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Abstract: Finite-difference methods are the most widely used methods for seismic wavefield simu-
lation. However, numerical dispersion is the main issue hindering accurate simulation. In the case
where the finite-difference scheme is known, the time dispersion can be predicted mathematically
and, thus, can be eliminated. However, when only pre-compiled software is available for wavefield
simulation, which is common in practical applications, the software-used algorithm becomes a black
box (unknown). Therefore, it is challenging to obtain the mathematical expression of the time disper-
sion, resulting in difficulty in eliminating the time dispersion. To solve this problem, we propose to
use deep learning methods to eliminate time dispersion. We design a semi-supervised framework
based on convolutional and recurrent neural networks for eliminating time dispersion caused by
seismic wave modeling. The framework of our proposed neural network includes two main modules:
Inverse Model and Forward Model, both of which have learnable parameters. The Inverse Model is
used for eliminating time dispersion while the Forward Model is used for regularizing the training.
Particularly, this framework includes two steps: Firstly, using the compiled modeling software to
generate two data sets with large and small time steps. Secondly, we train these two modules for
transformation between large time-step data (with time dispersion) and small time-step data (without
time dispersion) by labeled and unlabeled data sets. In this work, the labeled data set is a paired data
set with large time-step data and their corresponding small time-step data; the unlabeled data set is
the large time-step data that need time-dispersion elimination. We use the unlabeled data set to guide
the network. In this learning framework, re-training is required whenever the modeling algorithms,
time interval, or frequency band is changed. Hence, we propose a transfer learning training method
to extend from the trained model to another model, which reduces the computational cost caused
by re-training. This minor drawback is offset overwhelmingly by the modeling efficiency gain with
large time steps in large-scale production. Tests on two models confirm the effectiveness of the
proposed method.

Keywords: time dispersion; deep learning; semi-supervised learning; transfer learning

1. Introduction

Seismic wavefield simulation/modeling is essential for high-precision imaging of
the Earth’s subsurface [1]. The conventional seismic wavefield modeling is based on the
numerical solution of the wave equation. The solution of the wave equation involves the
calculation of the time and space derivatives with numerical methods. Researchers have
developed wave-equation-based imaging methods such as reverse-time migration [2,3]
and full-waveform inversion [4–6]. The finite-difference (FD) scheme is the most basic and
often used method to solve the wave equation [7–9]. However, the FD approximations of
time and space derivatives lead to numerical dispersion when the sample interval is large,
even if it satisfies the stable condition [10,11]. To accurately simulate the wavefield, it is
possible to minimize the dispersion errors in space and time.
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Researchers have proposed methods to improve finite difference spatial accuracy,
including methods to lengthen the spatial difference operator and methods to optimize the
spatial FD coefficients [12–14]. However, using long difference operators to approximate
spatial partial derivatives requires more computation, and due to the saturation effect [15],
the improvement of the simulation accuracy becomes small as the operator length increases.
The FD coefficients of the conventional FD methods are based on the Taylor series ex-
pansion, which can only ensure the accuracy of the simulation in the low wave-number
part. The optimized FD methods approximate the dispersion relation to obtaining the FD
coefficients using optimized methods, such as least squares (LS) minimization [16–18] and
simulated annealing methods [12], which can significantly improve simulation accuracy in
the medium-to-high wave-number part. The pseudo-spectral (PS) methods [19,20] are used
to obtain spatial partial derivatives using forward and inverse Fourier transforms. The PS
methods can theoretically be accurate up to the Nyquist wave number but require more
computational time than FD methods.

