biases randomly generated by the system, then the expression of all the feature augmentation    H m    in the augmented node layer is shown in Equation (4).


   H m  =          ζ 1     Z n   W  h 1   +  β  h 1            ζ 2     Z n   W  h 2   +  β  h 2          ⋮       ζ m     Z n   W  h m   +  β  h m            T  =    H 1   H 2  ⋯  H m     



(4)







Then the expression of the final network output   Y ^   is shown in Equation (5).


       Y ^  =    Z 1  , … ,  Z n  ∣ ζ    Z n   W  h 1   +  β  h 1     , … … , ζ    Z n   W  h m   +  β  h m        W m                =    Z 1  , … ,  Z n  ∣  H 1  , … … ,  H m       W m              =    Z n  ∣  H m     W m       



(5)







Then the expression for the final connection weight    W m    is shown in Equation (6).


   W m  =      Z n  ∣  H m     +  Y  



(6)








2.2. Sparrow Search Algorithm


Sparrow search algorithm (SSA) [34] is a novel swarm intelligence optimization algorithm based on the foraging and anti-predatory behaviors of sparrows. Its bionic principle is as follows: sparrows as explorers provide the search direction and region for the population, sparrows as followers search through the guidance of explorers, and sparrows as vigilantes rely on anti-predation strategies to avoid the population from falling into a local optimal solution.



The location update rules for the three types of sparrows are as follows:




	(1)

	
For sparrows as explorers, when the warning value is less than the safety value, it indicates that the sparrow has not found a predator and can perform a wide range of jumping searches, and when its warning value is greater than or equal to the safety value, it indicates that the sparrow has found a predator and immediately moves to other places for searching.




	(2)

	
For the sparrow as a follower, when its fitness value is less than or equal to half of the sparrows, it indicates that the sparrow did not obtain food and needs to move to other places to search, and when its fitness value is greater than half of the sparrows, it indicates that the sparrow can obtain food and will conduct a random search at the current location.




	(3)

	
For the sparrow as vigilant, when its fitness value is not equal to the current best fitness value, it indicates that the sparrow is at the edge of the population and is highly vulnerable to predators, and when its fitness value is equal to the current best fitness value, it indicates that the sparrow is in the middle of the population and needs to move closer to other sparrows to reduce the risk of being predated.









Suppose there are  S  sparrows in a  D -dimensional search space, then the position of the  i th sparrow in the  D -dimensional search space is    X i  =    x  i a   , ⋯ ,  x  i d   , ⋯ ,  x  i D     , i = 1 , 2 , ⋯ , S  , where    x  i d     is the position of the  i th sparrow in the  d -dimension.



Sparrows as explorers generally account for 10–20% of the population, and their position is updated by the expression shown in Equation (7).


   x  i d   i + 1   =        x  i d  t  ⋅ e x p     − i   α T              R 2  <  S T         x  i d  t  + Q L          R 2  ⩾  S T         



(7)




where  t  is the current number of iterations;  T  is the maximum number of iterations;  α  is a uniform random number between     0 ,   1    ;  Q  is a random number obeying the standard normal distribution;  L  is a matrix of size   1 × d   and all elements are 1;    R 2  ∈     0 ,   1     is the warning value;    S T  ∈     0.5 ,   1     is the safety value.



The other sparrows in the population act as followers, and the expression for their position update is shown in Equation (8).


   x  i d   t + 1   =       Q ⋅ e x p     x  w d t  −  x  i d  t     i 2              i >  n 2        x  b d  t + 1   +    x  i d  t  − x  b d  t + 1      A +  ⋅ L         i ⩽  n 2         



(8)




where  A  is a   1 × D  -dimensional matrix;   x  w d t    is the worst position of the sparrow in the  d th dimension when the population undergoes the  t th iteration;   x  b d  t + 1     is the optimal position of the sparrow in the  d th dimension when the population undergoes the   t + 1  th iteration.



The sparrows as vigilantes are some sparrows randomly selected from explorers and followers, generally accounting for 10–20% of the population size, and their position update expressions are shown in Equation (9).


   x  i d   t + 1   =       x  b d t  + β    x  i d  t  − x  b d t         f i  ≠  f g         x  i d  t  + K      x  i d  t  − x  w d t       f i  −  f w    + e              f i  =  f g         



(9)




where  β  and  K  are step control parameters,  β  is a random number obeying standard normal distribution, and  K  is a random number between [  − 1 ,     1 ]  ;  e  is a very small constant to avoid the case that the denominator is 0;    f i    is the fitness value of the ith sparrow;    f g    and    f w    are the best fitness value and the worst fitness value in the current sparrow population.





3. The Proposed SSA-BLS


In the BLS model, the randomly generated weights and biases as well as its five hyper-parameters (convergence coefficient  s , regularization coefficient  c , the number of feature nodes    N f   , the number of feature mapping groups    N m    and the number of enhancement nodes    N e   ) all have an impact on its performance. Among them, the most influential on its model accuracy and model stability are the hyper-parameters    N f   ,    N m    and    N e   . However, these three hyper-parameters have a wide range of values, so it is difficult to determine the best combination of hyper-parameters by traditional methods. An optimized broad learning system by sparrow search algorithm with self-adjusting hyper-parameters, i.e., SSA-BLS, is proposed in this paper to enhance the model performance and generalization capability.



