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Abstract: South Korea officially committed to reducing 40% of its total carbon emissions by 2030,
but the country has a carbon-dependent economic structure based on the manufacturing industry.
Additionally, the industrial structure of each region in South Korea is heterogeneous. In this regard,
policymakers should analyze the carbon emission condition at a regional level because abatement
aspects are heterogeneous by urban spatial production. However, although various studies have
developed a methodology to evaluate the GHG emission condition, these studies failed to consider
the fundamental aspect of regional heterogeneity. In this regard, this study suggests a quantitative
method to assess the potential of the carbon neutrality of regions and industries by using both shift-
share analysis and the Log Mean Divisia Index method. Shift share analysis is used to quantify the
relation between the industry and regional characteristics, and the Log Mean Divisia Index method
can decompose each effect for economic growth and technological progress. By combining these two
methods, this study suggests four classifications to evaluate regional and industrial characteristics of
GHG emissions and analyze each region’s emission status in terms of the mining and manufacturing
industry in South Korea.

Keywords: industrial GHG emissions; Logarithmic Mean Divisia Index; shift-share analysis; smart
urban management; South Korea

1. Introduction

South Korea officially committed to reducing 40% of the total national GHG emissions
by 2030, compared with the value in 2018. However, Korea has a carbon-dependent
economic structure in that the industry sector occupies a vast proportion of the national
economy. In particular, since Korea has a manufacturing-based economic system with high
emissions, it is difficult for a national government to reduce total emissions compared to
other countries. Nevertheless, as achieving carbon neutrality becomes a political priority,
the government is actively looking for methods and ways to achieve both economic growth
and emission reduction simultaneously. Additionally, in Korea, the industrial structure
of each region is heterogeneous. These regional and industrial characteristics make it
challenging to manage carbon emissions at the national level.

As part of this concern, various policy methods are now being discussed, but these
methods have not yet yielded sufficient results to achieve NDC (Nationally Determined
Contributions) goals. To achieve a social consensus and challenging goals on carbon neu-
trality, an appropriate methodology is needed for each industrial sector to evaluate its
emission performance. Such an approach ensures the fair mean equality of opportunities
and reasonable compensation for performances. In this regard, this study suggests an
integrated performance measurement methodology to evaluate heterogeneous geographi-
cal GHG emission activities. To establish an integrated measurement method to evaluate
local and regional GHG emission activities, this study uses both Logarithmic Mean Divisia
Index (LMDI) and shift-share analysis. By examining the current GHG emission status in
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the industry and regional sectors through this methodology, this study tries to confirm
whether it is realistically possible to achieve both economic growth and emission reduction
simultaneously. Additionally, this study aims to give information regarding the current
condition of carbon abatement performance by regions which can help national and local
policymakers to modify emission goals and related plans more realistically. Furthermore,
if the exact condition of GHG abatement performance is provided, it will help each local
government to build comprehensive emission management. Additionally, through perfor-
mance monitoring, local economic agents could be motivated by previous performance
evaluations. In more detail, this study aims to explore the following two research questions.

1. This study aims to check whether urban economic structure interrelates with GHG
emissions through quantitative empirical analysis.

2. This study tries to check how heterogeneous industrial structure by region affects local
carbon emission by assessing it through the integrated performance evaluation method.

2. Literature Review and Theoretical Prospect

Over the last few decades, the relationship between carbon emissions and cities has
received increasing attention from various academic fields. In early studies, the differences
in climate conditions between urban regions and rural regions are mainly discussed. These
studies particularly focused on the urban heat island effect caused by urban structure and
warned that policy decision-makers should consider climate change mitigation strategies
in urban planning [1–7]. Even though these early studies broaden urban planning to
consider climate, they are limited to dealing with complex climate issues only at the local
level [8,9]. In recent years, many studies have tried to look at the urban climate issue from
a comprehensive and comparative perspective. Still, a globally agreed-upon protocol to
deal with urban climate issues has not been established sufficiently [10].

Studies on low-carbon urban economy growth commonly approach carbon neutrality
with urban planning. One study, which covers the concept of urban carbon transformations,
suggests that local GHG emission blocks are divided by geographical and economical
industrial territories. Some other studies imply that urban networks have a significant
influence on global carbon emissions [11–13]. As such, policymakers dealing with urban
carbon emission issues should consider local geographical and industrial contexts and
international networks surrounding the city. Global agreements and protocols on climate
change have a consistent influence on urban policy-making [14]. Global city governments
are forced to incorporate carbon neutrality strategies into local urban policy and urban
planning strategies [15]. Korea, whose GHG emissions occupy a large pie of global climate
change, also has been trying to integrate carbon neutrality into urban planning. In this
context, Korea set goals to incorporate urban issues into the national carbon neutrality
strategy for 2050 [16–18].

