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Abstract: Aiming at the problem that the current dynamic economic dispatch (DED) fails to consider
the response risk of spinning reserve caused by the fluctuation and uncertainty of wind power,
we work out a DED problem considering time-coupling spinning reserve response risk while the
stochasticity and variability arising from RESs are taken into consideration. The developed framwork
unified the response risk of reserve caused by forced shutdown of the unit into the response risk
caused by time coupling. The expected customer interruption cost (ECOST) and the expected
abandoned wind cost considering this reserve response risk are added to the objective function.
While seeking the minimum objective function, the system is automatically configured with suitable
reserve to ensure the consistency of the system’s response risk in each period. An improved multi-
universe parallel quantum genetic algorithm was used to solve the model. Numerical examples and
analysis prove the effectiveness and feasibility of the proposed method.

Keywords: dynamic economic dispatch; multi-universe parallel quantum genetic algorithm; power
system; response risk; spinning reserve

1. Introduction

China [1], United States [2], and Europe [3] have, respectively, proposed the goal
of achieving 60%, 80%, and 100% of electricity from renewable energy by 2050. Wind
power generation, as the most economically promising power generation method among
non-water renewable energy sources, is being developed as an alternative energy source
to a dominant energy source [4]. However, due to inherent characteristics of fluctuation
and uncertainty, the integration of large-scale wind power into the power grid creates a
significant impact on the operation and dispatch of the power system [5–8].

The fluctuation of wind power means that its maximum power output can be changed
continuously through time, while the uncertainty means that its maximum output cannot
be accurately predicted. The fluctuation characteristic of wind power between different
dispatch periods can be handled by adjusting base points of conventional units, while uncer-
tainty and fluctuation of wind power within a single period of time require a certain amount
of additional spinning reserve in dispatch. Both of them will further strengthen the cou-
pling of dispatch resources at different time intervals; therefore, compared to static optimal
dispatch methods, forward-looking dynamic economic dispatch [9] can be more suitable for
power systems with high wind power scales of wind power integration [10,11]. Methods
of improving traditional deterministic dynamic economic dispatch to cope with the impact
of wind power integration have always been hot topics in academic research [10–14]. How-
ever, current research fails to consider carefully the impact of wind power uncertainty and
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fluctuation on the response risk of spinning reserve, which may easily lead to inconsistent
response risk levels, and make dispatch decisions conservative or inevitably aggressive.

In traditional dynamic economic dispatch problems, the response risks of spinning
reserve caused by faults of thermal units were mainly considered. Reference [15] proposed
that the reserve configuration in dynamic economic dispatch should be able to maintain
the response risk of the system at a given level in each period, and gave a heuristic al-
gorithm for dynamic economic dispatch considering the risk of system response. This
method decouples the time period through the accumulation variable method. For a sin-
gle time period after decoupling, an iterative method to evaluate the risk of dispatching
and response was utilized and required that the response risk in each time period of the
system was maintained at the given level. In [16], the expected customer interruption
cost (ECOST) in dispatch was considered in the objective function through the expected
energy not supplied (EENS), and optimized the interrupted energy assessment rate (IEAR)
to configure appropriate backups. Reference [17] considered the risk of load-loss caused
by forced outage of conventional units, and took the risk of spinning reserve under N-1
condition by setting the risk of load-loss into account. In [18], the system reserve capacity
was divided into automatic generation control (AGC) capacity and emergency reserve ca-
pacity, and considered the system reserve risk under N-1 condition with chance-constraint.
However, these studies do not consider the new risk of spinning reserve response led by
the integration of wind power.