The pseudo-code of the proposed SSA-BLS algorithm is shown in Algorithm 1.



	
Algorithm 1. The pseudo-code of SSA-BLS




	

	
Input:




	

	
MaxIter: the maximum iterations




	

	
dim: the number of hyper-parameters to be optimized




	

	
pop: the number of hyper-parameter combination populations




	

	
lb&ub: hyper-parameter combination search range




	

	
X: the initial population of hyper-parameter combinations




	

	
Output:




	

	
the optimal hyper-parameter combination    X  b e s t    




	

	
best fitness value    f  b e s t    




	

	
Iterative Curve   I C  




	
1

	
Establish an objective function   f  x   , i.e., the AVG of RMSE




	

	
obtained by 10-fold cross-validation;




	
2

	
Generate pop hyper-parameter combinations as initial population;




	
3

	
Calculate the fitness values by BLS;




	
4

	
while  t < M a x I t e r    do




	
5

	

	

	
Randomly select hyper-parameter combinations as explorers,




	

	

	

	
followers and vigilantes;




	
6

	

	

	
for each  i = e x p l o r e r    do




	
7

	

	

	

	

	
Using Equation (7) to update locations;




	
8

	

	

	
end




	
9

	

	

	
for each  i = f o l l o w e r    do




	
10

	

	

	

	

	
Using Equation (8) to update locations;




	
11

	

	

	
end




	
12

	

	

	
for each  i = v i g i l a n t e    do




	
13

	

	

	

	

	
Using Equation (9) to update locations;




	
14

	

	

	
end




	
15

	

	

	
Calculate the fitness values by BLS;




	
16

	

	

	
Compare with previous    f  b e s t    ;




	
17

	

	

	
ifthe current values better than    f  b e s t    then




	
18

	

	

	

	

	
Update the    f  b e s t       and    X  b e s t    ;




	
19

	

	

	
end




	
20

	

	

	
Save current    f  b e s t     to   I C  ;




	
21

	

	

	
  t = t + 1  




	
22

	
end









The determination steps of three hyper-parameters are summarized as follows:




	(1)

	
Generate a certain number of hyper-parameter combinations randomly as the initial population for optimization.




	(2)

	
Calculate the fitness value of the hyper-parameter combinations in the initial population, which is the average of the root mean square error (RMSE) obtained by 10-fold cross-validation of the testing set.









The expression for calculating the root mean square error (RMSE) is shown in Equation (10).


  R M S E =    1 N    ∑   i = 1  T         y i   ^  −  y i     2     



(10)




where  T  is the number of samples,    y i    denotes the actual value and      y i   ^    denotes the predicted value.



The schematic diagram of the fitness value calculating process is shown in Figure 2.



	(3)

	
A certain number of hyper-parameter combinations are randomly selected from the initial population as optimized explorers, and the positions are updated according to Equation (7).




	(4)

	
The other hyper-parameter combinations in the initial population act as optimized followers, and the positions are updated according to Equation (8).




	(5)

	
A certain number of hyper-parameter combinations are randomly selected from the optimized explorers and followers as the optimized vigilantes, and the positions are updated according to Equation (9).




	(6)

	
Repeat steps (3)–(5) until the maximum number of iterations is reached, and output the individual with the highest fitness value, i.e., the hyper-parameter combination that makes the smallest average of RMSE obtained from a 10-fold cross-validation of the testing set.







According to the above explanations, the flowchart of the SSA-BLS is shown in Figure 3.




4. Simulation


In order to evaluate the performance of the proposed SSA-BLS, it was applied to the ten benchmark regression datasets listed in Table 1, where the dataset Gasoline octane is from the web: https://www.heywhale.com/home (accessed on 5 January 2022), Fuel consumption is from the web: https://www.datafountain.cn (accessed on 10 January 2022) and the other datasets are from the web: http://www.liaad.up.pt/~ltorgo/Regression/DtaSets.html (accessed on 9 December 2021). All evaluations for RELM, KELM, BLS and SA-ELM were carried out in MacOS Mojave 10.14.6 and Python 3.9.9, running on a laptop with AMD Intel Iris Plus Graphics 645 1536MB, Processor 1.4GHz Intel Core i5 and RAM 8GB 2133MHz.



The parameters in SSA-BLS were set as follows: the initial population size and the maximum number of iterations for hyper-parameter optimization were set to 20 and 100. The compression factor in the mapping layer was set to 0.8 and the regularization factor in the enhancement layer was set to 2. The optimization range of hyper-parameter combination is shown in Table 2.



Model accuracy and model stability were assessed by the average (AVG) and standard deviation (Sd) of the RMSE obtained from the ten-fold cross-validation. The averages (AVG) of the MAPE obtained from the ten-fold cross-validation were also used to evaluate the model accuracy. A smaller average value indicates higher model accuracy, and a smaller standard deviation indicates better model stability, and vice versa.