Urban structure, including physical, social, geographical, and economic characteristics,
influences carbon emission. Some studies on urban systems imply that physical urban land
use derived from government policies affects future GHG emissions [19]. Together with
urban structure, human activities also significantly impact local GHG emissions [20,21].
These results imply that well-designed urban policy and urban planning can influence and
manage its GHG emission level. A series of studies commonly point out that urbanization
directly reduces GHG emissions per person [22]. Furthermore, the city-level analysis of
GHG inventory in China shows GHG uncertainty caused by industrial structure, economic
growth, and population. These studies prove that the urban regional GHG emission
level is destined for complex variables, meaning equity and allocation are not easily
defined [23]. Government policy at the regional city level also contributes to GHG emission
change. In the case of Spain, each province conducts different tax-related policies to
manage GHG. Spatial clustering results are in strong interaction with one another [24,25].
Of course, GHG emission aspects are not perfectly dependent on regional territories.
International companies are vague when pertaining to the places where they emit GHG
exactly. Nevertheless, the spatial performance of each GHG abatement can be sorted
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geographically because the dynamics ultimately depend on each area [26]. Many studies
that analyzed the Korean industry have already suggested the regional level of GHG
emission value. Not only is the measurement needed to judge whether the GHG abatement
objective is approachable, but the evaluation also motivates agents to move toward the
goal voluntarily [27].

The Shift-share analysis is one of the traditional methodologies to quantify the relation
between industry structure and regional characteristics. It is a quick and inexpensive
analysis tool for scattered and decentralized data. If sound statistical basis sets are used
for shift-share analysis [28], they can be applied to the study of regional structure. As
such, this study chooses the classification of 17 urban regions. Some studies indicate
that estimating the inefficiency and checking its drivers for policymakers is essential. It
seems applicable to the part of GHG emission [29]. Other studies with theoretical bases
support the opinions regarding the importance of efficiency evaluation [30]. One study, for
example, uses stochastic frontier analysis when evaluating GHG efficiency. In particular, a
Chinese study has analyzed the relationship between industrial structure and the nation’s
efficiency. It concluded that the systems of energy use significantly impact GHG emissions,
turning in indirect evidence [31]. Suggested flows of theoretical framework focus on what
characteristics of each sort and how much they influence the GHG emission quantity of
each agent behavior. In other words, evaluation needs to set the target with a standard
unit of carbon or energy consumption, the kind of behavior, and so on [32]. Such a target
is mainly represented by the concept of carbon intensity (CI). This concept is an effective
tool for the emission agent behavior, which means the ratio between the units of the GHG
emission and the output of productivity. Many studies investigated carbon emission use CI
in a proper value evaluation of the performance of abatement potential [33–36].

Furthermore, to extract valuable data for analysis, only the carbon emission quantity
per good measured by value added is not enough to conduct research. What factor is chosen
and how much the factor influences the intensity should be sorted. Various methodologies
have been put forward for several decades. Studies suggest classifying what factors
influence energy consumption with a revised method. A study decomposes the energy
intensity ratio into some elements and suggests which factor functions to spend energy
during production [37]. In the late decade, the methodology has been standardized into
a specific form. Slight variations are applied; however, the macroscopic perspective of
methodology is generalized. The following studies are representative examples. One study
decomposes factor CO2 emissions into a population, GDP per capita, and carbon intensity
of production [38]. Many studies analyzing Korea’s status also suggest various models by
focusing on industrial structure. They found out that the technology level of industries
can influence the effort of GHG abatement. This implies the existence of heterogeneity in
intra-sector emission abatement potential [39].

Log Mean Divisia Index (LMDI) is also applied internationally. The index derived by
decomposition analysis compares Pakistan, India, and China, and it shows decoupling due
to environmental impact from economic growth [40]. In addition, the studies indicate that
LMDI is an effective way to conduct decomposition analysis in evaluating carbon emission
and the potential of abatement performance [41,42]. Details of LMDI methodologies are
analyzed next by selecting an affordable form.

3. Methodology and Data
3.1. Methodology—Logarithmic Mean Divisia Index (LMDI) and Shift-Share Analysis

To evaluate national performance sorted by each industrial sector, this study uses
LMDI and shift-share methods. LMDI is an ideal index for interpreting composed data
and adding essential variables to measure economic change. The critical visible factor of
fundamental economic instability, such as GHG emission, infers that the GHG emission can
be decomposed from other related factors. Additionally, statistical residuals do not occur
in the LMDI analysis result, which helps researchers to achieve effective outcomes [43]. In
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this regard, many studies have analyzed the factors contributing to GHG emissions during
the last decade, i.e., [44,45].