To cope with fluctuation and uncertainty of wind power, the reserve provided by
the power system needs faster response speed, bi-directional regulation capability, and
better continuous action capability, which can be called flexibility [19,20]. Grid flexibility
has become an essential resource to consider in actual power system dispatch and control.
References [21,22] describe a pilot project in Greece that addresses the challenges of con-
gestion and balancing management that system operators face due to high penetration
of renewable energy sources. Available resources of the grid’s flexibility are identified
and the results suggest that flexibility resources derive through improved predictions;
efficient forecasts from numerical weather predictions with greater spatial resolution and
integration of artificial intelligence prevent the power system from entering dangerous
topological or operational states. The need for flexibility leads to a significant increase in
the magnitude and frequency of standby actions. This leads to increased interlocking of
standby releases between different time periods, and thus the risk of standby response due
to time-period coupling are greatly increased. In current economic dispatch research, this
effect is mainly indicated in different measures for power regulation rate constraints of con-
ventional units. In traditional economic dispatch, conventional units dominate the power
supply. Correspondingly, the unit regulation rate constraint is utilized from base point
to base point due to smaller action amplitudes of the reserve caused by load forecasting
errors and the lower probability of accident reserve action. However, with the increase in
the penetration rate of renewable energy power generation, on one hand, the dominant
position of conventional units is being weaken; on the other hand, the amplitudes and
frequencies of reserve actions also continue to rise. The traditional unit regulation rate con-
straint is no longer applicable. For this purpose, reference [23] uses a flexibility constraint
on the unit regulation rate, which requires that the reserve provided by the units can be
reversed and completely released in two adjacent periods. Obviously, these constraints are
stricter than traditional forms. Additionally, these constraints can ensure that the reserve
provided by the units is decoupled between time periods, indicating that the response risk
generated by the time-period coupling is zero. These constraints are suitable for a rolling
economic dispatch method for which only two time periods are considered, but dynamic
economic dispatch methods need to take multiple time periods into consideration, so the
risk level set is too harsh and its decisions will be too conservative to ensure the economy.
Current dynamic economic dispatch research does not consider how to determine this type
of spinning reserve response risk.
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Inspired by the aforementioned works, this paper proposes a new dynamic economic
dispatch method with high levels of wind power integration. The method presented
considers comprehensively the response risks caused by the coupling and containment
between different time periods provided by conventional units, together with the response
risks caused by forced outage, which ensures the consistency of the response risk level
of the system during each time period. This paper takes the expectations of user outage
loss and wind curtailment considering the response risks of spinning reserve into account
in the objective function. This method pursues a minimum for the objective function
and automatically disposes suitable reserve for the system. Owing to a large number of
convolution calculations in the optimization process, traditional methods are difficult to
solve. This study adopts an improved multi-universe parallel quantum genetic algorithm
to improve the speed and convergence of model solution.

The rest of this paper is structured as follows. Section 2 introduces the calculation of
spinning reserve response risk. Section 3 describes the uncertainty in dynamic economic
dispatch. Section 4 formulates the dynamic economic dispatch optimization framework.
Section 5 presents an improved multi-universe parallel quantum genetic algorithm to solve
the proposed dynamic economic dispatch optimization model. Case studies are described
in Section 6 to verify the proposed model, and the conclusions are drawn in Section 7.

2. Spinning Reserve Response Risk
2.1. Time-Period Coupling Response Risk

The power regulation capability of the unit is limited by the technical constraints of
boiler, steam turbine, and generator operation for a period of time. Additionally, adjustment
of the decision-making unit’s power output between adjacent periods requires the use of a
portion of the unit’s power conditioning capacity. Because of the limited power regulation
capability, the reserve capacity release for one time period may cause the reverse part of
the reserve capacity of the next period to be unresponsive, as shown in Figure 1.

Figure 1. Unresponsive reserve from a generator due to time coupling. (a) The unresponsive
downward reserve capacity. (b) The unresponsive upward reserve capacity.

In Figure 1a, Pg,t is greater than Pg,t+1; the up-regulated spinning reserve capacity
provided by unit g in time period t is Ru

g,t. Let it be released as x, the maximum down-
regulated power of unit g in a single time period is rd

g; then, in time period t + 1, the
operating point of the unit can only go from point A to point B at most, and the part B-C of
the down-regulated spinning reserve capacity Rd

g,t+1 provided by unit g in time period t + 1

becomes an unresponsive reserve capacity. Similarly, when Pg,t+1 > Pg,t, the release of Rd
g,t

may also result in an unresponsive upward reserve capacity in Ru
g,t+1 due to the limitation

of the maximum upward power ru
g of unit g in the time period, as shown in Figure 1b.
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In general, if the reserve capacity and active power base-point settings provided by
unit g on adjacent time periods satisfy the following conditions:

Ru
g,t + Rd

g,t+1 > rd
g − Pg,t + Pg,t+1 (1)

then, due to the upward release of Ru
g,t, there will be an unresponsive downward reserve

capacity in Rd
g,t+1. The resulting response risk, i.e., the unresponsive downward reserve

capacity expectation, is expressed as:

Fd
g,t+1 =

∫ Ru
g,t

rd
g−Pg,t+Pg,t+1−Rd

g,t+1

ρg,t(x)(x + Rd
g,t+1 − rd

g + Pg,t − Pg,t+1)dx (2)

where Fd
g,t+1 is the time-period coupling response risk of down-regulating rotary reserve

capacity Rd
g,t+1 provided by unit g at time period t + 1; ρg,t is the action probability density

function of the reserve capacity of unit g at time period t, which is determined by the reserve
release strategy of the system and the prediction error distribution of random quantities. Its
specific expression is given in the next section. The second term in the integral refers to the
down-regulated reserve capacity in Rd

g,t+1 that cannot respond when Ru
g,t is up-regulated

and x is released. Let x be positive when the rotary reserve capacity is released up and
negative when the rotary reserve capacity is released down.