SSA-BLS was applied to the ten benchmark regression datasets in Table 1 and compared with BLS, RELM and KELM; the simulation results are shown in Table 3, Table 4 and Table 5. The hyper-parameters of the compared algorithm are determined by using the nested cross-validation method [42]. And the bolds in the table indicate the best experimental results of the four algorithms on each dataset.



As shown in Table 4, for the testing samples of the datasets, compared with RELM, KELM and BLS, the proposed SSA-BLS obtains better model accuracy on nine benchmark regression problems (gasoline octane, fuel consumption, abalone, bank domains, Boston housing, delta elevators, forest fires, machine CPU, servo) and better model stability on seven benchmark regression problems (bank domains, Boston housing, forest fires, machine CPU, servo).



As shown in Table 5, for the training samples of the datasets, compared with RELM, KELM and BLS, the proposed SSA-BLS obtains better model performance on all ten benchmark regression problems and for the testing samples of the datasets, the proposed SSA-BLS obtains better model performance on nine benchmark regression problems (except auto MPG).



The effectiveness of SSA-BLS is proved by the above simulation experiments. However, SSA-BLS requires more computing time to establish the model compared with other related algorithms, so it is not suitable for online learning. In this paper, model training and testing belong to offline learning, so this algorithm mainly pursues the accuracy and stability of the model.




5. Real-World Design Problem


As a new neural network algorithm, BLS can effectively solve the modeling problems of complex systems. In this paper, the proposed SSA-BLS was applied to establish the prediction models for thermal efficiency (TE), NOx emission concentration and SO2 emission concentration of a 330 MW circulating fluidized bed boiler (CFBB).



There are 27 variables affecting the thermal efficiency and harmful gas emission concentration of a CFBB, mainly including load, coal feeder feeding rate, the primary air velocity, the secondary air velocity, oxygen concentration in the flue gas and the carbon content of fly ash. The symbols and descriptions of each variable are shown in Table 6. A total of 10,000 data samples are collected from a 330MW CFBB under different operating loads, some of which are shown in Table 7.



The boiler data is normalized and divided into training sets and testing sets in the ratio of 7:3.



The proposed SSA-BLS and BLS are applied to this boiler data and the experimental results are shown in Table 8, Table 9, Table 10 and Table 11. The hyper-parameters of BLS are determined by using the nested cross-validation method [42]. And the bolds in the table indicate the best experimental results of the four algorithms on each objective.



As shown in Table 9, Table 10 and Table 11, compared with RELM, KELM and BLS, the proposed SSA-BLS obtained better model accuracy and model stability in the prediction models established for the NOx emissions concentration and thermal efficiency of CFBB both on the training set and testing set. However, its model prediction accuracy for the SO2 emission concentration of CFBB was not as good as that of KELM.



The fitting diagrams and error diagrams of SSA-BLS for modeling the three objectives of CFBB on the testing set are shown in Figure 4, Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9, where the red line and the blue line in the fitting diagram indicate the true values and predicted values of the partial testing set, and the curve in the error diagram represent the error of the predicted values compared to the true values for the testing set.



As shown in Figure 4, Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9, the proposed SSA-BLS effectively establishes the prediction models for the three objectives of CFBB. The three prediction models all have great fitting effect and small fitting error on the testing set.




6. Conclusions


This paper proposed a novel optimized broad learning system by combining with a sparrow search algorithm. That is to say, the sparrow search algorithm was used to optimize the hyper-parameters of broad learning systems. Compared with other state-of-the-art methods, the proposed SSA-BLS reveals better regression accuracy and model stability on testing ten benchmark datasets. Additionally, the SSA-BLS was used to build the collective model of thermal efficiency, NOx and SO2 emissions concentration of one 330MW circulation fluidized bed boiler. Experiment results show that the model accuracy can be achieved 10−2–10−3. The proposed SSA-BLS is an effective modelling method.



However, the proposed SSA-BLS takes more time to determine the optimal hyperparameters. This method improves the accuracy of the model but reduces the speed of model computation. Moreover, this method is also not applicable to online modeling due to the long modeling time. In addition, SSA-BLS only tunes and optimizes the hyperparameters in terms of model accuracy, while ignoring the model stability aspects. In the future, the performance of SSA-BLS will be further improved, including computation speed, model complexity and generalization ability. Additionally, based on the established comprehensive model, we will use one heuristic optimization algorithm to adjust the boiler’s operational parameters for enhancing thermal efficiency and reducing NOx/SO2 emissions concentration.
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Figure 1. The structure diagram of BLS. 
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Figure 2. The schematic diagram of the fitness value calculating process, k is the number of cross-validations. 






Figure 2. The schematic diagram of the fitness value calculating process, k is the number of cross-validations.