Recently, many researchers have analyzed the GHG emissions of industrial sectors
using LMDI, especially in China and Korea [46,47]. Notably, one research study that
examined the Korean industry of 2017 pointed out that Korea is shifting from an energy-
intensive business to high-tech manufacturing. This change implies that government
should reduce energy consumption while maintaining economic growth [48], and also
implies that policies regarding GHG emissions should concern both economic growth
and technical GHG intensity. The national economic condition affects the growth of every
industrial sector. Additionally, the growth of national industry influences the growth of
local and regional industries-. In this respect, Shift share analysis can help extract regional-
specific characteristics. The one advantage of shift-share analysis is that it excludes the
external factors affecting the industrial sector. Lately, shift-share analysis mainly depends
on employment change in the industrial structure [49]. Furthermore, shift-share analysis
has been actively applied to analyze the energy consumption of provinces, which often
visualize its results [50].

In the preceding research, both LMDI and shift-share analysis are used to analyze
GHG emissions through the employment unit. The economic growth effect and GHG
intensity effect measured by GHG emission change with LMDI can be extracted through
shift-share growth, resulting in GHG emission quantities as change effects.

3.2. Data

This study set the time range of the data from 2016 to 2019. This is because of the data
availability. The Korean government has built up GHG emission performance statistics
with CO2 equivalent ton unit from 2016. The 2019 data sets are the latest due to the COVID-
19 pandemic. The pandemic also has the possibility to distort long-term GHG emission
performance by undervaluing GHG risks. For this reason, the period from 2016 to 2019
was selected for this study.

The scope of the industrial sector is the MM industry in Korea, which contributes to
most of the GHG emission inventory. As the energy supply is a significant consumption
of GHG inventory, the concept for the ratio of the GHG consumption of the MM industry
to the total GHG consumption of all sectors also reflects the contribution. According to
GHG inventory statistics of Statistics Korea (KOSTAT), 56% of the total GHG industry
consumption of GHG and 65% of the total GHG industry consumption were used in the
mining manufacturing sector in 2018. The references of data used are as follows.

(1) Korea Energy Agency arranged the energy and GHG emission inventory data. In-
dustrial Sectors Energy and GHG Emission Statistics in 2017 and the same document
in 2020 provided Industrial Sectors Energy and GHG Emission Statistics from Korea
Energy Agency from 2017 to 2020.

(2) Korea Bank provided data, gross output, and value-added of each company sorted
by sectors, with 2015 as the reference year. Korean Standard Industrial Classification,
Classification of Individual Consumption According to Purpose, and Classification of
the Functions of Government are classified. The GDP deflator is adjusted, and the de-
tailed value-added ratio of each company is sorted: National Income Statistics, Korea
Bank, Financial Statement Analysis (FSA), Korea Bank; 2016–2019; 10.3.1.2 12.6.1.

As this study demands data on growth factors, the data can be measured with various
basic units. Mainly, the employment reflects output and value-added owing to the homoge-
nous impact of internal industry production and between industry and province. KOSTAT
provides the total employment, output per employee, and value-added per employee with
provincial data sets: Mining manufacturing survey, KOSTAT. Data collection of results is
also found at some sites. The total input data analysis and information can be obtained in
the National Greenhouse Gas Emission Comprehensive Information System. As such, a se-
ries of data generated 69,126 data in 2016 and 69,975 data in 2019 (Table 1). They are sorted
into 19 mining manufacturing sectors for classifying emission reduction targets (Table 2).
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Table 1. Data Sources (Year: 2016, 2019).

Data Data Source Note

Energy usage and GHG emission
Korea Energy Agency (KEA):
Statistics on energy use and greenhouse
gas emissions

19 industrial classifications

Economic output (Real) Bank of Korea (BOK):
National income accounts data

From Korean Standard Industry Code
(KSIC) classification into 19 target
industries for reduction

Employment Statistics Korea (KOSTAT):
Manufacturing Domestic Supply

From individual corporation data into
19 target industries for reduction

Table 2. Classification by industry sector.

No. Classification No. Classification No. Classification

1 Mining 8 Glass 15 Semiconductor
2 Food and beverage 9 Ceramics 16 Display
3 Textile, etc. 10 Cement 17 Electric/electronics
4 Wood 11 Iron 18 Shipbuilding
5 Paper 12 Non-iron metallics 19 Others
6 Refined petroleum 13 Machine - -
7 Petroleum chemistry 14 Semiconductor - -

3.3. Modeling and Data Statistic

To measure GHG emissions of each local industry sector, this study analyzes the
emission from the following method as described in (1). The GHG total emission is the
input, and the GHG total emission is a summation of each MM industry sector. In addition,
the sector output variable, sector GHG intensity variable, and energy mixture variable are
added. The process derives polynomials of multiple compositions with sigma. The notes
under (1) define the letters in the equation.

gtot,i = ∑
ij

gij = ∑
ij

qi
ei
qi

gij

ei
= ∑

ij
qidimij (1)

g : GHG emission quantity (greenhouse gas inventory).
tot : national total.
i : sorted industry sec tor.
j : energy source.
q : economic output.
e : energy consumption converted by eqCO2.
d : GHG intensty.
m : energy mix.