Similarly, if unit g satisfies the following conditions:

Rd
g,t + Ru

g,t+1 > ru
g + Pg,t − Pg,t+1 (3)

then the release of Rd
g,t will generate a response risk in Ru

g,t+1, triggered by the time-period
coupling with a risk expression of:

Fu
g,t+1 =

∫ Ru
g,t+1−ru

g−Pg,t+Pg,t+1

−Rd
g,t

ρg,t(x)(−x + Ru
g,t+1 − ru

g − Pg,t + Pg,t+1)dx (4)

where Fu
g,t+1 is the time-period coupling response risk provided by unit g at time period t + 1

to increase the spinning reserve capacity; the second term in the integral is the up-regulated
reserve capacity in Ru

g,t+1 that cannot respond when Rd
g,t releases |x|.

As a result, the response risk of the reserve capacity provided by unit g in time period
t + 1 due to coupling ties in adjacent time periods, which can be expressed as:

Fg,t+1 = Fd
g,t+1 + Fu

g,t+1 = f (Rd
g,t, Ru

g,t, Rd
g,t+1, Ru

g,t+1, Pg,t+1 − Pg,t) (5)

2.2. Unified Calculation of Spinning Reserve Response Risk

Considering that the time-coupled response risk mainly describes the response risk
in AGC capacity release, and to ensure the consistency of AGC capacity and accidental
reserve capacity response risk level, this paper organically unifies the reserve response risk
caused by forced outage of units into the time-coupled response risk, and gives a unified
expression of spinning reserve response risk.

Fs
t = Fsu

t + Fsd
t (6)

Fsu
t = ∑k∈S [ϕk(∑g∈U Ru

g,t + ∑g∈A Fu,k
g,t )] (7)

Fsd
t = ∑k∈S [ϕk(∑g∈U Rd

g,t + ∑g∈A Fd,k
g,t )] (8)

Fd,k
g,t+1 =

∫ Ru
g,t

rd
g−Pg,t+Pg,t+1−Rd

g,t+1

ρk
g,t(x)(x + Rd

g,t+1 − rd
g + Pg,t − Pg,t+1)dx (9)
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Fu,k
g,t+1 =

∫ −Rd
g,t

Ru
g,t+1−ru

g−Pg,t+Pg,t+1

ρk
g,t(x)(−x + Ru

g,t+1 − rd
g − Pg,t + Pg,t+1)dx (10)

ρk
g,t(x) = ρg,t(x− βk

g,t∑m∈U Pm,t) (11)

βk
g,t = βg,t/∑m∈A βm,t (12)

Equation (12) shows the effect of the forced outage of the unit on the participation
factors of the available units. The power generation of the forced outage unit needs to be
replaced by the release of the spinning reserve capacity of the remaining units, so the action
probability density function of the available unit reserve capacity is shifted to the right, as
shown in (11). Equations (9) and (10) indicate the impact of the forced outage of the unit on
the time-coupling response risk of the available unit reserve. After the unit is forced to the
outage, its spinning reserve capacity is completely invalid, as shown in (7) and (8).

3. Uncertainty in Dynamic Economic Dispatch
3.1. Uncertainty Description of Load

System load can be expressed by the sum of short-term forecasting and forecasting
errors, namely:

PL,t = PL f ,t + εL,t (13)

Given the periodicity of the load and the maturity of the load forecasting, the standard
deviation of the load forecasting error within the short-term forecasting range can be
expressed as a percentage of the predicted load value:

σL,t =
z

100
PL f ,t (14)

3.2. Uncertainty of Wind Power

If the system contains a large number of fans with rich geographical diversity, it can
also be assumed that the actual value of wind power is equal to the predicted value plus
the normal distribution error.

Pw,t = Pw f ,t + εw,t (15)

The relative error in wind power forecasting is greater than the load. In addition, the
standard deviation of this error increases with the forecast time scale. In [24], the standard
deviation of the wind power prediction error is plotted as a function of the standardized
predicted power for a collection of wind farms included in a 140 km diameter region, and
the standard deviation of the wind power prediction error can be expressed as:

σw,t = αT Pw f ,t + µTWI (16)

3.3. Uncertainty Description of Net Load

System net load demand Pd,t is the difference value between load and wind power:

Pd,t = PL,t − Pw,t = PL f ,t − Pw f ,t + εd,t (17)

where, εd,t is the error of the combination of load and wind power forecasting error, which
obeys the Gaussian distribution with a mean value of zero. Because the load is not related

to the wind power forecasting error, its standard deviation is
√
(σL,t)

2 + (σw,t)
2.

