Characteristics of Liquid-Hydrocarbon Yield and Biomarkers in Various Thermal-Evolution Stages: A Simulation Experiment with the Middle Jurassic Source Rocks in the Northern Margin of the Qaidam Basin
Abstract
:1. Introduction
2. Geological Settings
3. Samples and Methods
3.1. Samples
3.2. TOC, Rock-Eval and Vitrinite-Reflectance (Ro) Analyses
3.3. Thermal-Simulation Experiments and Product Collection and Separation
3.4. Conditions of GC and GC–MS
4. Results and Discussion
4.1. Formation and Quantitative Analysis of Liquid Hydrocarbons
4.1.1. Yield and Composition of Liquid Hydrocarbons
4.1.2. Quantitative Analysis of Saturated and Aromatic Hydrocarbons
4.2. Evolution Characteristics of Biomarkers
4.2.1. N-Alkanes and Isoprenoids
4.2.2. Characteristics of Terpane and Sterane
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tissot, B.P.; Durand, B.; Espitalie, J.; Combaz, A. Influence of mature and diagenesis of organic matter in the formation of petroleum. AAPG Bull. 1974, 58, 499–506. [Google Scholar]
- Lewan, M.D.; Winters, J.C.; McDonald, J.H. Generation of oil-like pyrolyzates from organic-rich shales. Science 1979, 203, 897–899. [Google Scholar] [CrossRef] [PubMed]
- Connan, J. Time-temperature relation in oil genesis. AAPG Bull. 1974, 58, 2516–2521. [Google Scholar]
- Waples, D.W. Time and temperature in petroleum formation: Application of lopatin’s method to petroleum exploration. AAPG Bull. 1980, 64, 916–926. [Google Scholar]
- Monthioux, M.; Landais, P.; Durand, B. Comparison between extracts from natural and artificial maturation series of Mahakam delta coals. Org. Geochem. 1986, 10, 299–311. [Google Scholar] [CrossRef]
- Behar, F.; Vandenbroucke, M.; Tang, Y.; Marquis, F.; Espitalie, J. Thermal cracking of kerogen in open and closed systems: Determination of kinetic parameters and stoichiometric coefficients for oil andgas generation. Org. Geochem. 1997, 26, 321–339. [Google Scholar] [CrossRef]
- Lewan, M.D. Experiments on the role of water in petroleum formation. Geochim. Cosmochim. Acta 1997, 61, 3691–3723. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Liu, W.H.; Qin, S.F.; Meng, Q.X.; Wang., W.C. Geochemical study of thermal simulation on coal and coal with different mediums: Yeilding rate of gaseous and organic liquid products and their evolution. Acta Sedimentol. Sin. 2001, 19, 465–468. (In Chinese) [Google Scholar]
- Ruble, T.E.; Lewan, M.D.; Philp, R.P. New Insights on the Green River petroleum system in the Uinta Basin from hydrous pyrolysis experiments. AAPG Bull. 2001, 85, 1333–1371. [Google Scholar] [CrossRef]
- Pan, C.C.; Jiang, L.L.; Liu, J.Z.; Zhang, S.C.; Zhu, G.Y. The effects of calcite and montmorillonite on oil cracking in confined pyrolysis experiments. Org. Geochem. 2010, 41, 611–626. [Google Scholar] [CrossRef]
- Bayon, R.L.; Brey, G.P.; Ernst, W.G.; Mählmann, R.F. Experimental kinetic study of organic matter maturation: Time and pressure effects on vitrinite reflectance at 400 °C. Org. Geochem. 2011, 42, 340–355. [Google Scholar] [CrossRef]