[image: Energies 15 07700 g002]







[image: Energies 15 07700 g003 550] 





Figure 3. The flowchart of SSA-BLS. 
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Figure 4. The fitting diagram of NOx emission concentration model. 
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Figure 5. The error diagram of NOx emission concentration model. 
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Figure 6. The fitting diagram of SO2 emission concentration model. 
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Figure 7. The error diagram of SO2 emission concentration model. 
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Figure 8. The fitting diagram of thermal efficiency model. 
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Figure 9. The error diagram of thermal efficiency model. 
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Table 1. Description of regression data sets.






Table 1. Description of regression data sets.





	Datasets
	Attributes
	Instances
	Training Samples
	Testing Samples





	Gasoline octane
	14
	324
	227
	97



	Fuel consumption
	13
	1067
	747
	320



	Auto MPG
	7
	392
	274
	118



	Abalone
	8
	4177
	2923
	1254



	Bank domains
	8
	8192
	3149
	1350



	Boston housing
	13
	506
	354
	152



	Delta elevators
	6
	9517
	6661
	2856



	Forest fires
	12
	517
	361
	156



	Machine CPU
	6
	209
	146
	63



	Servo
	4
	167
	116
	51
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Table 2. The optimization range of hyper-parameter combination.






Table 2. The optimization range of hyper-parameter combination.





	Hyper-Parameters
	Meaning
	Optimal Scope





	    N f    
	Number of feature nodes
	[1, 20]



	    N m    
	Number of feature mapping groups
	[1, 40]



	    N e    
	Number of enhanced nodes
	[1, 500]
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Table 3. The RMSE of the four algorithms on the training set.
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Datasets

	
RELM

	
KELM

	
BLS

	
SSA-BLS




	
RMSE

	
RMSE

	
RMSE

	
RMSE




	
AVG

	
SD

	
AVG

	
SD

	
AVG

	
SD

	
AVG

	
SD






	
Gasoline octane

	
4.47 × 10−2

	
9.02 × 10−3

	
3.83 × 10−2

	
7.99 × 10−3

	
3.86 × 10−2

	
8.16 × 10−3

	
3.78 × 10−2

	
8.16 × 10−3




	
Fuel consumption

	
2.47 × 10−2

	
8.38 × 10−4

	
1.79 × 10−2

	
1.49 × 10−4

	
4.09 × 10−2

	
1.76 × 10−3

	
9.93 × 10−3

	
2.37 × 10−3




	
Auto MPG

	
1.42 × 10−4

	
5.04 × 10−5

	
1.00 × 10−5

	
1.34 × 10−7

	
5.75 × 10−5

	
3.49 × 10−5

	
1.04 × 10−5

	
3.50 × 10−5




	
Abalone

	
1.38 × 10−5

	
8.43 × 10−6

	
2.70 × 10−6

	
4.41 × 10−8

	
4.06 × 10−3

	
5.37 × 10−3

	
4.82 × 10−8

	
7.11 × 10−8




	
Bank domains

	
3.01 × 10−4

	
3.47 × 10−5

	
4.13 × 10−6

	
2.57 × 10−8

	
5.57 × 10−5

	
3.32 × 10−5

	
7.59 × 10−9

	
7.82 × 10−9




	
Boston housing

	
7.23 × 10−4

	
1.72 × 10−4

	
6.83 × 10−6

	
6.83 × 10−8

	
1.86 × 10−5

	
1.07 × 10−5

	
9.89 × 10−8

	
6.25 × 10−8




	
Delta elevators

	
5.28 × 10−7

	
1.02 × 10−7

	
2.32 × 10−8

	
3.41 × 10−10

	
2.08 × 10−7

	
1.61 × 10−7

	
3.85 × 10−9

	
3.42 × 10−9




	
Forest fires

	
3.32 × 10−4

	
6.63 × 10−5

	
5.97 × 10−5

	
6.15 × 10−7

	
2.24 × 10−4

	
1.61 × 10−4

	
2.93 × 10−7

	
1.44 × 10−7




	
Machine CPU

	
1.33 × 10−4

	
1.52 × 10−4

	
3.42 × 10−5

	
3.56 × 10−6

	
8.86 × 10−7

	
5.15 × 10−7

	
2.57 × 10−8

	
1.28 × 10−8




	
Servo

	
1.44 × 10−4

	
5.06 × 10−5

	
3.70 × 10−5

	
3.96 × 10−7

	
6.42 × 10−4

	
5.02 × 10−4

	
3.83 × 10−7

	
2.87 × 10−7
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Table 4. The RMSE of the four algorithms on the testing set.
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Datasets