3.4. Uncertainty Description of Spinning Reserve Release

The effect of forced unit shutdown on system reserve release is given in Section 1, and
only the release model for the reserve provided by the unit in the non-failure condition is
given here.
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In the non-fault condition, the main role of the spinning reserve is to smooth the power
imbalance caused by the prediction error of load and intermittent power output, so the
action distribution in the spinning reserve is directly collinear with the prediction error
distribution in the net system load. If the release strategy of unit reserve is assigned by
participation factor, the action probability density function of each unit reserve with known
net load prediction error distribution can be expressed as:

ρg,t(x) =



0; (x > Ru
g,t) ∪ (x < −Rd

g,t)

εd,t(x/βg,t); −Rd
g,t < x < Ru

g,t∫
y≤−Rd

g,t/βg,t
εd,t(y)dy; x = −Rd

g,t∫
y≥Ru

g,t/βg,t
εd,t(y)dy; x = Ru

g,t

(18)

The derivation process follows: εd,t(A) is the probability that the net load forecast
error is A. If unit g is not limited by reserve capacity, the reserve it needs to release is Aβg,t,
and the action probability is also εd,t(A); replacing Aβg,t with x, the probability density
function of unit g reserve action is εd,t(x/βg,t) when −Rd

g,t < x < Ru
g,t; similarly, the action

probability density function of the remaining parts can be derived.

4. Optimization Model for Dynamic Economic Dispatch
4.1. Objective Function

The dispatch target is the minimum sum of the power generation cost of the system,
the user’s expectation of power failure loss, and the expectation of wind abandonment loss:

min
T

∑
t=1

N

∑
g=1

Cg(Pg,t) + IEAR

T

∑
t=1

EENS,t + AWAR

T

∑
t=1

EWEA,t (19)

The first term in (19) is the total fuel cost of a conventional unit, wherein the fuel cost
of the unit taking into account the valve point effect [25] is:

Cg(Pg,t) = agP2
g,t + bgPg,t + cg+

∣∣∣dg sin[eg(Pmin
g − Pg,t)]

∣∣∣ (20)

The second term in (19) is the customer outage loss expectation, where the power
shortage expectation due to insufficient system up-spinning reserve is:

EENS,t = ∆t
∫

x> ∑
g∈N

Ru
g,t−Fsu

t

εd,t(x)[x− ( ∑
g∈N

Ru
g,t − Fsu

t )]dx (21)

The third term in (19) is the expectation of wind abandonment loss, which results in
wind abandonment when the system that takes into account the response risk reduces the
spinning reserve capacity to be insufficient, and the expectation of wind abandonment loss
power is:

EWEA,t = ∆t
∫

x<− ∑
g∈N

Rd
g,t+Fsd

t

εd,t(x)[−x− ( ∑
g∈N

Rd
g,t − Fsu

t )]dx (22)

If considered from the perspective of traditional economic dispatch problems, the
cost of wind abandonment in the objective function, i.e., AWAR, can be set to 0, because
if the solution of optimal dispatch produces wind abandonment, it indicates that the
cost of absorbing this part of wind power is higher than the fuel consumption cost of
conventional units producing the same amount of electricity. However, if social benefits
such as environmental protection are further considered, it is necessary to set a certain cost
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for wind abandonment. This article sets the value of AWAR from the perspective of carbon
trading value as:

AWAR =
1
N

N

∑
g=1

δg · PCO2 (23)

4.2. Constraints

The following constraints need to be satisfied in the objective search of (20).

1. Active power balance constraints in each period:

N

∑
g=1

Pg,t = PL f ,t − Pw f ,t (24)

2. The output power capacity constraints for each unit in each period:

Pg,t + Ru
g,t ≤ Pmax

g (25)

Pg,t − Rd
g,t ≥ Pmin

g (26)

3. Constraints on setting reserve capacity for each unit in each period:

0 ≤ Ru
g,t ≤ min(ru

g , rd
g − Pg,t + Pg,t+1) (27)

0 ≤ Rd
g,t ≤ min(rd

g, ru
g + Pg,t − Pg,t+1) (28)

where the limitation of the first items ru
g and rd

g of the min function ensures that the unit g
can completely release the set reserve capacity during the period; the second limitation is
to ensure that when the reserve capacity is fully released in that period, the active power
output base point of the unit in the next period can be achieved.