The time derivatives in wave equations are commonly approximated using the second-
order FD format, but the low-order systems can result in significant time dispersion errors.
Researchers have proposed the Lax–Wendroff methods [21,22] to improve time accuracy
by replacing high-order time derivatives with spatial ones. To increase the stable time-
step upper limit, optimal Lax–Wendroff methods were developed [13,23,24]. In addition,
the new FD template method improves temporal accuracy by using time–space domain
methods with new stencils. Liu and Sen (2013) [25] presented a centered-grid FD method
with a rhombus-shaped stencil, which can achieve arbitrary even-order accuracy in the time
and space domains but is computationally demanding. To balance accuracy and efficiency,
Wang (2016) [18] proposed an FD method based on the combination of cross and rhombus
stencils. Tang and Huang (2014) [26] developed the staggered-grid FD method of fourth- or
sixth-order in time. Ren (2017) [27] presented the temporal high-order SFD schemes, and
Ren (2022) [28] applied the staggered-grid FD method for source wavefield reconstruction.

Alternatively, the method of the post-propagation filter is an efficient approach to
reducing time dispersion. Stork (2013) [29] firstly proposed the time dispersion correc-
tion filter, which demonstrated that time dispersion is independent of propagation path,
medium, and spatial dispersion errors and successfully filtered away time dispersion er-
rors from seismograms. Wang and Xu (2015) [30] introduced a time dispersion correction
method based on the analytically anticipated time dispersion error, which improves the
effectiveness of the time dispersion filter. The time dispersion filter applies the forward
time-dispersion transform (FTDT) for predicting time dispersion error and the inverse
time-dispersion transform (ITDT) for removal. However, the FTDT is an adjoint rather
than an inverse of the ITDT, so the ITDT with their proposed filters cannot fully eliminate
the time dispersion added by the FTDT. Li (2016) [31] suggested a time-varying filter to
minimize time dispersion in shot recordings. Koene (2018) [32] derived the precise inverse
of ITDT, which is employed as a new FTDT, where the ITDI can recover (with proper band
restrictions) the input signal, and the ITDT can successfully minimize temporal dispersion
of the modeling wavefields with FD, PS, and spectral element methods, enhancing temporal
accuracy more effectively.

These methods are used to propagate seismic data through synthetic models, and
the forward modeling methods are capable of determining the dispersion relationship
quantitatively. However, because highly integrated software is typically used in practical
production, software algorithms are a black box to users (i.e., it is impossible to obtain the
specific forward modeling method from the compiled software) which makes it impossible
to quantify the dispersion relationship of the forward modeling results, and therefore diffi-
cult to accurately eliminate the time dispersion of the modeling results. Recently, machine
learning and deep learning algorithms have been utilized with some success in seismic
impedance inversion [33,34], seismic modeling [35], and seismic data interpretation [36]. In
this paper, we propose to use machine learning methods to overcome this problem.
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The framework of our proposed neural network includes two main modules: Inverse
Model and Forward Model and these two main modules for transformation between large
time-step data (with time dispersion) and small time-steps data (without time dispersion).
We propose a semi-supervised machine learning strategy to eliminate time dispersion.
Specifically, we use deep learning to learn the mapping patterns in temporally dispersed
samples. The Inverse Model is used for eliminating time dispersion while the Forward
Model is used for regularizing the training. Although the deep-learning network is a “black-
box”, which is difficult to be quantitatively interpreted, in this study, we can generate any
amount of data that the network needs to train the network. Therefore, the network is able
to perform as designed. Thus, the proposed deep-learning method is considered feasible.

The rest of this paper is organized as follows. Section 2 shows the details of our
framework, which is based on semi-supervised learning to train our proposed model and
then shows a new training method by transfer learning based on the pre-trained model.
Section 3 provides and analyzes the experimental findings of our proposed network on
the Marmousi and SEAM models. Section 4 presents discussion. Section 5 summarizes the
entire paper.

2. Methods
2.1. Theory

In this work, we use a modeling program with the pseudo-spectral (PS) method as the
black box, i.e., the compiled software, to generate the data set with large and small time
steps. Since the PS method is used, the simulated seismic data are free of spatial dispersion
but have temporal dispersion. A few training data are first generated using the modeling
program with large and small time steps, which mimic the time-dispersed data and the
time-dispersion-free data, respectively. The data with small time steps are used as the label
of the data with large time steps.