	
RELM

	
KELM

	
BLS

	
SSA-BLS




	
RMSE

	
RMSE

	
RMSE

	
RMSE




	
AVG

	
SD

	
AVG

	
SD

	
AVG

	
SD

	
AVG

	
SD






	
Gasoline octane

	
7.16 × 10−2

	
9.68 × 10−3

	
2.70 × 10−2

	
3.09 × 10−2

	
3.04 × 10−2

	
3.20 × 10−2

	
2.65 × 10−2

	
3.07 × 10−2




	
Fuel consumption

	
2.64 × 10−2

	
1.26 × 10−3

	
2.09 × 10−2

	
3.43 × 10−3

	
4.85 × 10−2

	
2.79 × 10−3

	
1.39 × 10−2

	
2.84 × 10−3




	
Auto MPG

	
2.06 × 10−4

	
5.65 × 10−5

	
1.09 × 10−5

	
2.18 × 10−6

	
5.82 × 10−5

	
3.58 × 10−5

	
1.19 × 10−5

	
3.06 × 10−5




	
Abalone

	
1.71 × 10−5

	
7.95 × 10−6

	
2.86 × 10−6

	
5.16 × 10−6

	
4.18 × 10−3

	
5.76 × 10−3

	
8.34 × 10−8

	
1.80 × 10−7




	
Bank domains

	
3.34 × 10−4

	
3.02 × 10−5

	
4.27 × 10−6

	
2.69 × 10−7

	
1.94 × 10−4

	
4.13 × 10−4

	
7.79 × 10−9

	
8.32 × 10−9




	
Boston housing

	
2.11 × 10−3

	
7.65 × 10−4

	
7.40 × 10−6

	
1.83 × 10−6

	
1.85 × 10−5

	
1.08 × 10−5

	
9.69 × 10−8

	
6.07 × 10−8




	
Delta elevators

	
6.18 × 10−7

	
1.26 × 10−7

	
3.04 × 10−8

	
6.40 × 10−9

	
2.08 × 10−7

	
1.61 × 10−7

	
3.85 × 10−9

	
3.41 × 10−9




	
Forest fires

	
1.99 × 10−3

	
1.21 × 10−3

	
7.24 × 10−5

	
1.45 × 10−5

	
2.2 × 10−4

	
1.58 × 10−4

	
2.94 × 10−7

	
1.43 × 10−7




	
Machine CPU

	
5.43 × 10−4

	
2.41 × 10−4

	
7.36 × 10−5

	
9.17 × 10−5

	
8.13 × 10−7

	
5.16 × 10−7

	
2.28 × 10−8

	
1.61 × 10−8




	
Servo

	
1.89 × 10−4

	
6.42 × 10−5

	
3.22 × 10−5

	
1.25 × 10−5

	
8.13 × 10−4

	
8.62 × 10−4

	
3.81 × 10−7

	
2.39 × 10−7
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Table 5. The MAPE of the four algorithms on the training set and testing set.






Table 5. The MAPE of the four algorithms on the training set and testing set.





	
Datasets

	
RELM

	
KELM

	
BLS

	
SSA-BLS




	
Train

	
Test

	
Train

	
Test

	
Train

	
Test

	
Train

	
Test






	
Gasoline octane

	
8.16 × 10−1

	
1.33

	
2.57

	
3.68

	
9.29 × 10−1

	
1.00

	
9.24 × 10−1

	
9.76 × 10−1




	
Fuel consumption

	
2.56

	
2.59

	
2.41 × 10−1

	
4.16 × 10−1

	
2.63

	
2.71

	
1.09

	
2.59




	
Auto MPG

	
3.30 × 10−2

	
3.51 × 10−2

	
1.11 × 10−1

	
1.17 × 10−1

	
6.60 × 10−4

	
6.23 × 10−4

	
6.26 × 10−4

	
8.14 × 10−4




	
Abalone

	
2.56 × 10−2

	
2.01 × 10−2

	
2.00 × 10−2

	
2.13 × 10−2

	
2.51 × 10−1

	
2.56 × 10−1

	
2.18 × 10−6

	
2.30 × 10−6




	
Bank domains

	
3.62 × 10−1

	
3.67 × 10−1

	
3.68 × 10−2

	
3.71 × 10−2

	
7.99 × 10−2

	
8.04 × 10−2

	
9.60 × 10−7

	
9.68 × 10−7




	
Boston housing

	
9.81 × 10−1

	
1.23

	
3.86 × 10−2

	
4.31 × 10−2

	
4.51 × 10−4

	
4.57 × 10−4

	
8.54 × 10−6

	
8.32 × 10−6




	
Delta elevators

	
2.51 × 10−2

	
2.56 × 10−2

	
1.31 × 10−2

	
1.31 × 10−2

	
3.21 × 10−2

	
3.21 × 10−2

	
5.04 × 10−4

	
5.05 × 10−4




	
Forest fires

	
4.78 × 10−1

	
6.21 × 10−1

	
5.31 × 10−2

	
5.61 × 10−2

	
1.57 × 10−2

	
1.59 × 10−2

	
2.13 × 10−5

	
2.14 × 10−5




	
Machine CPU

	
2.05 × 10−2

	
1.27 × 10−1

	
1.41 × 10−1

	
1.76 × 10−1

	
5.73 × 10−5

	
5.69 × 10−5

	
1.46 × 10−6

	
1.47 × 10−6




	
Servo

	
2.62 × 10−3

	
3.29 × 10−3

	
5.95 × 10−2

	
6.44 × 10−2

	
6.06 × 10−3

	
7.91 × 10−3

	
1.12 × 10−5

	
1.39 × 10−5
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Table 6. Description of variable symbols.
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	Symbol Name
	Description