- Lewan, M.D.; Roy, S. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation. Org. Geochem. 2011, 42, 31–41. [Google Scholar] [CrossRef]
- Tian, H.; Xiao, X.M.; Wilkins, R.W.T.; Tang, Y.C. An experimental comparison of gas generation from three oil fractions: Implications for the chemical and stable carbon isotopic signatures of oil cracking gas. Org. Geochem. 2012, 46, 96–112. [Google Scholar] [CrossRef]
- Wu, L.L.; Fang, X.Y.; Ji, S.H.; Geng, A.S. Thermal alteration of biomarkers in the presence of elemental sulfur and sulfur-bearing minerals during hydrous and anhydrous pyrolysis. Org. Geochem. 2018, 41, 74–89. [Google Scholar] [CrossRef]
- Song, D.J.; Wang, X.Q.; Wu, C.J.; Meng, S.W.; Zhang, M.F.; Li, H.D.; Jiao, H.; Liu, X.D.; Jin, X.; Tuo, J.C. Petroleum Generation, Retention, and Expulsion in Lacustrine Shales Using an Artificial Thermal Maturation Approach: Implications for the In-Situ Conversion of Shale Oil. Energy Fuels 2021, 35, 358–373. [Google Scholar] [CrossRef]
- Tang, Q.Y.; Zhang, M.J.; Zhang, T.W.; Shang, H.; Lin, Y. A Review on Pyrolysis Experimentation on Hydrocarbon Generation. J. Southwest Pet. Univ. Sci. Technol. Ed. 2013, 35, 52–62. (In Chinese) [Google Scholar]
- Behar, F.; Kressmann, S.; Rudkiewicz, J.L.; Vandenbroucke, M. Experimental simulation in a confined system and kinetics modelling of kerogen and oil cracking. Org. Geochem. 1992, 19, 173–189. [Google Scholar] [CrossRef]
- Dieckmann, V.; Schenk, H.J.; Horsfield, B. Assessing the overlap of primary and secondary reactions by closed-versus open-system pyrolysis of marine kerogens. J. Anal. Appl. Pyrol. 2000, 56, 33–46. [Google Scholar] [CrossRef]
- Qin, L.M.; Zhang, Z.H.; Zhu, L.; Liu, H.J.; Xi, W.J. Productions of closed system experiments for Middle Permian source rock in southern Junggar Basin. Nat. Gas Geosci. 2011, 22, 860–865. (In Chinese) [Google Scholar]
- Zhang, X.L.; Yang, X.; Zhou, F.; Ju, P.F.; Chen, Y.X.; Cao, Z.Y.; Xia, Y.Q.; Zhang, X.B. Hydrocarbon yield evolution characteristics and geological significance in temperature-pressure controlled simulation experiment. Nat. Gas Geosci. 2022, 33, 1460–1475. (In Chinese) [Google Scholar]
- Eglinton, G.; Calvin, M. Chemical fossils. Sci. Am. 1967, 216, 32–43. [Google Scholar] [CrossRef]
- Eglinton, G.; Scott, P.M.; Besky, T.; Burlingame, A.L.; Calvin, M. Hydrocarbons of biological origin from a one-billion-year-old sediment. Science 1964, 145, 263–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, K.E.; Moldowan, J.M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments; Prentice Hall: Englewood Cliffs, NJ, USA, 1993; pp. 1–236. [Google Scholar]
- Philp, R.P. Fossil Fuel Biomarkers. In Methods in Geochemistry and Geophysics; Elsevier: New York, NY, USA, 1985; Volume 23, pp. 1–294. [Google Scholar]
- Van Grass, G.W. Biomarker maturity parameters for high maturities: Calibration of the working range up to the oil/condensate threshold. Org. Geochem. 1990, 16, 1025–1032. [Google Scholar] [CrossRef]