The DED model illustrated in (19)–(28) is one of the implementations of the approach
proposed in this paper. The central advancement of the DED model proposed in this paper
over existing DED models is that it takes into account the response risk of the spinning
reserve provided by the unit due to flexibility constraints. To apply the proposed method to
an existing AGC program, such as Siemens’ commercial AGC program, it is only necessary
to calculate the spinning reserve response risk according to (6)–(12). Then, the spinning
reserve response risk can be removed from the reserve capacity, and the actual effective
reserve capacity of the unit is obtained, replacing the original reserve capacity. The specific
expression of effective reserve can be adjusted according to the type of DED model (e.g.,
stochastic model, robust model). The DED model proposed in this paper can be further
extended to other forms of renewable energy sources such as photovoltaic, and the key
problem to be solved is how to unify the different uncertainty distributions in various types
of renewable energy sources and derive the uncertainty description of spinning reserve
release, which is the next step of this paper.

5. Solution of Dynamic Economic Dispatch Optimization Model

In this paper, an improved multi-universe parallel quantum genetic algorithm is used
to solve the proposed dynamic economic dispatch optimization model. Among them, the
adaptive Simpson integral method is used in the numerical calculation of the integration of
the objective function. In addition, considering the relatively small probability of multiple
faults during the dispatching time, this paper adopts the simplified treatment of indicators
such as the probability of loss of load in the calculation of the commissioning risk degree
in [26], and the EENS,t and EWEA,t are calculated by solving the two faults.
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Similar to the multi-population genetic algorithm [27], the multi-universe parallel
quantum genetic algorithm also has the problem that it is difficult to select the information
exchange rate between populations. When too much information is exchanged, it reduces
the diversity of individuals within various populations, loses the parallel algorithm’s fea-
ture of searching in multiple directions simultaneously, and reduces the algorithm’s global
superiority-seeking ability. When too little information is exchanged in the populations, it
again leads to ineffective propagation of outstanding individuals and reduces the conver-
gence speed of the algorithm [28]. For this reason, this paper improves the multi-universe
parallel topology of the multi-universe parallel quantum genetic algorithm by dividing
the universes into main universes and minor universes. The small universes can only
be attached to a specific main universe, and the information can only be transmitted in
the direction from the small universe to the main universe it is attached to, or between
different main universes. In this way, on the one hand, the individual diversity and inde-
pendent evolution characteristics of the small universe are maintained, and at the same
time, the independent characteristics of the small universe can also be transmitted to the
main universe attached to it, maintaining a certain difference between the main universes,
and ensuring the breadth of the algorithm’s search space; on the other hand, by adopting
the optimal migration strategy, the excellent individuals in the small universes can also be
effectively propagated in the main universes, ensuring the convergence of the algorithm.
The improved multi-universe parallel superstar row structure is shown in Figure 2. Since
only the parallel topology structure is improved, it is equivalent to a special form of the
original multi-universe parallel quantum genetic algorithm, and the global convergence of
the algorithm remains unchanged [29].

Figure 2. Improved multi-universe superstar structure. MU denotes the main universe and LU
denotes the small universe.

Taking the active base point and spinning reserve capacity setting of each conventional
unit in each period as individual genes, the algorithm flow of solving the dynamic economic
dispatch model based on the improved multi-universe parallel quantum genetic algorithm
is shown in Figure 3. Among them, the multi-universe parallel topology structure is shown
in Figure 2. The specific implementation of multi-state genetic quantum bit encoding,
quantum rotating gate and non-gate evolution, and optimal migration and quantum
crossover operation can be found in [29].
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Figure 3. Flowchart of the improved multi-universe parallel quantum genetic algorithm.

6. Example Analysis

This paper uses Matlab-R2019b to write a test program, and uses the CUDA (Compute
Unified Device Architecture) toolbox to call GPU accelerated parallel operations. The
CUDA programming model uses CPU as the host and GPU as the co-processor. CPU
is responsible for logical transaction processing and serial computing; GPU focuses on
performing parallel processing tasks. The improved multi-universe parallel quantum
genetic algorithm used in this paper is suitable for the CUDA programming model. GPU
(GeForce GTX 1650) is responsible for independent parallel evolution in each universe, and
CPU (Intel i5-9300H) is responsible for optimal migration and quantum cross-operation
between universes.

