Influence of Standard Image Processing of 3D X-ray Microscopy on Morphology, Topology and Effective Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Acquisitions
2.2. Image Processing
2.2.1. Filtering
2.2.2. Segmentation
2.2.3. Methodology
2.2.4. Numerical Evaluations
3. Results
3.1. Numerical Results
3.2. Raw Otsu vs. Ilastik
3.3. Pre-Filtering Ilastik vs. Ilastik
3.4. Mean and Median Filtering vs. Ilastik
3.5. Bilateral, Anisotropic Diffusion and Non-Local Means vs. Ilastik
4. Conclusions
- -
- A synchrotron or even a 3D X-ray microscope produces high-clarity, contrasted raw tomographic images, in which noise is very much reduced compared to those obtained by conventional X-ray microtomography. The filtering step in this case is no longer required.
- -
- The results obtained with Ilastik, as an A.I. multi-label segmentation software package, appear quite robust and relatively conform to those that an experienced scientist would obtain by performing a pixel-by-pixel classification.
- -
- Some effective properties of the porous media are strongly affected by very small differences in porosity. We concluded that it was essential to define these properties for each image processing workflow in order to qualitatively and quantitatively determine error sensitivity in Digital Rock Physics. Given the results obtained, we can have every confidence in such a promising technique.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, M.; Sok, R.; Knackstedt, M.A.; Latham, S.; Senden, T.J.; Sheppard, A.P.; Varslot, T.; Arns, C. Mapping Fluid Distributions in 3D at the Pore Scale: Quantifying the Influence of Wettability and Saturation History on Rock Resistivity. In Proceedings of the SPWLA 50th Annual Logging Symposium, The Woodlands, TX, USA, 21–24 June 2009. [Google Scholar]
- Andrew, M.; Bijeljic, B.; Blunt, M.J. Pore-Scale Contact Angle Measurements at Reservoir Conditions Using X-ray Microtomography. Adv. Water Resour. 2014, 68, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Andrew, M.; Menke, H.; Blunt, M.J.; Bijeljic, B. The Imaging of Dynamic Multiphase Fluid Flow Using Synchrotron-Based X-ray Microtomography at Reservoir Conditions. Transp. Porous Media 2015, 110, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Voltolini, M.; Barnard, H.; Creux, P.; Ajo-Franklin, J. A New Mini-Triaxial Cell for Combined High-Pressure and High-Temperature in Situ Synchrotron X-ray Microtomography Experiments up to 400 °C and 24 MPa. J. Synchrotron Radiat. 2019, 26, 238–243. [Google Scholar] [CrossRef] [Green Version]
- Voltolini, M.; Ajo-Franklin, J. The Effect of CO2-Induced Dissolution on Flow Properties in Indiana Limestone: An in situ Synchrotron X-ray Micro-Tomography Study. Int. J. Greenh. Gas Control 2019, 82, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Guibert, R.; Nazarova, M.; Horgue, P.; Hamon, G.; Creux, P.; Debenest, G. Computational Permeability Determination from Pore-Scale Imaging: Sample Size, Mesh and Method Sensitivities. Transp. Porous Media 2015, 107, 641–656. [Google Scholar] [CrossRef] [Green Version]
- Guan, K.M.; Nazarova, M.; Guo, B.; Tchelepi, H.; Kovscek, A.R.; Creux, P. Effects of Image Resolution on Sandstone Porosity and Permeability as Obtained from X-ray Microscopy. Transp. Porous Media 2019, 127, 233–245. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Media; Elsevier: New York, NY, USA, 1972. [Google Scholar]
- Kaestner, A.; Lehmann, E.; Stampanoni, M. Imaging and Image Processing in Porous Media Research. Adv. Water Resour. 2008, 31, 1174–1187. [Google Scholar] [CrossRef]
- Schlüter, S.; Sheppard, A.; Brown, K.; Wildenschild, D. Image Processing of Multiphase Images Obtained via X-ray Microtomography: A Review. Water Resour. Res. 2014, 50, 3615–3639. [Google Scholar] [CrossRef]