- Wang, Y.T. Biomarkers from Pingdiquan (P2) shale by thermal modelling experiments. Xinjiang Pet. Geol. 1992, 13, 240–250. (In Chinese) [Google Scholar]
- Duan, Y.; Zhou, S.X. Study on thermal simulation of carboniferous source rocks in Tarim Basin: II Composition and evolution of biomarkers. Oil Gas Geol. 2001, 22, 13–16. (In Chinese) [Google Scholar]
- Liu, Q.Y.; Liu, W.H.; Liu, Z.Z.; Bi, C.C. Geochemical characteristics of n-alkanes from the pyrolysis of macerals in coals in close system. Bull. Miner. Pet. Geochem. 2007, 26, 234–239. (In Chinese) [Google Scholar]
- Liu, Q.Y.; Liu, W.H.; Meng, Q.X. Geochemical characteristics of steranes in saturated hydrocatbons from coal and exinite in pyrolysis under closed systems. Nat. Gas Geosci. 2007, 18, 249–253. (In Chinese) [Google Scholar]
- Meng, Q.X.; Sun, M.Z.; Fang, X.; Wang, Z.D.; Wang, G.C.; Xu, X. Hydrocarbon generation mechanism and evolution characteristics of biomarkers on low-evolutionary source rocks of the salt lacustrine facies. Acta Sedimentol. Sin. 2007, 25, 800–807. (In Chinese) [Google Scholar]
- Sun, L.N.; Zhang, Z.N.; Wu, Y.D.; Su, L.; Xia, Y.Q.; Wang, Z.X.; Zheng, Y.W. Evolution patterns and their significances of biomarker maturity parameters—A case study on liquid hydrocarbons from type III source rock under HTHP hydrous pyrolysis. Oil Gas Geol. 2015, 36, 573–580. (In Chinese) [Google Scholar]
- Zhang, M.; Yin, C.M.; Chen, Y. Strategy of hydrocarbon exploration in the petroleum system of the northern Qaidam Basin. Acta Sedimentol. Sin. 2005, 23, 143–149. (In Chinese) [Google Scholar]
- Liu, Y.T.; Yang, S.Y.; Hu, K.; Cao, J.; Bian, L.Z.; Wang, L.Q.; Chen, Y. Organic geochemical features of mudstone source rock from member 7 strata of Middle Jurassic age in the northern margin of Qaidam Basin and its hydrocarbon-generation potential. Geol. J. Chi. Univ. 2007, 13, 703–713. (In Chinese) [Google Scholar]
- Cao, J.; Bian, L.Z.; Hu, K.; Liu, Y.T.; Wang, L.Q.; Yang, S.Y.; Chen, Y. Biomarker features of Jurassic mudstone source rock from different sedimentary environments in the northern Qaidam Basin and its applications. Acta Geol. Sin. 2008, 82, 1121–1128. (In Chinese) [Google Scholar]
- Cao, J.; Wu, M.; Chen, Y.; Hu, K.; Bian, L.Z.; Wang, L.G.; Zhang, Y. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China. Chem. Erde-Geochem. 2012, 72, 245–252. [Google Scholar] [CrossRef]
- Tian, J.X.; Li, J.; Pan, C.F.; Tan, Z.; Zeng, X.; Guo, Z.Q.; Wang, B.; Zhou, F. Geochemical characteristics and factors controlling natural gas accumulation in the northern margin of the Qaidam Basin. J. Pet. Sci. Eng. 2018, 160, 219–228. [Google Scholar] [CrossRef]
- Yan, C.F.; Yuan, J.Y.; Chen, Q.L.; Shao, H.S.; Zhang, Z.G. Discovery of the high-quality source rock of the first member of Dameigou Formation in the east part of the northern Qaidam Basin. Acta Pet. Sin. 2011, 32, 49–53. (In Chinese) [Google Scholar]
- Zhai, Z.W.; Zhang, Y.S.; Yang, H.M.; Sha, W.; Nian, X.Q.; Hao, X.M.; Ren, Q.; Zhang, J.J. Characteristics of effective source rocks in the Jurassic and hydrocarbon accumulation patterns in the areas near the northern margin of the Qaidam Basin. Nat. Gas Ind. 2013, 33, 36–42. (In Chinese) [Google Scholar]