The constructed 10-unit system is used as an arithmetic example to verify the method
of this paper. The characteristic data of each unit are shown in Table A1 in the Appendix A.
The load and wind power forecast data are used from actual forecast data, publicly available
for the Irish grid [30], as shown in Figure 4. The length of a single time period for dynamic
economic dispatch is 15 min, and the number of forward-looking periods T is 16 (see
reference [24] for the selecting the number of forward periods). The current share of wind
power generation in the Irish grid is about 50–60% [30], and the total wind power generation
in the example of this paper accounts for 43.9% of the total load power. The parameters
in the model follow: z takes 2 [31]; αT and µT take 0.15 and 0.018 [31], respectively; IEAR
takes 4 USD/S [16]; PCO2 takes 10 USD/t [32].



Energies 2022, 15, 7831 10 of 16

Figure 4. Forecast data of load and wind power.

The parameters of the improved multi-universe parallel quantum genetic algorithm
are as follows: the number of genetic generations is 100; the number of main universes
is 4; the number of small universes attached to each main universe is 3; the number of
individuals in each main universe is 40; the number of individuals in each small universe is
30; the migration scale between main universes is 10%, the migration period is 8 generations,
and the selection probability of quantum crossover is 20%; the migration scale of small
universes to main universes is 10%, the migration period is 4 generations, and the selection
probability of quantum crossover is 30%; the probability of quantum mutation in each
small universe is 20%; the probability of quantum mutation in each main universe is 10%.

6.1. Impact Analysis of Unit Regulation Rate Constraint Forms

Initially, in order to analyze the impact of different forms of unit regulation rate
constraints on dynamic economic dispatch, the following three models are used to optimize
the dispatch of the test system: this research model (referred to as M1); on the basis of this
research model, the greater-than signs in (1) and (3) are changed to less-than or equal-to
signs, and they are added to the constraints, so that it is ensured that the unit reserve
will not generate response risk due to time coupling, i.e., using the unit regulation rate
constraint form given in [33] (referred to as M2); on the basis of this research model,
the time-coupled response risk of the reserve is no longer calculated, and (28) and (29)
are changed to the traditional unit reserve capacity constraint and unit regulation rate
constraint form (referred to as M3).

The specific situation for each model dispatch solution is shown in Table 1. Table 1
also presents the spinning reserve capacity set for unit 6 during the period 7:00–7:15 to
facilitate illustration of the impact of different forms of regulation rate constraints on the
reserve capacity setting for each model unit.

Table 1. Comparison of optimal dispatch solutions for each model.

DED Model Total Cost/MUSD Cg/MUSD EENS/MUSD EWEA/MUSD FS/GW Ru
6,11/MW Rd

6.11/MW

M1 3.1320 2.3411 0.7891 0.0018 1.4207 36.0000 18.9507
M2 3.2144 2.3759 0.8131 0.0254 0.8101 36.0000 4.3113
M3 3.1602 2.3118 0.8265 0.0219 2.3214 36.0000 37.2207

Unit 6 is in the mid-range operation during the period 7:00–7:15, and for M3 using
the conventional unit regulation rate constraint, the reserve capacity setting of unit 6 is
only limited by its regulation rate, and its set upward and downward spinning reserve
capacities are both 36 MW, but as can be seen in Figure 4, the net system load is in the
rising phase during the period 7:00–7:15, and the unit 6 base point needs to be adjusted
for climbing, so that the release of unit 6’s downward spinning reserve capacity will lead
to more time-coupled response risk in its upward spinning reserve in the next period, as
shown in Figure 1; its expectation of user outage loss in the next period will be increased in
order to reduce the expectation of wind abandonment loss during this period. M3 has set
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the highest reserve capacity, but it does not consider the response risk from time coupling,
resulting in the highest expectation of customer outage loss and the highest total reserve
response risk.

In contrast, in order to ensure that no time-coupled response risk is generated at all,
M2 allows the unit to set a very small downward spinning reserve capacity during the unit
climbing phase, which leads to an increase in the expectation of wind abandonment losses,
while the spinning reserve capacity set for the unit in M2 is also more restricted during the
net load drop and relatively flat phase; i.e., it leads to a larger restriction on the reserve
capacity release in this time period in order not to generate time-coupled response risk in
the next time period. Although M2 recognizes the time-coupled response risk of reserve, it
still wants to continue the traditional idea of deterministic reserve: unit failure is a small
probability event and unit reserve capacity can be considered to be available with a high
probability of certainty. The total reserve response risk of M2, triggered only by unit failure,
is minimal, but its total cost is instead the highest.

From this example, it can be seen that the method in this paper allows a certain
uncertainty in reserve setting (time-period coupling response risk), and no longer requires
reserve to be deterministic according to the traditional thinking, but takes the total social
benefit as the index, and the reserve setting takes into account the reserve response risk
caused by the forced outage of the unit and time coupling, which ensures the consistency
of the system response risk in each time period and reduces the operation whose total cost
is minimal.