- Iassonov, P.; Gebrenegus, T.; Tuller, M. Segmentation of X-ray Computed Tomography Images of Porous Materials: A Crucial Step for Characterization and Quantitative Analysis of Pore Structures. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Sheppard, A.P.; Sok, R.M.; Averdunk, H. Techniques for Image Enhancement and Segmentation of Tomographic Images of Porous Materials. Phys. A Stat. Mech. Its Appl. 2004, 339, 145–151. [Google Scholar] [CrossRef]
- Gu, K.; Zhai, G.; Yang, X.; Zhang, W. Using Free Energy Principle for Blind Image Quality Assessment. IEEE Trans. Multimed. 2015, 17, 50–63. [Google Scholar] [CrossRef]
- Gu, K.; Zhai, G.; Yang, X.; Zhang, W.; Chen, C.W. Automatic Contrast Enhancement Technology with Saliency Preservation. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 1480–1494. [Google Scholar] [CrossRef]
- Anderson, T.I.; Vega, B.; Kovscek, A.R. Multimodal Imaging and Machine Learning to Enhance Microscope Images of Shale. Comput. Geosci. 2020, 145, 104593. [Google Scholar] [CrossRef]
- Andrä, H.; Combaret, N.; Dvorkin, J.; Glatt, E.; Han, J.; Kabel, M.; Keehm, Y.; Krzikalla, F.; Lee, M.; Madonna, C.; et al. Digital Rock Physics Benchmarks—Part I: Imaging and Segmentation. Comput. Geosci. 2013, 50, 25–32. [Google Scholar] [CrossRef]
- Andrä, H.; Combaret, N.; Dvorkin, J.; Glatt, E.; Han, J.; Kabel, M.; Keehm, Y.; Krzikalla, F.; Lee, M.; Madonna, C.; et al. Digital Rock Physics Benchmarks—Part II: Computing Effective Properties. Comput. Geosci. 2013, 50, 33–43. [Google Scholar] [CrossRef]
- Saxena, N.; Hofmann, R.; Alpak, F.O.; Dietderich, J.; Hunter, S.; Day-Stirrat, R.J. Effect of Image Segmentation & Voxel Size on Micro-CT Computed Effective Transport & Elastic Properties. Mar. Pet. Geol. 2017, 86, 972–990. [Google Scholar] [CrossRef]
- Voltolini, M.; Kwon, T.H.; Ajo-Franklin, J. Visualization and Prediction of Supercritical CO2 Distribution in Sandstones during Drainage: An In Situ Synchrotron X-ray Micro-Computed Tomography Study. Int. J. Greenh. Gas Control 2017, 66, 230–245. [Google Scholar] [CrossRef]
- Savage, N. Marriage of Mind and Machine. Nature 2019, 571, S15–S17. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, C.; Manduchi, R. Bilateral Filtering for Gray and Color Images. In Proceedings of the Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), Washington, DC, USA, 4–7 January 1998. [Google Scholar] [CrossRef]
- Perona, P.; Malik, J. Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 629–639. [Google Scholar] [CrossRef]
- Dvorkin, J.; Derzhi, N.; Diaz, E.; Fang, Q. Relevance of Computational Rock Physics. Geophysics 2011, 76, E141–E153. [Google Scholar] [CrossRef]
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Seung, H.S. Trainable Weka Segmentation: A Machine Learning Tool for Microscopy Pixel Classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef]
- Berg, S.; Kutra, D.; Kroeger, T.; Straehle, C.N.; Kausler, B.X.; Haubold, C.; Schiegg, M.; Ales, J.; Beier, T.; Rudy, M.; et al. Ilastik: Interactive Machine Learning for (Bio)Image Analysis. Nat. Methods 2019, 16, 1226–1232. [Google Scholar] [CrossRef]
- Sommer, C.; Straehle, C.; Köthe, U.; Hamprecht, F.A. Ilastik: Interactive Learning and Segmentation Toolkit. In Proceedings of the 8th IEEE International Symposium on Biomedical Imaging, Chicago, IL, USA, 30 March–2 April 2011. [Google Scholar]
- Berg, S.; Saxena, N.; Shaik, M.; Pradhan, C. Generation of Ground Truth Images to Validate Micro-CT Image-Processing Pipelines. Lead. Edge 2018, 37, 412–420. [Google Scholar] [CrossRef]
- Tschumperl, D. The Cimg Library. In Proceedings of the IPOL 2012 Meeting on Image Processing Libraries, ENS Cachan, France, 27 June 2012; p. 4. Available online: https://www.ipol.im/event/2012_imlib/ (accessed on 4 August 2022).