	17ANO037
	Boiler load



	AFCOALQ
	The first coal feeder coal volume



	BFCOALQ
	The second coal feeder coal volume



	CFCOALQ
	The third coal feeder coal volume



	DFCOALQ
	The fourth coal feeder coal volume



	18ANO074
	Average bed temperature in the upper part of the dense phase zone of the furnace



	05F051
	Primary air flow at the left duct burner inlet



	05F061
	Right duct burner inlet primary air flow



	05T457
	Primary air temperature at the left duct burner inlet



	05T467
	Right duct burner inlet primary air temperature



	06F061
	Total right side secondary air flow



	06F052
	Left side internal secondary air distribution flow



	06F062
	Right side internal secondary air distribution flow



	06T453
	The second secondary fan motor drive end bearing temperature



	06T463
	The first secondary fan motor drive end bearing temperature



	17I021
	The first limestone powder conveying motor current



	17I011
	The second limestone powder conveying motor current



	CEMSO2
	CEMS flue gas O2 concentration



	CEMSTEMP
	CEMS flue gas temperature



	08A051
	Carbon content of fly ash at the inlet of the left EDC



	08A061
	Carbon content of fly ash at the inlet of the right EDC



	05T402
	The first Primary fan inlet temperature



	05T403
	The second Primary fan inlet temperature



	12T612
	The first old slagger outlet temperature



	12T622
	The second cold slagger outlet temperature



	12T632
	The third cold slagger outlet temperature



	12T642
	The fourth cold slagger outlet temperature



	CEMSNOX
	CEMS flue gas NOx concentration



	CEMSSO2
	CEMS flue gas SO2 concentration



	TE
	Boiler thermal efficiency
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Table 7. The partial data of a 330MW CFBB operational conditions.
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	NO.
	17ANO037
	AFCOALQ
	BFCOALQ
	CFCOALQ
	DFCOALQ
	18ANO074
	05F051
	05F061
	05T457
	05T467
	06F061
	06F052
	06F062
	06T453
	06T463





	1
	73.401
	38.065
	39.174
	39.122
	38
	864.328
	202.548
	220.4
	269.342
	267.375
	385.664
	182.617
	163.927
	278.823
	267.433



	2
	73.401
	38.065
	39.174
	39.122
	38
	864.328
	266.631
	232.072
	269.342
	267.375
	385.31
	195.301
	152.674
	278.823
	267.433



	3
	73.52
	38.065
	39.174
	39.122
	38
	864.207
	249.237
	263.656
	269.342
	267.375
	435.575
	178.803
	171.079
	278.823
	267.433



	4
	73.52
	38.065
	39.174
	39.122
	38
	864.03
	263.656
	242.371
	269.342
	267.375
	405.929
	209.128
	186.146
	278.823
	267.433



	5
	73.52
	37.962
	39.174
	39.122
	37.862
	863.881
	298.673
	248.093
	269.342
	267.375
	402.92
	183.762
	177.659
	278.823
	267.433



	…
	…
	…
	…
	…
	…
	…
	…
	…
	…
	…
	…
	…
	…
	…
	…



	9996
	96.318
	56.966
	52.712
	52.953
	56.528
	866.957
	419.973
	368.935
	273.729
	270.847
	976.991
	569.881
	669.725
	284.775
	268.966



	9997
	96.427
	56.966
	52.556
	52.953
	56.528
	867.103
	338.267
	273.955
	273.729
	270.847
	973.451
	626.621
	598.299
	284.775
	268.966



	9998
	96.427
	56.966
	52.403
	52.953
	56.528
	867.278
	386.329
	349.71
	273.729
	270.847
	1017.08
	631.294
	601.922
	284.775
	268.966



	9999
	96.427
	56.966
	52.273
	52.801
	56.528
	867.39
	405.325
	343.073
	273.729
	270.847
	1020.796
	569.118
	612.603
	284.775
	268.966



	10000
	96.427
	56.966
	52.273
	52.689
	56.528
	867.557
	313.549
	324.306
	273.729
	270.847
	1036.903
	543.752
	645.026
	284.775
	268.966



	NO.
	17I021
	17I011
	6CEMSO2
	6CEMSTEMP
	08A051
	08A061
	05T402
	05T403
	12T612
	12T622
	12T632
	12T642
	CEMSNOX
	CEMSNOX
	TE



	1
	102.876
	116.074
	5.554
	152.655
	0.847
	0.316
	25.65
	24.901
	42.858
	45.355
	51.829
	36.858
	128.395
	225.285
	90.55405



	2
	103.944
	114.815
	5.554
	152.655
	0.847
	0.316
	25.65
	24.901
	42.858
	45.355
	51.829
	36.858
	128.395
	224.141
	90.55405



	3
	103.296
	113.175
	5.554
	152.655
	0.847
	0.316
	25.65
	24.901
	42.858
	45.355
	51.829
	36.858
	128.929
	223.378
	90.55405