6.2. Analysis of the Impact of Wind Power Volatility and Uncertainty

In order to analyze the impact of wind power volatility and uncertainty on dynamic
economic dispatch, the following scenarios are constructed based on the original test
scenario (S1): no wind power volatility scenario (S2) [34], where wind power output is
constant and its value is the average value of the original wind power output during the
dispatch time; no wind power uncertainty scenario (S3), where wind power prediction
error is 0; no wind power volatility and uncertainty scenario (S4), the wind power output
is a constant mean value, and the wind power prediction error is 0.

Dynamic economic scheduling is performed for each scenario using the methods
described in this paper. Table 2 shows the total cost of the dispatch solution and the total
reserve response risk for each scenario. The total cost of the dispatch solution and the total
reserve response risk for each scenario decrease from S1 to S4. S4 is a scenario without
wind power fluctuation and uncertainty, so its dispatch solution cost can be used as a
benchmark value; the cost of S3 is subtracted from it to obtain the cost of wind power
volatility of 0.0899 MUSD; the cost of S2 is subtracted from it to obtain the cost of wind
power uncertainty of 0.3446 MUSD; and the cost of S1 is subtracted from it to obtain the
cost of wind power volatility and uncertainty together at 0.6217 MUSD.

Table 2. Impact of wind power volatility and uncertainty.

Scenario Total Cost/MUSD FS/GW

S1 3.1320 1.4207
S2 2.8549 1.2866
S3 2.6002 1.0233
S4 2.5103 0.9011

This example shows that the cost of wind power uncertainty in this example case is
higher than the cost of wind power volatility, but the increase in dispatch cost due to wind
power volatility and uncertainty together is higher than the sum of the increase in cost
due to volatility and uncertainty alone. Similarly, the increase in standby response risk
due to wind volatility and uncertainty together is higher than the sum of volatility and
uncertainty alone.
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6.3. Algorithm Performance Analysis

In order to verify the performance of the improved multi-universe parallel quantum
genetic algorithm, a reference comparison with the traditional genetic algorithm [35] and
the multi-universe parallel quantum genetic algorithm [36] was performed; the results
are shown in Figure 5. The improved multi-universe parallel quantum genetic algorithm
converges to stability and reaches the optimal solution in forty generations, while the
multi-universe parallel quantum genetic algorithm converges to stability and reaches the
optimal solution only when it approaches 80 generations, and the convergence speed and
search performance of the traditional genetic algorithm are inferior to the other two.

Figure 5. Algorithm performance comparison.

In terms of algorithm speed, the average algorithm time in the calculation of the
arithmetic cases is about 130 s with the CUDA programming model, while the conventional
genetic algorithm without GPU parallel acceleration (with a population size of 100) takes
about 14 min.

7. Conclusions

This study presents a calculation method to analyze the response risk due to the
coupling drawback between time periods for the spinning reserve provided by conven-
tional units in the dispatch, the reserve response risk caused by forced outages of units
is considered, and, finally, a unified expression of spinning reserve response risk is given.
A new dynamic economic dispatch model for integrating high levels of wind power into
a power system is proposed, which can ensure the consistency of the system response
risk in each time period by considering the expectation of customer outage loss and the
expectation of wind abandonment loss in the objective function. By improving the parallel
universe topology, the convergence and computational speed of the multi-universe parallel
quantum genetic algorithm are improved. The results analyzed from an example prove the
effectiveness of the model described in this paper, and conclusions are as follows:

1. For coping with the fluctuation and uncertainty of wind power, adjustable resources
are needed in dispatch; therefore, the containment of the reserve provided by ad-
justable resources is enhanced significantly in time intervals. The utilization of tradi-
tional deterministic methods could increase dispatch cost significantly by forcing the
reserve available at 100%, and it may increase the risk of wind power curtailment and
load abandonment in the dispatch during conditions of limited adjustable resources.
Therefore, it is necessary to allow and consider carefully the uncertainty of reserve in
dispatching (response risk), and pursue a balance between economy and reliability.

2. The joint effects of fluctuation and uncertainty of wind power on the response risk
of spinning reserve in dispatch are greater than the sum of their separate effects;
therefore, the fluctuation and uncertainty of wind power need to be considered
organically and uniformly in dispatch. If the fluctuation and uncertainty of wind
power were considered separately, decisions in dispatch may be more radical.