Through the calculated results, three new variables are defined: output q, GHG inten-
sity d, and energy mixture m. To measure the difference in GHG emission decomposition,
2019 total GHG emission performances in 2016 are deducted from the GHG emission
performances in 2019, which is shown in (2). The other three new effect variables complete
the summation of ∆g The notes under (2) define the letters in the equation.

∆gtot = g2019 − g2016

∆gtot = ∆gp + ∆gd + ∆gm
(2)

∆gtot : national GHG emissions difference over time.
∆gp : national growth effect of mining−manufacturing industries.
∆gd : effect of GHG intensity per output.
∆gm : effect of energe sourse mix.
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Although the effect variables are already defined in (2), a series of multiplied monomi-
als should be converted into summation forms. Hence, (3) illustrates each effect variable.
By taking a logarithm on both sides of the equation, the multiple compositions show the
equation of summation of polynomials. The scaling units for the summation methodology
should be delivered by multiplying the total abatement quantity between times. Table 3
and Figure 1 present the results.

∆gp = g2019−g2016

lng2019−lng2016 ln q2019

q2016

∆gd = g2019−g2016

lng2019−lng2016 ln d2019
i

d2016
i

∆gm = g2019−g2016

lng2019−lng2016 ln
m2019

ij

m2016
ij

(3)

Table 3. Decomposition results of LMDI 1.

Classification Production Effect 2 GHG Intensity Effect 2 Energy Mix Effect 2 Net Increase 2

Mining −88.85 −17.34 32.74 −73.45
Food and beverage 659.90 −1286.19 253.39 −372.91
Textile etc. −871.27 −2037.61 451.11 −2457.77
Wood −56.25 −130.87 28.53 −158.59
Paper −240.22 −313.36 −40.93 −594.51
Refined petroleum 3374.19 −2302.49 −507.91 563.79
Petroleum chemistry 2845.02 1904.25 3069.37 7818.64
Glass −138.39 −153.80 91.35 −200.83
Ceramics 197.32 −300.41 35.10 −68.00
Cement −450.17 −591.81 142.76 −899.22
Iron 189.36 9595.46 149.87 9934.70
Non-iron metallics −427.23 −91.01 276.96 −241.28
Machine 1184.47 −1409.36 567.71 342.82
Semiconductor 5226.78 −1197.27 −56.30 3973.20
Display −135.15 900.24 −89.07 676.01
Electric/electronics −487.05 3016.00 −905.33 1623.63
Vehicles −164.73 33.20 −28.32 −159.85
Shipbuilding −903.99 180.09 63.04 −660.86
Others 208.48 628.11 115.98 952.56

1. Time period: 2016, 2019. 2. Thousand CO2 eq tons.

This analysis is conducted following two assumptions:

(1) Industrial growth per employed population is the same in 2016 and 2019.
(2) Increase in GHG emissions per employed population is the same in 2016 and 2019.

With these two assumptions, regional industrial growth (production effect) depends on
the growth rate of each regional competition characteristic. In addition, each technological
progress (GHG intensity effect) depends on the industry’s growth rate. This study sets the
shift-share model as follows. The growth of an industry in a specific region is developed
following (4). The definitions of the characters are given in (4) notes.

∆pr,i = ∆pn + (∆pn,i − ∆pn) + (∆pr,i − ∆pn,i) (4)

∆pr,i : economic growth of i sec tor of r region.
∆pn : total economic growth of national wide.
∆pn,i : economic growth of i sector of national wide.

The growth of an industry in a particular region is decomposed into three factors,
which are given in (5). The total economic growth effect, industrial structure effect, and
regional competition effect are extracted.

∆pr,i = ∆pn + ∆pi + ∆pc (5)

∆pn : total economic growth effect.
∆pi : industrial structure effect of i sector.
∆pc : regional competition effect of i sec tor of r region.
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This study obtains each industry’s GDP and employment by LRGs as GHG inventory
from 2016 to 2019. The economic growth rates in each industry are also shown. By
the assumptions, the shift-share equation is represented as (6) through GHG emission
quantity unit.

g2016
r,i ∆pr,i = g2016

r,i ∆pn + g2016
r,i ∆pi + g2016

r,i ∆pc (6)

g2016 : greenhouse gas inventory in 2016.
With regard to the LMDI analysis above, this study already provides the three effects.