- Tang, Y.; Zhang, Y.P.; Li, Y.H. The potential evaluation of shale oil in the seventh member of Dameigou Formation (J2d7) on the northern margin of Qaidam Basin: A case study of Dameigou area. Geol. China 2016, 43, 575–584. (In Chinese) [Google Scholar]
- Qin, J.; Wang, S.Q.; Sanei, H.; Jiang, C.Q.; Chen, Z.H.; Ren, S.M.; Xu, X.M.; Yang, J.J.; Zhong, N.N. Revelation of organic matter sources and sedimentary environment characteristics for shale gas formation by petrographic analysis of middle Jurassic Dameigou formation, northern Qaidam Basin, China. Int. J. Coal Geol. 2018, 195, 373–385. [Google Scholar] [CrossRef]
- Zhang, X.L. Hydrocarbon Generation Mechanism and Resource Potential of Jurassic Source Rocks in Qaidam Basin; University of Chinese Academy of Sciences: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Bai, Y.Y.; Lv, Q.T.; Liu, Z.J.; Simon, C.G.; Sun, P.C.; Meng, Q.T.; Xie, W.Q.; Song, Q.L.; Wang, J.X.; Xu, C. An analysis of sedimentary organic facies in the coal-bearing member of Middle Jurassic Shimengou Formation, Yuqia area, Qaidam Basin. Acta Geosci. Sin. 2021, 42, 501–513. (In Chinese) [Google Scholar]
- Nian, X.Q. Geochemical Characteristics of the Rich Strontium Stratum in Western Qaidam Basin and It’s Geological Significance; University of Chinese Academy of Sciences: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Fang, X.M.; Zhang, W.L.; Meng, Q.Q.; Gao, J.P.; Wang, X.M.; King, J.; Song, C.H.; Dai, S.; Miao, Y.F. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet. Sci. Lett. 2007, 258, 293–306. [Google Scholar] [CrossRef]
- Dai, J.X.; Ye, X.S.; Tang, L.J.; Jin, Z.J.; Shao, W.B.; Hu, Y.; Zhang, B.S. Tectonic units and oil–gas potential of the Qaidam Basin. Chin. J. Geol. 2003, 38, 291–296. (In Chinese) [Google Scholar]
- Fu, S.T. Natural gas exploration in Qaidam basin. China Pet. Explor. 2014, 19, 1–10. (In Chinese) [Google Scholar]
- Fu, S.T.; Ma, D.D.; Guo, Z.Y.; Feng, C. Strike-slip superimposed Qaidam basin and its control on oil and gas accumulation, NW China. Pet. Explor. Dev. 2015, 42, 778–789. [Google Scholar] [CrossRef]
- Wu, Y.D.; Zhang, Z.N.; Sun, L.N.; Li, Y.; He, C.; Ji, L.M.; Su, L.; Zhang, D.W. Hydrocarbon generation and potential in continental organic-rich shales at the highly-mature stage, as determined by hydrous pyrolysis under supercritical conditions. Int. J. Coal Geol. 2018, 187, 83–93. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, X.Y.; Zhang, Z.R.; Teng, G.E. Quantitative characteristics of biomarkers of crude oils of the Tahe Oil Filed. Pet. Geol. Exp. 2014, 36, 206–210. (In Chinese) [Google Scholar]
- Xiao, Z.H.; Hu, G.Y.; Li, Z.S. An analysis of characteristics of hydrocarbon generation from pyrolysis experiment of source rock. Nat. Gas Geosci. 2008, 19, 544–547. (In Chinese) [Google Scholar]
- Zhang, Z.H.; Zhang, H.F.; Gao, X.Z. Effect of clay minerals on hydrocarbon formation during kerogen pyrolysis. Pet. Explor. Dev. 1994, 21, 29–37. (In Chinese) [Google Scholar]