In this paper, we propose a semi-supervised framework for eliminating time dispersion
based on Convolutional Neural Networks (CNNs) and Gate Recurrent Units (GRUs). We
can utilize semi-supervised networks to train not only labeled data but also unlabeled data.
The unlabeled data act as constraints to better train the generative network and generate
more accurate outcomes.

CNNs are used to extract feature information, where dilation convolution is used to
expand the perceptual field and where the data are inputted point by point. In this work,
the size of the data is large, and multiple dilation convolutions with different dilation rates
are superimposed; thus, the different perceptual fields can lead to multi-scale contextual
information, which also helps to reduce computational effort. Recurrent Neural Networks
(RNNs) are used to extract temporal information since time dispersion data are a type of
temporal data. An RNN network typically has four inputs and one output. The inputs
include three gate functions—Input Gate, Forget Gate, and Output Gate—that can be used
to train the network’s weights using the context-specific knowledge of the data to learn
the mapping relationship between the inputs and the outputs. The GRU network is an
adaptation of the RNN network that, to simplify computation, merges the typical Input
Gate and Forget Gate into a single Update Gate and blends cell states with hidden states.

2.2. Network Structures

We choose two main modules for transformation between large time-step data and
small time-step data: Inverse Model and Forward Model, both of which have learnable
parameters; the Inverse Model is used for eliminating time dispersion, and the Forward
Model is used for regularizing the training. The workflow we proposed is shown in
Figure 1, which includes labeled and unlabeled data sets. The labeled data set is a paired
data set with large time-step data and their corresponding small time-step data, and the
unlabeled data set is large time-step data that contain time dispersion that needs to be
eliminated.
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Figure 1. The proposed workflow. Here, x is the labeled single trace of time-dispersed data, its
corresponding target time-dispersion-free data is labeled as y, and x_u is the unlabeled single trace
of time-dispersed data. x is mapped to ypred by the Inverse Model, and then ypred with y calculates
property loss 1; unlabeled data (in the dashed black box) x_u is mapped to y_upred by the Inverse
Model, then y_upred is mapped to x_upred by the Forward Model, and x_upred with x_u calculate the
unlabeled loss. y is mapped to xpred by the Forward Model, and then xpred with x calculate property
loss 2. Specifically, property loss 1 adds property loss 2 as property loss; both property loss and
unlabeled loss are used for updating the weights of the Inverse Model and Forward Model.

The network takes input data (both labeled and unlabeled large time-step data) and
feeds them to the proposed Inverse Model, which transformations the data from the source
domain with time dispersion to the target domain without time dispersion, and the loss
function between the label of the input and the output of the Inverse Model is minimized.
Next, the generated without-time-dispersion data of the unlabeled data set is then fed into
the proposed Forward Model, which converts it back to time-dispersed data, and the loss
function between the original input and the output of the Forward Model is minimized.
Furthermore, the network takes the other input data (labeled small time-step data) and
feeds them to the proposed Forward Model, which transformations the data from the
source domain without time dispersion to the target domain with time dispersion, and
the loss function between the label of the input and the output of the Forward Model is
minimized.

The architecture of the Inverse Model and Forward Model are similar to that used
by Motaz Alfarraj [37], where the difference is the adjustment of local parameters and the
removal of the upsampling submodule. Figure 2 shows the Inverse Model in the proposed
workflow. The Inverse Model consists of three main submodules. These submodules are
denoted as Sequence Modeling, Local Pattern Analysis, and Regression, and each have
a different role in the overall model. Figure 3 shows the Forward Model architecture,
which is similar to that of the Inverse Model in the proposed workflow. We noted that
time-dispersion-free data need more complex mapping than time-dispersed data, so the
differences are 2 times the GRU output data size and two fully-connected-layer modules in
Forward Model. The fully-connected-layer modules are mainly used for compensation of
resolution mismatch between input data and output data.
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Figure 2. The architecture of the Inverse Model in the proposed workflow. Sequence Modeling
submodule includes GRU, whose input traces are modeled as sequential data, and temporal features
are computed based on these temporal variations. Local Pattern Analysis submodule includes
three parallel 1D CNN modules, with each parallel 1D CNN module (ConvBlock) having the same
convolutional kernel size but different dilation coefficients. The outputs of each parallel 1D CNN
module (ConvBlock) are stitched together and fed into a 1D CNN module (ConvBlock) with three
layers and decreasing convolutional kernels (kernel = k). Regression is used for mapping the
extracted features from the other submodules to the target data.