In this part, this study excludes the energy mix effect because external suppliers control the
variable that production agents cannot adjust. Equation (7) focuses on the production effect
presented by an economic variable and the GHG intensity effect indicating technological
progress, i.e., ∆gr,p,i and ∆gr,d,i.

∆gr,i = ∆gr,p,i + ∆gr,d,i + ∆gr,m,i (7)

Regarding the shift-share analysis, this study already provides the three effects in (6).
Except for national-wide growth as a controlled external variable, each industry growth
effect (∆gi) offers technological progress (∆gr,d,i). The regional competition effect (∆gc)
offers regional economic growth (∆gr,p,i). Equation (8) is the same as (6) in terms of equality.

∆gr,x = ∆gn + ∆gi + ∆gc (8)

Economic effects are grouped between economic variables to compensate for the
regional and industrial effects on GHG emission abatement performance. Technological
effects are grouped between technological variables. The effects derived from LMDI are
converted into adjusted data. They are divided into individual economic and technolog-
ical variables, 17 LRGs × 19 industries. Unidentified geographical distinctive traits or
distinctive technological traits are arranged as in (9).

∆gx,p ×
(

1 + ∆gc
g

)
= ∆g′x,p

∆gx,d ×
(

1 + ∆gx
g

)
= ∆g′x,d

(9)

A scatter plot on the coordinate plane is drawable, as shown in the following Equation (10).
This study defines ∆g′x,p as Economic Local Share Effect (ELSE) with a horizontal axis and
∆g′x,d as Industrial GHG Intensity Effect (IGIE) with a vertical axis.

R2 :
(
∆g′x,p, ∆g′x,d

)
(10)
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3.4. Classification of Industrial Sectors

To measure the status of each industrial sector, a decoupled model was set on the
coordinate plane. This categorization divides the effects of direction into four different
situations for decision-makers who manage GHG emission performance. Area (A), both
desirables, shows the economic growth of a detailed industry is increasing, and GHG
intensity is decreasing. Area (B), economically desirable, shows the economic growth of a
detailed industry sector increasing. However, GHG intensity is increasing. Area (C), both
undesirables, shows the economic growth of a detailed industry is decreasing and GHG
intensity is increasing. Area (D), technological desirable, shows the economic growth of a
detailed industry is declining. However, GHG intensity decreases, as shown in Figure 2.
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Figure 2. Classification coordinate of industrial sectors.

The presence of both desirables (A) does not indicate the highest advantage for GHG
neutrality; instead, it means that a dilemma exists between stakeholders. Similarly, the
presence of both undesirables (C) do not indicate the least advantage for GHG neutrality;
rather, it means that a dilemma exists between stakeholders. From the simple human-
welfare perspective, the situations are desirable and undesirable. However, stakeholders
should choose the opposite decision for carbon neutrality. Instead, technological desirable
(D) means the most advantage for carbon neutrality, although it means ineffectiveness for
the short-term attainment of human welfare. Economic desirable (B) indicates the least
advantage for GHG neutrality, but it means effectiveness in the short-term achievement
of human welfare. Whether (A) and (C) can abate GHG is unpredictable. However,
whether (B) and (D) can achieve the GHG abatement target is predictable. The inner two
stakeholders who desire economic growth or technical progress in GHG intensity evaluate
their performance similarly in (A) and (C). By contrast, inner stakeholders evaluate their
performance oppositely in (B) and (D). An individual LRG faces a different situation
with the hypothesis. It categorizes four positions by 17 LRGs. Moreover, it suggests five
representative detailed MM industries by an LRG, chosen from the distance of a zero-point
as follows. Furthermore, through the ratio of both effects in a particular MM industry, the
aspect of carbon neutrality that each LRG faces is shown in detail.

More importantly, this decoupled classification can derive the following policy im-
plications. At the local level, decision-makers should consider regional characteristics
because the importance of industries that affect carbon emissions varies across regions.
When presenting carbon neutrality strategies by industry, it is unnecessary to present each
region’s industry. The entire country can only present a uniform carbon-neutral process for
each industry. This analysis also suggests the following strategies:

(A) Both Desirables: These industries can take a strategy to continuously expand invest-
ment in carbon-reducing technologies through R&D so that the (+) utility made by the
economic growth effect can guarantee a continuous decline in carbon concentration
in production.
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(B) Economic Desirable: These industries are not currently shifting the (+) utility received
from the economic growth effect to carbon-reducing technological advances. However,
with the utility due to economic growth, they can improve reduction performance by
taking a radical investment strategy to acquire R&D or carbon emission rights.