- Lu, S.F.; Zhao, X.G.; Wang, Z.W.; Liu, X.Y. The characteristic of aromatic products of hydrocarbon generated from coal. Acta Pet. Sin. 1996, 17, 48–52. (In Chinese) [Google Scholar]
- Liu, D.Y.; Peng, P.A.; Yu, C.L. Molecular characterization of flash pyrolysates of Jurassic vitrinites in Northwest China and its geological implications. Coal Geol. Explor. 2009, 37, 1–5. (In Chinese) [Google Scholar]
- Powell, T.; Mackirdy, D. Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia. Nature 1973, 243, 37–39. [Google Scholar] [CrossRef]
- Lin, J.H.; Yi, H.S.; Li, Y.; Wang, C.S.; Peng, P.A. Characteristics of biomarker compounds and its implication of Middle Jurassic oil shale seguence in Shuanghu area, northern Tibet Plateau. Acta Sedimentol. Sin. 2001, 19, 287–292. (In Chinese) [Google Scholar]
- Burnham, A.K.; Braun, R.L. Development of a detailed model of petroleum formation, destruction and expulsion from lacustrine and marine source rocks. Org. Geochem. 1990, 16, 27–39. [Google Scholar] [CrossRef]
- Koopmans, M.P.; Rijpstra, W.I.C.; Klapwijk, M.M.; de Leeuw, J.W.; Lewan, M.D.; DamsteÂ, J.S.S. A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter. Org. Geochem. 1999, 30, 1089–1104. [Google Scholar] [CrossRef]
- Xia, Y.Q.; Luo, B.J.; Wang, C.J. The geochemical significance of alkane parameters in the products from pyrolytic simulation experiments. Acta Pet. Sin. 1996, 17, 36–40. (In Chinese) [Google Scholar]
- Ourisson, G.; Albrecht, P.; Rohmer, M. Predictive microbial biochemistry from molecular fossils to procaryotic membranes. Trends Biochem. Sci. 1982, 7, 236–239. [Google Scholar] [CrossRef]
- Wang, T.G. Approach to Biomarker Geochemistry; China University of Geosciences Press: Wuhan, China, 1990; pp. 1–154. [Google Scholar]
- Kolaczkowska, E.; Slougui, N.-E.; Watt, D.S.; Maruca, R.E.; Moldowan, J.M. Thermodynamic stability of various alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers using molecular mechanics calculations. Org. Geochem. 1990, 16, 1033–1038. [Google Scholar] [CrossRef]
- Seifert, W.K.; Moldowan, J.M. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Phys. Chem. Earth 1980, 12, 229–237. [Google Scholar] [CrossRef]
- Mackenzie, A.; Patience, R.; Maxwell, J. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France-I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochim. Cosmochim. Acta 1980, 44, 1709–1721. [Google Scholar] [CrossRef]
- Serifer, W.K.; Moldowan, J.M.; Demaison, G.J. Source correlation of biodegraded oils. Org. Geochem. 1984, 6, 633–643. [Google Scholar]
- Radke, M.; Horsfield, B.; Littke, R.; Rullkötter, J. Maturation and petroleum generation. In Petroleum and Basin Evolution; Welte, D.H., Horsfield, B., Backer, D.R., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 169–229. [Google Scholar]
Well | Lithology | TOC (%) | S0 (mg/g) | S1 (mg/g) | S2 (mg/g) | PG (mg/g) | HI (mg/g) | PC (%) | D (%) | Tmax °C | Ro (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Yu33 | Mudstone | 6.45 | 0.06 | 0.31 | 37.54 | 37.91 | 582 | 3.15 | 49 | 435 | 0.43 |