- Franc, J.; Guibert, R.; Horgue, P.; Debenest, G.; Plouraboué, F. Image-Based Effective Medium Approximation for Fast Permeability Evaluation of Porous Media Core Samples. Comput. Geosci. 2021, 25, 105–117. [Google Scholar] [CrossRef]
Nature of the Filter | Segmentation | Porosity % | Specific Surface Area (1/m) | Coordinance | Kxx (×1012 m2) | Kyy (×1012 m2) | Kzz (×1012 m2) |
---|---|---|---|---|---|---|---|
Raw image | Otsu | 22.08 | 19,615 | 5.60 | 4.86 | 5.18 | 4.21 |
Median | Otsu | 21.88 (0.87%) | 16,971 (−13.48%) | 4.85 (−13.33%) | 5.57 (+14.60%) | 5.95 (+14.85) | 4.60 (+9.21%) |
Mean | Otsu | 2 (−0.36%) | 17,183 (−12.40%) | 5.08 (−9.17%) | 5.50 (+13.15%) | 5.89 (+13.66%) | 4.63 (+10.07%) |
Bilateral | Otsu | 22.7 (+0.89%) | 18,516 (−5.60%) | 5.10 (−8.96%) | 5.33 (+9.74%) | 5.69 (+9.86%) | 4.58 (+8.73%) |
Non-local means | Otsu | 22.54 (+2.09%) | 19,317 (−1.52%) | 5.38 (−3.95%) | 5.35 (+10.03%) | 5.72 (+10.40%) | 4.64 (+10.23%) |
Anisotropic Diffusion | Otsu | 22.19 (+ 0.53%) | 18,936 (−3.46%) | 5.26 (−6.07%) | 5.12 (+5.35%) | 5.47 (+5.52%) | 4.42 (+5.12%) |
Raw image | Ilastik | 24.57 (+11.30%) | 25,312 (29.05%) | 6.57 (+17.34%) | 6.04 (+24.26%) | 6.27 (+21.12%) | 5.50 (+30.59%) |
Anisotropic Diffusion | Ilastik | 24.55 (+11.18%) | 25,940 (+32.25%) | 6.61 (+18.14%) | 6.21 (+27.66%) | 6.44 (+24.36%) | 5.60 (+33.34%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guibert, R.; Nazarova, M.; Voltolini, M.; Beretta, T.; Debenest, G.; Creux, P. Influence of Standard Image Processing of 3D X-ray Microscopy on Morphology, Topology and Effective Properties. Energies 2022, 15, 7796. https://doi.org/10.3390/en15207796
Guibert R, Nazarova M, Voltolini M, Beretta T, Debenest G, Creux P. Influence of Standard Image Processing of 3D X-ray Microscopy on Morphology, Topology and Effective Properties. Energies. 2022; 15(20):7796. https://doi.org/10.3390/en15207796
Chicago/Turabian StyleGuibert, Romain, Marfa Nazarova, Marco Voltolini, Thibaud Beretta, Gerald Debenest, and Patrice Creux. 2022. "Influence of Standard Image Processing of 3D X-ray Microscopy on Morphology, Topology and Effective Properties" Energies 15, no. 20: 7796. https://doi.org/10.3390/en15207796
APA StyleGuibert, R., Nazarova, M., Voltolini, M., Beretta, T., Debenest, G., & Creux, P. (2022). Influence of Standard Image Processing of 3D X-ray Microscopy on Morphology, Topology and Effective Properties. Energies, 15(20), 7796. https://doi.org/10.3390/en15207796