(C) Both Undesirables: These industries reduce GHG emissions through virtual windfall
profiles in GHG emissions. However, as the ability to change the direction of carbon
concentration effects through technological progress is reduced, strategically, it is
possible to change the industry itself or to attract external technologies or cooperate if
the industry is maintained.

(D) Technological Desirable: These industries can use strategies to maintain and sustain
carbon-reducing R&D through external investment. They can partially reduce the indus-
try’s risk through windfall propitiation and advance GHG emission reduction processes.

With these implications, the results of the classification of each industrial sector will
be discussed thoroughly in the following section.

4. Results

The ELSE and IGIE effects of each LRG as GHG emission performance are shown
in Figure 3. No regions in Area (C) show both undesirables. Ulsan, Daegu, Gangwon,
and Jeju are located in Area (A), and show both desirables. Daegu, Gangwon, and Jeju
show that IGIEs are enough to offset the ELSE. However, Ulsan shows that IGIEs are
not enough to offset the ELSE. Therefore, the organizations should consider what MM
industries are elected and concentrate on carbon neutrality and how agents manage the
trade-off relationship between both effects. Figure 3 supplements them.

Seoul is located in Area (D), which is technologically desirable. Seoul shows the result
desirable for the total abatement of GHG emissions. Both effects can offset performance
derived from the energy mixture effect, and approaching carbon neutrality can be closest
to others in the MM industry. However, whether the ELSE performance is derived from
economic withdrawal or IGIE increase occurring out of MM industries is not certain.
The other LRGs are located in Area (B), which is economically desirable. They show
conventional economic growth, that is, more carbon consumption in production. IGIE in
Gyeonggi shows the potential to convert the direction. The others are not remarkable in
the conversion. They should consider the conversion to carbon neutrality urgently.

The total quantity of GHG change effects in each province is shown above. Each
analysis is too scattered to understand, so a comprehensive analysis should be conducted
to manage national GHG inventory in the future. Motivation and concentration are vital
for carbon neutrality. For the objective, this study conducted additional analyses of the
effects between region and country with detailed MM industries.
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This study chose five significant industries that influence the performance of GHG
abatement. The commonalities and differences between the effects of carbon emissions in
local industries were revealed. Table 4 shows the number of observations in five industries
with significant impacts on the GHG emission performance of 17 LRGs.

Table 4. Observations of five main industries influencing GHG emission performance.

Sector Observed Sector Observed Sector Observed Sector Observed

Mining 1 Refined petroleum 4 Iron 15 Electric/electronics 13
Food and beverage 5 Petroleum chemistry 16 Non-iron metallics 0 Vehicles 0

Textile etc. 5 Glass 0 Machine 5 Shipbuilding 3
Wood 0 Ceramics 1 Semiconductor 8 Others 1
Paper 2 Cement 2 Display 1

Suppose the classification of the reduction target industry is reasonable. In this case,
the commonalities and differences in GHG emissions by LRGs are revealed clearly. As
commodities, the petroleum chemistry industry is observed 16 times in Korean LRGs as one
of the five major industries influencing GHG emission change. The iron industry is shown
15 times, and the electron/-electronics industry is shown 13 times. Wood, non-iron metallics,
and vehicles are not observed. This finding implies that the abatement performance in
those industries is comparatively homogenous compared with other industries. These
industries depend on the national performance of economic growth and GHG technological
progress rather than their LRG performance.

Some differences are noted between LRGs. The food and beverage industry is one
of the five major industries in five LRGs, namely, Sejong, Gangwon, Chungbuk, Jeonbuk,
and Jeju. These LRGs are far from the metropolitan centers but are not also metropolitan
in Korea. The changes in the GHG emission performance of the refined petroleum and
shipbuilding industries show that they follow the geographical and economic scales and
locations near the seashore. The machine industry is in inland LRGs, demonstrated by the
change in its GHG emission performance. When discussing the individual performances for
carbon neutrality, the BAU of each regional industry of the base year should be considered.
As shown in each second graph of each analysis, the ratios of ELSE and IGIE are considered
together. This is due to the heterogeneity of LRGs. Then, each performance of local
industries can be interpreted comprehensively.

Finally, a specific performance index that is adjusted according to the size of each
LRG is necessary. For carbon neutrality, how much hosts should weigh on 19 industries
in each region is analyzed. It refers to the priority of choice and concentration for the
GHG industry from the local level. The index calculation is as follows. In each region, it
calculates how much other industries account for, letting a specific industry that influences
the most significant impact on carbon emission performance be 100. The other industries
are calculated from the weight of the maximum 100. The following index result is helpful
for the national–regional carbon neutrality objective (Table 5). Furthermore, each location
of local industries in categories (A)–(D) is presented in Table 6. If the location change is
remarkable, GHG abatement strategies should be established at the local level. If not, a
unified strategy should be established at the national level. Like the analysis in Table 4, the
weight of industries from a local level comparably shows heterogeneity in GHG emissions.
However, the locations are comparably similar to LRGs. In the 323 cases, the difference is
shown three times in semiconductors and vehicles in Sejong, Gangwon, and Jeju.
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Table 5. Weight of each MM industry in 17 LRGs.