Figure 3. The architecture of the Forward Model in the proposed workflow. This is similar to the
Inverse Model, the differences are 2 times the GRU output data size and two fully connected-layer
modules in the Sequence Modeling submodule.

Sequence Modeling submodule comprises multiple Gated Recurrent Units (GRUs) [38].
The input traces of GRU are modeled as sequential data trace by trace, and temporal features
are computed based on temporal variations of these data, so GRU can continually update
the memory of the past and future moments and adjust its weights in the training process.
Consider that more hidden layer neurons will have significantly better effects on capturing
temporal features; therefore, one GRU module is set in the Sequence Modeling submodule,
where we set the input data size to the number of hidden layer neurons. Then, one fully
connected layer is used as a transition layer, which compensates for the dimensional
mismatch between the outputs and the inputs.
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Local Pattern Analysis submodule comprises three parallel 1D CNN modules, each
parallel CNN module having the same convolutional kernel size and different dilation
coefficients. Three outputs of these parallel CNN modules are stitched together into one
output, which is then fed into another 1D CNN module with three layers and decreasing
convolutional kernels. Dilation is defined as the intervals between convolution core points
in the convolution layers [39]. The superposition of multiple dilated convolutions with
different dilation rates expands the receptive field, and the different receptive fields lead to
multi-scale temporal feature information. There is also a group normalization layer and an
activation function layer between two adjacent CNN layers. The CNNs are used mainly to
capture high-frequency trends in the data. The output of deep GRUs is regarded mainly as
low-frequency trends in the data. To capture the frequency content of the full frequency
band, the two outputs of the CNNs and GRUs are combined and fed into Regression.

The final submodule is Regression, which is used for mapping the extracted features
from the other two submodules to the target data. Regression comprises a 1-layer GRU
followed by a linear layer. In addition, the input layer of GRU and output layer in this
submodule all use the transpose function. Hence, the output size is set to the same as the
input size, i.e., one trace in and also one trace out.

In the end, we propose a transfer learning training method to extend from the trained
model to another model, which helps the network adapt to new seismic data better. We
consider that GRU is designed to capture the sequential relationship of input data when
extracting features from the training set, and GRU continually adjusts the weights of the
Local Pattern Analysis submodule. Thus, for the new seismic data, we fix the initialization
of the Local Pattern Analysis submodule by using the trained model weights file and
retraining the parts with the GRU. This training method can use a smaller number of
training data rather than starting from scratch.

2.3. Loss Function

In this work, the input size and output size are both set to N × 1. We denote the
labeled single trace data of time-dispersed data as x, the unlabeled data as x_u, which is
also the data for time-dispersion elimination. The corresponding time-dispersion-free data
of x is denoted as y. The Inverse Model and Forward Model are denoted as fwI(·) with
weights WI and fwF(·) with weights WF, respectively.