3. By improving the topology structure of the parallel universe, in which the main
universe and the little universe are divided, and specifying the direction of information
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flow, the performance of the multi-universe parallel quantum genetic algorithm can
be improved more significantly.
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Nomenclature

Pg,t
The active power output of unit g at
time period t

Pw f ,t
System wind power forecast in time
t

t Index of time εw,t Wind power forecast error

g Index of unit σw,t
Standard deviation of wind power
forecast errors

Ru
g,t

Up-regulated spinning reserve
capacity provided by unit g at time t

WI
Total installed capacity of wind
power

x Reserve capacity released αT
Corresponding coefficients when
the predicted duration is T

rd
g

Maximum downward power of the
unit g in a period time

µT
Corresponding coefficients when
the predicted duration is T

Rd
g,t+1

Downshifting reserve capacity
provided by unit g at time t + 1

T
Prospective period of dynamic
economic dispatch single period

ru
g

Maximum up-regulated power of
unit g during a time period

Pd,t
The difference between load and
wind power

Rd
g,t

Down-regulated spinning reserve
capacity provided by unit g at time t

εd,t
Errors in the combination of load
and wind power forecast errors

Ru
g,t+1

Upshifting reserve capacity
provided by unit g at time t + 1

ρg,t(x)
Action probability density function
for each unit reserve

Fd
g,t+1

Time coupled response risk for the
downward spinning reserve
capacity Rd

g,t+1 provided by unit g
at time t + 1

εd,t(A)

Probability of net load forecast error
of A abandonment of the system in
time t

ρg,t
Action probability density function
of unit g reserve capacity at time t

N Number of system units

Fu
g,t+1

Time coupling response risk for the
upward spinning reserve capacity
provided by unit g at time t + 1

Cg Generation fuel cost of the unit g

Fs
t

Total system spinning reserve
response risk in time period t

IEAR Blackout loss evaluation rate

Fsu
t

Upward spinning reserve response
risk in time period t

EENS,t

Low power expectation due to
insufficient system up-regulation
spinning reserve

Fsd
t

Downward spinning reserve
response risk in time period t

AWAR
Evaluation of wind abandonment
losses

ϕk
The probability that the system is in
state k during the t-period

EWEA,t
Expectation of electricity loss from
wind abandonment
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U
The set of unavailable units under
state k

Cg(Pg,t)
Unit fuel costs taking into account
valve point Effects

A
The set of available units under
state k

ag Fuel cost factor

Fu,k
g,t

Time-coupled response risk for
upward spinning reserve of
available units g in state k at time
slot t

bg Fuel cost factor

Fd,k
g,t

Time-coupled response risk for
downward spinning reserve of
available units g in state k at time
slot t

cg Fuel cost factor

ρk
g,t

Action probability density function
of available unit g reserve under t
period state k

dg Fuel cost factor

βg,t

Participation factor for reserve
release of unit g in the normal state
in time period t

eg Fuel cost factor

βk
g,t

Participation factor for reserve
release of unit g in the state k in time
period t

Pmin
g

Minimum technical output power
of the unit g

PL f ,t System load forecast value in time t δg
Carbon emission intensity per unit
of electricity of unit g

εL,t Load forecast error PCO2 Carbon trading price

σL,t
Standard deviation of load forecast
error

Pmax
g Upper limit of unit g output power

Pw,t Wind power actual value Pmin
g Lower limit of unit g output power

Appendix A

Table A1. Conventional generator parameters.

Unit
Active
Upper
Limit
(MW)

Active
Lower
Limit
(MW)

ag

USD/(MW)2·h
bg

USD/(MW)·h
cg

10−3USD/h
dg

USD/h
eg

Rad/MW
ru

g
MW/min

δg
kg/MW·h

Failure
Rate

(×10−5)

1 200 40 38.3543 1.3768 3.1508 21.66 0.038 1 945 4

2 300 60 49.6535 1.2643 2.8904 27.93 0.042 1.5 911 2

3 650 120 100.7425 0.8585 1.8545 57 0.036 3.25 790 1

4 620 110 121.5446 0.7423 1.6704 68.97 0.052 3.1 810 1

5 680 135 105.7976 0.7643 1.7448 59.85 0.068 3.4 782 1

6 480 90 89.4235 0.9954 2.1780 50.73 0.049 2.4 843 2

7 650 115 102.4523 0.7782 1.7884 58.14 0.034 3.25 762 2

8 520 95 87.7874 0.9428 1.9690 49.59 0.035 2.6 849 3

9 320 65 91.7594 1.0213 1.9849 51.87 0.048 1.6 879 2

10 350 50 133.6109 0.7244 1.4741 75.81 0.026 1.75 860 5
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