Total Seoul Busan Daegu Incheon Gwanju Daejeon Ulsan Sejong Gyeonggi Gangwon Chungbuk Chungnam Jeonbuk Jeonnam Gyeongbuk Gyeongnam Jeju
Mining 0.94 0.00 0.05 0.11 0.59 0.10 0.25 0.11 2.31 0.26 41.91 0.98 0.33 1.42 0.67 0.32 0.35 6.29
Food and beverage 15.06 5.79 8.95 16.99 8.28 10.01 35.54 0.43 36.79 10.10 100.00 30.90 12.27 31.31 8.35 4.74 10.57 100.00
Textile etc. 23.09 100.00 24.41 100.00 7.07 11.65 25.17 2.71 8.41 10.66 9.85 5.56 3.61 13.39 1.27 9.04 5.57 3.85
Wood 1.48 0.08 0.69 1.37 5.53 0.89 0.76 0.23 2.05 0.85 2.29 0.87 0.50 2.17 0.39 0.37 0.81 0.77
Paper 4.11 11.09 1.13 10.38 2.22 2.32 9.79 0.32 14.77 4.00 2.72 3.63 1.73 2.91 0.41 0.86 1.49 7.64
Refined petroleum 42.56 1.70 10.94 3.22 25.63 0.21 0.51 100.0 1.19 5.11 19.81 6.00 59.31 6.56 89.15 6.20 14.95 2.09
Petroleum chemistry 35.67 10.93 14.18 47.12 37.78 38.63 100.00 8.64 100.00 28.16 48.26 43.80 29.21 26.51 16.93 12.07 22.24 29.58
Glass 2.16 0.27 0.39 1.14 0.82 1.04 2.04 0.14 23.20 1.46 3.25 3.11 4.00 3.22 0.10 1.49 0.71 5.18
Ceramics 3.74 0.49 1.01 3.24 2.42 0.56 1.99 0.18 14.42 1.80 12.28 4.17 3.25 4.82 2.62 3.88 3.08 25.52
Cement 7.75 2.14 1.77 4.55 3.23 3.48 11.43 0.53 30.90 5.08 81.56 14.45 5.99 8.64 5.92 3.42 5.32 39.22
Iron 100.00 9.74 100.00 53.96 100.00 67.73 40.58 15.29 34.68 26.89 60.40 35.85 100.00 100.00 100.00 100.00 100.00 0.45
Non-iron metallics 4.55 0.37 1.24 9.35 5.52 3.37 4.21 2.61 8.25 3.33 0.66 2.50 3.15 5.39 1.34 2.47 2.48 1.50
Machine 19.18 10.53 13.89 49.40 22.57 22.53 50.65 2.38 8.91 14.92 19.10 10.36 10.69 8.05 2.59 6.45 24.72 4.39
Semiconductor 55.87 12.09 0.28 8.11 48.44 100.00 89.18 0.48 1.00 100.00 0.38 100.00 34.80 28.21 1.03 13.77 0.96 6.14
Display 9.49 0.61 0.57 7.47 8.08 1.49 10.63 0.01 45.51 8.56 0.01 8.99 12.20 0.40 0.02 5.48 0.82 0.03
Electric/electronics 31.83 28.90 14.16 31.70 30.66 50.56 50.33 5.05 44.35 27.49 18.34 29.27 15.57 6.21 1.58 17.32 20.72 4.88
Vehicles 1.75 0.03 0.71 3.83 1.18 3.70 1.42 0.91 2.15 0.87 1.65 0.98 1.58 2.06 0.03 0.85 1.45 0.00
Shipbuilding 9.60 0.00 3.22 0.08 0.08 0.08 0.20 14.54 0.02 0.01 0.18 0.00 0.07 0.87 15.35 0.44 23.63 0.81
Others 6.90 13.80 4.88 6.06 8.93 2.22 15.16 0.42 4.61 8.13 11.70 5.39 2.25 3.06 2.43 2.08 1.88 3.78
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Table 6. Location of each MM industry in 17 LRGs.