As shown in Figure 1, property loss 1 adds property loss 2 as property loss, which is
calculated between predicted and target on traces and maps temporally dispersed data
to time-dispersion-free data. Unlabeled loss is calculated between predicted and input
unlabeled data. This kind of loss is adopted to constrain the prediction consistency on the
dispersive time-series traces. In this part, we have modified the mean absolute error (L1) by
calculating property loss and unlabeled loss separately to better fit our proposed workflow
training loss function. Formally, the loss function takes the following form:

Lproperty(WI , WF) =
1
N
· L1( fwI (x), y) +

1
N
· L1( fwF (y), x) (1)

Lunlabeled(WI , WF) =
1
N
· L1( fwF( fwI (xu)), xu) (2)

L(W I , WF) = α · Lproperty+β · Lunlabeled (3)

The parameters of both the Inverse Model and the Forward Model are adjusted by
combining both losses as in Equation (3). In this work, we choose α = 0.2 and β = 1, which
are proposed by Motaz Alfarraj [37].

2.4. Training Procedure

We generate the data set using a compiled wavefield modeling program, which uses
the pseudo-spectral (PS) method, for simulating wavefields with large and small time
steps. Firstly, the proposed strategy is tested on a partial modified Marmousi model. The
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corresponding velocity model is shown in Figure 4. The source wavelet is a Ricker wavelet
with a dominant frequency of 15 Hz. The spatial location of the source is unequally spaced.
A split-spread geometry is applied. The receiver array has a receiver spacing of 20 m. The
minimum and maximum offsets are 0 m and 14,750 m, respectively. We choose the time
intervals of 0.2 ms and 1.2 ms, assuming that the solution obtained with the 0.2 ms interval
is time-dispersion-free data. We use approximately 90% of the shot recording data for the
training set and the remainder for the test data set. The validation data are randomly picked
from the test data set. Furthermore, the proposed strategy is tested on the SEAM model.
The corresponding velocity model is shown in Figure 10. In the SEAM model test, we
choose the time intervals of 0.4 ms and 2 ms, assuming that the solution obtained on the 0.4
ms intervals is time-dispersion-free data. Then, we apply transfer learning with the trained
network from the Marmousi model and try the SEAM model with the training samples
consisting of 40% of shot recording data for the training set. The training procedure for
the proposed workflow is shown in Algorithm 1. The initial learning rate is 1 × 10−4,
x ∈ X represents the labeled time-dispersed data, x_u ∈ X_U represents the unlabeled
time-dispersed data, and y ∈ Y represents time-dispersion-free data.

Figure 4. The velocity model of a partial modified Marmousi.

Algorithm 1 Algorithm for updating weights WI and WF .

Input: time-dispersed data sets X, X_U, time-dispersion-free data sets Y
Output: WI and WF
1: Randomly initialize parameters WI and WF
2: epoch = 500, α = 0.2, and β = 1
3: for epoch steps do
4: for all of the labeled data sampled do
5: X → Ypred, Y → Xpred
6: Calculate the Property Loss in Equation (1)
7: Randomly sample the unlabeled data x_u
8: X_U → Y_U pred, Y_U pred → X_U pred
9: Calculate the Unlabeled Loss in Equation (2)
10: Calculate the Loss in Equation (3) using property loss, unlabeled loss, α and β
11: end for
12: Update WI and WF in order to minimize Loss
13: end for

3. Results

Our main goal is to eliminate time dispersion, and we apply our method to two data
sets with Pytorch on a Nvidia RTX3090 GPU. Images below are mainly the results predicted
on the test data sets, which are shown for evaluating the performance of the proposed
workflow quantitatively.

3.1. The Data Test with the Marmousi Model

In this part, the data set is generated by using the modeling program with the velocity
model of a partial modified Marmousi (Figure 4).

To create the data set, we choose the time intervals of 0.2 ms and 1.2 ms, assuming that
the solution obtained with the 0.2 ms time intervals is approximated as time-dispersion-free
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data. The data set includes 32 shots, each of which contains 550 receivers with a receiver
spacing of 20 m. Each trace has 2001 time sampling points by re-sampling at the time
interval of 3.6 ms. We resample the data because the frequency of exploration seismic data
including this example is usually less than 100 Hz. In addition, the resampling into a coarse
interval can also save the computational and memory cost. In the training process, we
use 30 shots, which are fed into the network sequentially trace by trace, and 2 shots for
testing. Considering a sufficient amount of data and a large number of traces per shot, we
set the batch size to 50. The Inverse Model and Forward Model are together trained for
500 epochs. Next, we follow the training procedure. Figure 5 shows that the loss function
curve leveled off.