	4
	103.334
	114.701
	5.554
	152.655
	0.847
	0.316
	25.65
	24.901
	42.858
	45.355
	51.829
	36.858
	129.463
	220.517
	90.55405



	5
	104.059
	113.328
	5.554
	152.655
	0.847
	0.316
	25.65
	24.901
	42.858
	45.355
	51.829
	36.858
	129.463
	218.61
	90.55405



	…
	…
	…
	…
	…
	…
	…
	…
	…
	…
	…
	…
	…
	…
	…
	…



	9996
	102.914
	116.684
	4.921
	156.637
	1.405
	0.167
	30.235
	28.193
	39.127
	37.046
	36.846
	47.32
	160.436
	144.991
	90.30709



	9997
	102.914
	116.99
	4.921
	156.637
	1.405
	0.167
	30.235
	28.193
	39.127
	37.046
	36.846
	47.32
	160.436
	147.089
	90.30709



	9998
	103.792
	117.714
	4.921
	156.637
	1.405
	0.167
	30.235
	28.193
	39.127
	37.046
	36.846
	47.32
	160.436
	148.615
	90.30709



	9999
	102.418
	115.998
	4.921
	156.637
	1.405
	0.167
	30.235
	28.193
	39.127
	37.046
	36.192
	47.32
	160.436
	150.14
	90.30709



	10000
	101.541
	115.731
	4.921
	156.637
	1.405
	0.167
	30.235
	28.193
	39.127
	37.046
	36.192
	47.32
	159.826
	151.666
	90.30709
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Table 8. The hyper-parameters of SSA-BLS and BLS for boiler data modeling.






Table 8. The hyper-parameters of SSA-BLS and BLS for boiler data modeling.





	
Objectives

	
SSA-BLS




	
N1

	
N2

	
N3






	
NOx

	
2

	
37

	
478




	
SO2

	
1

	
13

	
459




	
TE

	
2

	
27

	
296
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Table 9. The RMSE of the four algorithms on the training set of boiler data.
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Objectives

	
RELM

	
KELM

	
BLS

	
SSA-BLS




	
RMSE

	
RMSE

	
RMSE

	
RMSE




	
AVG

	
SD

	
AVG

	
SD

	
AVG

	
SD

	
AVG

	
SD






	
NOX

	
9.05 × 10−2

	
6.51 × 10−3

	
3.48 × 10−2

	
4.26 × 10−5

	
4.22 × 10−2

	
9.50 × 10−4

	
2.17 × 10−2

	
4.23 × 10−4




	
SO2

	
8.31 × 10−2

	
2.37 × 10−3

	
1.99 × 10−2

	
1.49 × 10−4

	
5.56 × 10−2

	
7.12 × 10−4

	
3.37 × 10−2

	
1.13 × 10−3




	
TE

	
4.52 × 10−2

	
1.01 × 10−2

	
2.04 × 10−2

	
3.36 × 10−5

	
5.96 × 10−2

	
1.20 × 10−3

	
4.41 × 10−3

	
1.72 × 10−4
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Table 10. The RMSE of the four algorithms on the testing set of boiler data.
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Objectives

	
RELM

	
KELM

	
BLS

	
SSA-BLS




	
RMSE

	
RMSE

	
RMSE

	
RMSE




	
AVG

	
SD

	
AVG

	
SD

	
AVG

	
SD

	
AVG

	
SD






	
NOX

	
8.91 × 10−2

	
5.94 × 10−3

	
7.49 × 10−2

	
2.36 × 10−3

	
6.53 × 10−2

	
6.55 × 10−2

	
2.75 × 10−2

	
1.83 × 10−3




	
SO2

	
7.91 × 10−2

	
2.09 × 10−2

	
4.12 × 10−2

	
5.53 × 10−3

	
5.82 × 10−2

	
4.98 × 10−3

	
3.59 × 10−2

	
1.94 × 10−3




	
TE

	
4.48 × 10−2

	
9.68 × 10−3

	
5.37 × 10−2

	
2.85 × 10−3

	
6.26 × 10−3

	
1.18 × 10−3

	
4.58 × 10−3

	
1.60 × 10−4
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Table 11. The MAPE of the four algorithms on the training set and testing set of boiler data.






Table 11. The MAPE of the four algorithms on the training set and testing set of boiler data.