Total Seoul Busan Daegu Incheon Gwanju Daejeon Ulsan Sejong Gyeonggi Gangwon Chungbuk Chungnam Jeonbuk Jeonnam Gyeongbuk Gyeongnam Jeju
Mining D D D D D D D D D D D D D D D D D D
Food and beverage A A A A A A A A A A A A A A A A A A
Textile etc. D D D D D D D D D D D D D D D D D D
Wood D D D D D D D D D D D D D D D D D D
Paper D D D D D D D D D D D D D D D D D D
Refined petroleum A A A A A A A A A A A A A A A A A A
Petroleum chemistry B B B B B B B B B B B B B B B B B B
Glass D D D D D D D D D D D D D D D D D D
Ceramics A A A A A A A A A A A A A A A A A A
Cement D D D D D D D D D D D D D D D D D D
Iron B B B B B B B B B B B B B B B B B B
Non-iron metallics D D D D D D D D D D D D D D D D D D
Machine A A A A A A A A A A A A A A A A A A
Semiconductor A A A A A A A A D A D A A A A A A A
Display C C C C C C C C C C C C C C C C C C
Electric/electronics C C C C C C C C C C C C C C C C C C
Vehicles C C C C C C C C C C C C C C C C C B
Shipbuilding C C C C C C C C C C C C C C C C C C
Others B B B B B B B B B B B B B B B B B B

Classification—A: Both desirable, B: Desirable for economic growth, C: Both undesirable, D: Desirable for technological development.
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5. Conclusions

This study aimed to investigate two research questions: whether urban economic
structure interrelates with GHG emission and whether heterogeneous industrial structure
by regions indeed affects local carbon emission. To approach this research question, this
study adopted two methodologies, LMDI and shift-share analysis. The LMDI method is
widely used to decompose the effect, and shift-share analysis can quantify the relationship
between the industry and regional characteristics.

The main theoretical contribution of this study is that it considers the local hetero-
geneity in assessing the condition of GHG emissions. Most of the previous studies do
not sufficiently consider the fundamental aspect of regional heterogeneity. For this, with
empirical research, this study proves that heterogeneous urban economic structure interacts
with each element of GHG emission, which demonstrates that carbon abatement aspects
are indeed heterogeneous by urban spatial production. However, there are also some
limitations of this study. First, this study started from the assumption that two essential
variables, economic growth and technological change, have a trade-off. However, these
trade-offs happen mostly in medium- and long-term dimensions, while this study used
limited data, from 2016 to 2019, because of data availability. In addition, the question of
data validity is also another limitation of this study. About 70,000 pieces of data were
collected from the shift-share analysis. However, the LMDI analysis uses sampled data,
with the research assuming that the data are the same. Therefore, further analysis using
long-term and more valid data should proceed.

Some interesting points were also found in the Korean mining and manufacturing
industry analysis. It was proved that industrial structure causes GHG emissions in each
industry. For example, the iron and petroleum chemistry industries show remarkable (+)
quantities in economic growth and technological progress. In contrast, the semiconduc-
tor industry shows the opposite direction in two effects on employment. Additionally,
geographical differences also proved to influence GHG emission status. Based on the as-
sumptions that industrial growth and GHG emission increase per employed population are
the same in 2016 and 2019, the results show a significant difference between LRGs in GHG
emission performances by their industrial structure. For example, inland metropolitan
regions show GHG emission decrease in the textile industry. However, the machine in-
dustry and semiconductor industry offset ELSE and IGIE. Additionally, the IGIE per ELSE
ratio of the machine is more than that of the semiconductor industry. In contrast, inland
non-metropolitan and Jeju in LRGs show the GHG emission decrease in the food and bev-
erage industry. The cement industry shows great occupation in Chungbuk and Gangwon.
Gangwon is the only LRG, including the mining industry in five major industries, and both
effects show (−) direction. Regarding petroleum chemistry, LRGs near the seashore show
a remarkable GHG emission increase. Although the occupation of refined petroleum is
remarkable, it seems that it is not possible to offset the (+) ELSE by the (−) IGIE. Moreover,
the shipbuilding industry in the five industries is observed in three southern provinces
near the seashore.

In brief, economic growth and technological progress in GHG emission aspects are
heterogenous by LRGs, caused by geographical territorial advantage and disadvantage.
This means that policymakers should decide which sector to focus on to achieve carbon
neutrality. Additionally, the dilemmas between stakeholders in carbon neutrality should be
adjusted with a well-designed governance system [51–53]. In achieving carbon neutrality,
there is a dilemma [54] pertaining to the conflicts between stakeholders that can emerge
or pursue different goals in achieving carbon neutrality. The existing governance system
led by central government does not properly consider the differences and heterogeneity
by industry sectors and regions. However, this study reveals the performance of GHG
reduction is distinct by the region and industry. Huge efforts should be made to build a
more detailed governance system that could encompass each different decision maker in
regions and industry. The assessment method provided in this study, four categorizations,
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could be used to set effective strategies for achieving carbon neutrality. More precise and
effective methods should be developed through following research.
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