Figure 5. The loss function curve during the prediction for the Marmousi model. The training error
and testing error decrease fast and then converge to a small value.

As shown in Figure 1 the workflow we proposed, the Inverse Model is trained to
eliminate time dispersion of large time-step (i.e., 1.2 ms) unlabeled data set, and the Forward
Model is used for regularizing the training by semi-supervised learning mapping small
time-step data (i.e., 0.2 ms) to large time-step data (i.e., 1.2 ms). Figures 6 and 7 show
the results at the time from 3.81 s to 4.23 s of Trace No. 500 by the Inverse Model and
the Forward Model, respectively. Results for the shot profiles are shown in Figure 8, and
the enlarged views of the red box areas in the results are shown in Figure 9. It is evident
that the dispersion artifacts in large time-step data, as seen in Figure 9a, are suppressed
by the proposed Inverse Model as seen in Figure 9b, and the results are similar to the
corresponding small time-step data in Figure 9d. Figure 9e shows the output of Forward
Model, which has visible dispersion artifacts, are inputted by the small time-steps data
as seen in Figure 9d, and the results in Figure 9e are similar to large time-steps data in
Figure 9a. Figure 9c shows the difference between Figure 9b,d while Figure 9f displays the
difference between Figure 9a,e.

Figure 6. The comparison at the time from 3.81 to 4.23 s between the predicted trace and the input
trace of the Inverse Model. The black dotted line indicates the target trace without time dispersion
(0.2 ms time step). The blue and red lines represent the input with time dispersion (1.2 ms time step)
and output data after the time dispersion elimination, respectively.
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Figure 7. The comparison at the time from 3.81 s to 4.23 s between the predicted trace and the input
trace of the Forward Model. The black dotted line indicates the target trace with time dispersion
(1.2 ms time step). The blue and red lines represent the input without time dispersion (0.2 ms time
step) and predicted data with time dispersion, respectively.

Figure 8. The profiles of seismic forward modeling records. (a) The forward modeling result with
a time step of 1.2 ms. (b) The result after time dispersion elimination using the network. (a,b) are
the input and output of Inverse Model, respectively. (c) The absolute difference from (b,d). (d) The
forward modeling result with a time step of 0.2 ms, which is the input of the Forward Model. (e) The
output of Forward Model, which contains time dispersion. (f) The absolute difference from (a,e).
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Figure 9. Enlarged view of the red box areas in (a–f) of Figure 8. The order of the plots is the same as
that of Figure 8.

We choose five different metrics to measure the performance of the proposed method:
mean absolute error (L1 Loss), Pearson’s correlation coefficient (PCC), coefficient of deter-
mination (r2), peak signal-to-noise ratio (PSNR/dB), and structural similarity index (SSIM)
between target and the prediction. PCC is a metric that measures the linear relationship
between the estimated and target traces, and r2 is a goodness-of-fit metric that takes the
mean squared error between the two traces; both metrics are often used to assess the
overall fit of two traces. PSNR is used to compare the quality of output image and the
original image, and SSIM measures the similarity between the two images. The quantitative
outcomes are computed using the training and testing traces. In this, we have modified the
L1 Loss (L1) to better fit our proposed workflow. Specifically, the L1 Loss is the sum of the
squares of all corresponding location differences:

L =
α

N
· L1

(
ypred, y

)
+

β

N
· L1( fwF( fwI(xu)), x) (4)

where N = 2001 is the number of one trace data points, L1 represents the original L1 Loss,
and the modified L1 Loss is set as L. The result is shown in Table 1.

Table 1. Performance metrics of the trained network on the Marmousi model.