	
Objectives

	
RELM

	
KELM

	
BLS

	
SSA-BLS




	
Training

	
Testing

	
Training

	
Testing

	
Training

	
Testing

	
Training

	
Testing






	
NOX

	
4.22

	
4.13

	
1.74

	
2.46

	
2.20

	
2.22

	
1.57

	
1.83




	
SO2

	
4.14

	
4.10

	
1.07

	
1.20

	
3.14

	
3.32

	
1.92

	
2.06




	
TE

	
2.28

	
2.26

	
9.26 × 10−2

	
1.98

	
3.03 × 10−1

	
3.09 × 10−1

	
2.10 × 10−1

	
2.18 × 10−1

















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
Error

0.4-

500

1000 1500 2000
Number of testing samples

2500

3000





media/file4.png
Data set

Calculate the
average value

Fitness

p1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | DO | D10 Split the data set into
ten equal parts
Training set Testing set Calculate the
error value
D1 (D2 (D3 | D4 | D5 | De [ D7 | D8 | D9 D10 — RMSEq
D1 (D2 (D3 | D4 | D5 | D6 | D7 | D8 | D10 Do ok RMSE7
D2 | D3 | D4 | D5 (D6 | D7 | D8 | D9 | D10 D1 —> RMSEq1q

value






nav.xhtml


  energies-15-07700


  
    		
      energies-15-07700
    


  




  





media/file18.png
Error

0.20 -

0.15-

0.10 -

0.05 -

0.00

—-0.05-

—-0.10-

—0.15-

e —

—-0.20
0

500

1000 1500 2000
Number of testing samples

2500

3000





media/file16.png
w
[
o

W0
—
wn

Thermal efficiency(%)

90.0 -

=~ Target
—=— Prediction

L]

25 50 75 100 125 150 175 200
Number of testing samples(partial)





media/file2.png
Mapped Feature Z1

.

Mapped Feature Z

Qutput Y

T

Mapped Feature Z,

I

Input X

M:E + B

Enhancement node Hy

Enhancement node Hy [

Enhancement node Hy

{j(zﬂwhj t ﬁh.j)‘”






media/file5.jpg
Determine the hyperparameter search range,
fitness function, population size and max iteration

13

Randomly generate hyperparameter combinations
s initial populations and calculate the fitness values

e

Randomly selected hyperparameter combinat
a5 explorers, followers and vigilantes

13

Update the location of explorers based on
equation ()

13

Update the location of followers based on
quation (8)

v

Update the location of vigilantes based on

‘aquation (9)

13

Calculate the fitness value again, compare with the
brevious value, better to replace, or non-changed

Is termination criteria satisfied 7

Output the optimal combination of hyperparameters






media/file3.jpg
k=1

k=10

Calat the
average e

Finess

ot
S —

o1 02 [ 03 [ o0 | 5 | 6 | o7 [ o8 | oo [ om0 |~ Sopessase
R— g Claliete
o1 [ 02 [ 03 [0+ 05 [ 8 | o7 [ o8 [ o8 | [ow0 ey
01| 02| 03| 04|05 |06 |07 D8 fD10 09| —»> | RMSE
o2 [ 03 [ o+ [ 05 | 0s | o [ o8 [ o8 [ o] [o1 sty

v






media/file1.jpg
onaty

Rty

Hpdronnty

Nl ey

bt ok |

et oty

it

000+

5y Ay






media/file7.jpg
NOx(mg/Nm3)

b3

50 7 100 15 150
Number of testing samples(partial)

175

200





media/file10.png
Error

0.4 -

0.2 -

500

1000 1500 2000
Number of testing samples

2500

3000





media/file12.png
2500+

2000+

1500+

SO2(mMg/Nm3)

500 -

p—t
o
-
o

e

by 1

il d
r‘ 0 \
A

i

125 150

Number of testing samples(partial)

] I\ hl
£ j
X 1) “1
. At B |
G Mar 4D 1 G s b
L el iﬁ;— Lol GO  a p
s 9 1) ¥ i\ MR
O L YL G6 N

== Target
—— Pradiction

175 200





media/file9.jpg
Error

04

500

1000 1500 2000
Number of testing samples

2500

3000





media/file0.png





media/file14.png
Error

0.4 -

0.2 -

0 500 1000 1500 2000 2500 3000
Number of testing samples





media/file8.png
200 -

180 -

160

=
I~
o

NOXx(mg/Nm3)

Co
o

60 -

40 -
0

25

== Target
—— Prediction

-

=

-"‘.':\_.i'

C'.-n.

50 75 100 125 150 175 200
Number of testing samples(partial)





media/file11.jpg
SO2(mg/Nm3)

2500

2000

1500

1000

500

50 s 100 125 150
Number of testing samples(partial)

175

20





media/file6.png
[ Eeiin ]

Determine the hyperparameter search range,
fitness function, population size and max iteration

v

Randomly generate hyperparameter combinations
as initial populations and calculate the fithess values

e

-

h 4

Randomly selected hyperparameter combinations
as explorers, followers and vigilantes

v

Update the location of explorers based on
equation (7)

v

Update the location of followers based on
equation (8)

v

Update the location of vigilantes based on
equation (9)

v

Calculate the fitness value again, compare with the
previous value, better to replace, or non-changed

[
Is termination criteria satisfied ?

Output the optimal combination of hyperparameters

v

S






media/file15.jpg
910

Thermal efficiency(%)
g g 8

ES

50 B a0 s 150
Number of testing samples(partial)

175

200





media/file17.jpg
Error

0.20

015+

0.10

0.05+

500 s s

-0.05+
-0.10
-0.15+

-0.205 0

1000 1500 2000
Number of testing samples

2500

3000