Temperature | Ro | Isoprenoids | n-Alkanes | Nas | Phs | DBFs | Fs | Bis | An | Be | Fl | Py |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(°C) | (%) | (ug/mg) | ||||||||||
Unheated | 0.45 | 10.53 | 137.41 | 26.46 | 1.89 | 1.74 | 1.69 | 2.23 | 0.19 | 0.01 | 0.14 | 0.12 |
250 | 0.67 | 0.74 | 42.41 | 8.84 | 1.15 | 0.53 | 0.43 | 0.49 | 0.09 | 0.05 | 0.04 | 0.06 |
300 | 0.84 | 0.70 | 55.82 | 18.96 | 2.89 | 0.69 | 0.61 | 0.76 | 0.29 | 0.15 | 0.09 | 0.26 |
350 | 1.21 | 1.49 | 34.64 | 126.33 | 19.29 | 4.54 | 4.74 | 7.73 | 2.74 | 1.02 | 1.07 | 3.14 |
400 | 1.66 | 2.84 | 81.25 | 107.78 | 92.41 | 9.73 | 18.36 | 6.97 | 13.66 | 3.83 | 8.10 | 13.20 |
450 | 2.29 | 6.21 | 168.84 | 102.08 | 18.16 | 4.26 | 7.26 | 7.87 | 1.85 | 0.45 | 2.10 | 2.89 |
Temperature (°C) | Ro (%) | Pr/ Ph | Pr/ nC17 | Ph/ nC18 | CPI | ∑nC21−/ ∑nC22+ | C19T/ C23T | C24Te/ C26T | C29Ts/ C29H | diaC30H/C30H | C29H/ C30H | ∑Pregnanes/ ∑Steranes | C27ααα20R/ C29ααα20R |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unheated | 0.45 | 1.92 | 0.49 | 0.27 | 1.65 | 0.41 | 0.15 | 0.82 | 0.35 | 0.14 | 0.73 | 0.07 | 0.81 |
250 | 0.67 | 1.14 | 0.16 | 0.12 | 1.25 | 0.35 | 0.18 | 0.79 | 0.27 | 0.12 | 0.89 | 0.05 | 0.73 |
300 | 0.84 | 1.05 | 0.07 | 0.04 | 1.17 | 0.26 | 1.20 | 0.75 | 0.13 | 0.06 | 1.01 | 0.11 | 0.62 |
350 | 1.21 | 0.93 | 0.24 | 0.33 | 1.06 | 8.04 | 0.97 | 0.93 | 0.08 | 0.04 | 1.35 | 0.18 | 0.74 |
400 | 1.66 | 1.07 | 0.09 | 0.10 | 1.04 | 3.61 | 0.84 | 1.03 | 0.35 | 0.13 | 0.69 | 0.23 | 0.63 |
450 | 2.29 | 1.34 | 0.15 | 0.26 | 1.03 | 28.57 | 0.70 | 0.97 | 0.33 | 0.12 | 0.68 | 0.21 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, X.; Li, X.; Liu, T.; Sun, Y.; Zhu, G.; Ju, P. Characteristics of Liquid-Hydrocarbon Yield and Biomarkers in Various Thermal-Evolution Stages: A Simulation Experiment with the Middle Jurassic Source Rocks in the Northern Margin of the Qaidam Basin. Energies 2022, 15, 7793. https://doi.org/10.3390/en15207793
Chen Y, Zhang X, Li X, Liu T, Sun Y, Zhu G, Ju P. Characteristics of Liquid-Hydrocarbon Yield and Biomarkers in Various Thermal-Evolution Stages: A Simulation Experiment with the Middle Jurassic Source Rocks in the Northern Margin of the Qaidam Basin. Energies. 2022; 15(20):7793. https://doi.org/10.3390/en15207793
Chicago/Turabian StyleChen, Yongxin, Xilong Zhang, Xiang Li, Tao Liu, Yaru Sun, Guotao Zhu, and Pengfei Ju. 2022. "Characteristics of Liquid-Hydrocarbon Yield and Biomarkers in Various Thermal-Evolution Stages: A Simulation Experiment with the Middle Jurassic Source Rocks in the Northern Margin of the Qaidam Basin" Energies 15, no. 20: 7793. https://doi.org/10.3390/en15207793
APA StyleChen, Y., Zhang, X., Li, X., Liu, T., Sun, Y., Zhu, G., & Ju, P. (2022). Characteristics of Liquid-Hydrocarbon Yield and Biomarkers in Various Thermal-Evolution Stages: A Simulation Experiment with the Middle Jurassic Source Rocks in the Northern Margin of the Qaidam Basin. Energies, 15(20), 7793. https://doi.org/10.3390/en15207793