Metric Training Validation

PCC 0.9999 0.9997
r2 0.9999 0.9995
L 7.19 × 10−5 2.67 × 10−4

PSNR 91.2205 86.7756
SSIM 1.0000 1.0000

The results in Table 1 demonstrate that the suggested workflow performs almost
as well on validation data as it does on training data, demonstrating its generalizability
beyond training data.



Energies 2022, 15, 7701 11 of 17

3.2. The Data Test with the SEAM Model

In this part, the data set is generated by using the compiled program with the velocity
model of SEAM (Figure 10).

Figure 10. The velocity model of a part of SEAM.

To create the data set, we choose the time step of 0.4 ms and 2 ms, assuming that the
solution obtained on the 0.4 ms time step is approximated as time-dispersion-free data.
The data set contains 12 shots, each of which contains a receiver spacing of 20 m between
the receiver array, and each shot contains 325 traces, each trace with 2001 time sampling
points by re-sampling to the time interval of 4 ms. In this training, we choose 5 shots for
training and 7 shots for testing. Considering the small size of the SEAM data set, we adjust
the batch size to 5, and the Inverse Model and Forward Model are together trained for
250 epochs. Next, we follow the training procedure. Figure 11 shows that the loss function
curve leveled off.

Figure 11. The loss function curve during the training of the SEAM model. The training error and
testing error decrease fast and then converge to a small value.

Here, we adopt a new training approach—transfer learning—to evaluate the per-
formance of the method. Considering that the Marmousi model has sufficient training
data and performs well on the test data sets, we apply transfer learning with the trained
Marmousi model, and we fix the initialization of the Local pattern analysis submodule
by Marmousi model weights file, and then continue training the SEAM data set. The
remainder of the steps are the same as the previous training process.

As shown in Figure 1 the workflow we proposed, the Inverse Model is trained to
eliminate time dispersion of large time-step (i.e., 2 ms) unlabeled data set, and the Forward
Model is used for regularizing the training by semi-supervised learning mapping small
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time-step data (i.e., 0.4 ms) to large time-step data (i.e., 2 ms). Figures 12 and 13 show the
result at the time from 2.6 s to 3.8 s of Trace No. 50 by the Inverse Model and the Forward
Model, respectively. Results for the shot profiles are shown in Figure 14, and the enlarged
views of the results are shown in Figure 15. It is evident that the dispersion artifacts in
large time-step data, as seen in Figure 15a, are mitigated by the proposed Inverse Model as
seen in Figure 15b, and the results are similar to small time-step data shown in Figure 15d.
Figure 15e shows the output using Forward Model, which has visible dispersion artifacts,
are inputted by the small time-step data as seen in Figure 15d, and the results in Figure 15e
are similar to large time-step data in Figure 13a. Figure 13c shows the absolute difference
between Figure 13b and d while Figure 13f displays the difference between Figure 13a,e.

Figure 12. The comparison at the time from 2.6 s to 3.8 s between the predicted trace and the input
trace by the Inverse Model. The black dotted line indicates the target trace without time dispersion
(0.4 ms time step). The blue and red lines represent the input (2 ms time step) and predicted data
after time-dispersion elimination, respectively.

Figure 13. The comparison at the time from 2.6 s to 3.8 s between the predicted trace and the input
trace by the Forward Model. The black dotted line indicates the target trace with time dispersion
(2 ms time step). The blue and red lines represent the input (0.4 ms time step) and predicted data
with time dispersion, respectively.
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Figure 14. The profiles of seismic forward modeling records. (a) The forward modeling result with
a time step of 2 ms. (b) The result after time dispersion elimination using the network. (a,b) are
the input and output of Inverse Model, respectively. (c) The absolute difference from (b,d). (d) The
forward modeling result with a time step of 0.4 ms, which is the input of the Forward Model. (e) The
output of Forward Model, which contains time dispersion. (f) The absolute difference from (a,e).

Figure 15. Enlarged view of the red box areas in (a–f) of Figure 14. The order of the plots is the same
as that of Figure 14.
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Similar to the Marmousi model, we choose five different metrics to measure the
performance of the proposed methods: Pearson’s correlation coefficient (PCC), coefficient
of determination (r2), modified L1 Loss (L), peak signal-to-noise ratio (PSNR/dB), and
structural similarity index (SSIM) between target and the mean prediction. The results are
shown in Table 2.

Table 2. Performance metrics of the trained network on the SEAM model.

Metric Training Validation

PCC 1.0000 0.9993
r2 1.0000 0.9984
L 1.70 × 10−5 8.09 × 10−4

PSRN 94.6501 79.9299
SSIM 1.0000 1.0000

4. Discussion

In this work, the given network is designed to map the data simulated by a compiled
program using two designated time intervals. Hence, re-training is required whenever the
modeling algorithm, time interval, or frequency band is changed. This is because, as in all
deep learning methods, training a neural network on one data set and then applying it to
another data set requires that both data sets have the same distribution; otherwise, the test
data will be incorrect due to overfitting. Considering the computational effort associated
with re-training, on the new seismic model, we propose transfer learning to overcome
this problem. When we test the proposed strategy on the SEAM model using the transfer
learning training approach, we regard Marmousi as a pre-training seismic model. However,
the Marmousi model should have enough training data and perform well on the test data
sets, otherwise, the SEAM model data set may not work well with small amounts of data.

Additionally, as a comparison, we built a standard GRU network to eliminate time
dispersion. This GRU network is from Pytorch machine learning library, and the size
of input and output are the same as our proposed network. The data from the SEAM
model are used for test. The results are shown in Figures 16–18. As can be seen, the GRU
deep-learning model can also eliminate the time dispersion but less effective than the
proposed semi-supervised deep-learning model. This experiment demonstrates that many
deep-learning models can achieve time-dispersion elimination but the performance may
be different.

Figure 16. The comparison at the time from 2.6 s to 3.8 s between the predicted trace and the input
trace for the GRU Model. The black dotted line indicates the target trace without time dispersion
(0.4 ms time step). The blue and red lines represent the input (2 ms time step) and predicted data
after time-dispersion elimination, respectively.



Energies 2022, 15, 7701 15 of 17

Figure 17. The profiles of seismic forward modeling records. (a) The forward modeling result with a
time step of 0.4 ms. (b) The result after time dispersion elimination using the GRU Model. (c) The
absolute difference between (a) and (b).

Figure 18. Enlarged view of the red box areas in (a–c) of Figure 17. The order of the plots is the same
as that of Figure 17.

5. Conclusions

Seismic wavefield simulation is a key component of seismic data imaging and inver-
sion. Finite-difference (FD) methods are the most widely used technique, but it suffers from
time and spatial dispersion. In the case where only a pre-compiled software is available, the
FD scheme/algorithm is unknown, and it becomes a black box to user. Therefore, it is hard
to predict the time dispersion mathematically. Herein, we propose using deep learning
methods to overcome this problem.

In this study, we use CNNs and GRUs with semi-supervised learning to eliminate time
dispersion of seismic records. We estimate the proposed Inverse Model and Forward Model
by training the network with a few shots generated by a compiled modeling program. The
training data sets include labeled and unlabeled data sets. The labeled data set is a paired
data set with large time-step data (with time dispersion) and their corresponding small
time-steps data (without time dispersion). The unlabeled data set is the large time-step data
that need time-dispersion elimination. We then apply this network to the unlabeled data
sets. In addition, re-training is required whenever the modeling algorithm, time interval,
or frequency band is changed, so we propose a transfer learning training method to extend
from the trained model to another model, which reduces the computational load caused
by re-training. Numerical tests on different models indicate that the proposed method
is capable of sufficiently eliminating the time dispersion. The networks and examples
presented in the paper can be accessed via https://github.com/wavetomo/Timedispersion
(accessed on 10 October 2020).

https://github.com/wavetomo/Timedispersion
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