An Experimental and Numerical Study of Abrupt Changes in Coal Permeability with Gas Flowing through Fracture-Pore Structure
Abstract
:1. Introduction
2. Experimental Methodology
3. Conceptual Model
4. Numerical Modelling
4.1. Methane Flow in Coal
4.2. Deformation of Coal
4.2.1. Deformation of Coal Fractures
4.2.2. Deformation of Coal Matrix
5. Results and Discussion
5.1. Model Validation
5.2. Model Sensitivity Analysis
5.3. Analysis on Methane Drainage Process
6. Conclusions
7. Further Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, C.; Yang, G.; Wang, K.; Fu, Q. Uneven stress and permeability variation of mining disturbed coal seam for targeted CBM drainage: A case study in Baode coal mine. eastern Ordos Basin, China. Fuel 2021, 289, 119911. [Google Scholar] [CrossRef]
- Xu, C.; Cheng, Y.P.; Ren, T.X.; Wang, L.; Kong, S.L.; Lu, S.Q. Gas ejection accident analysis in bed splitting under igneous sills and the associated control technologies: A case study in the Yangliu Mine, Huaibei Coalfield, China. Nat. Hazards 2014, 71, 109–134. [Google Scholar] [CrossRef]
- Zhang, C.L.; Xu, J.; Peng, S.J.; Li, Q.X.; Yan, F.Z.; Chen, Y.X. Dynamic behavior of gas pressure and optimization of borehole length in stress relaxation zone during coalbed methane production. Fuel 2018, 233, 816–824. [Google Scholar] [CrossRef]
- Durucan, S.; Edwards, J.S. The effects of stress and fracturing on permeability of coal. Min. Sci. Technol. 1986, 3, 205–216. [Google Scholar] [CrossRef]
- Palmer, I.; Mansoori, J. How permeability depends on stress and pore pressure in coalbeds: A new model. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 6 October 1996. [Google Scholar]
- Seidle, J.P.; Jeansonne, M.W.; Erickson, D.J. Application of matchstick geometry to stress dependent permeability in coals. In Proceedings of the SPE Rocky Mountain Regional Meeting, Casper, WY, USA, 18 May 1992. [Google Scholar]
- Liu, J.S.; Chen, Z.W.; Elsworth, D.; Miao, X.X.; Mao, X.B. Evaluation of stress-controlled coal swelling processes. Int. J. Coal Geol. 2010, 83, 446–455. [Google Scholar] [CrossRef]
- Salmachi, A.; Rajabi, M.; Wainman, C.; Mackie, S.; McCabe, P.; Camac, B.; Clarkson, C. History, Geology, In Situ Stress Pattern, Gas Content and Permeability of Coal Seam Gas Basins in Australia: A Review. Energies 2021, 14, 2651. [Google Scholar] [CrossRef]
- Skoczylas, N.; Dutka, B.; Sobczyk, J. Mechanical and gaseous properties of coal briquettes in terms of outburst risk. Fuel 2014, 134, 45–52. [Google Scholar] [CrossRef]
- Zhang, C.L.; Wang, E.Y.; Xu, J.; Peng, S.J. A new method for coal and gas outburst prediction and prevention based on the fragmentation of ejected coal. Fuel 2021, 287, 119493. [Google Scholar] [CrossRef]
- Pan, Z.J.; Connell, L.D. Modelling permeability for coal reservoirs: A review of analytical models and testing data. Int. J. Coal Geol. 2012, 92, 1–44. [Google Scholar] [CrossRef]
- Warren, J.E.; Root, P.J. The behavior of naturally fractured reservoirs. Sot. Pet. Eng. J. 1963, 3, 245–255. [Google Scholar] [CrossRef]
- Pirson, S.J. Performance of fractured oil reservoirs. AAPG Bull. 1953, 37, 232–244. [Google Scholar]
- Zhao, S.; Chen, X.J.; Li, X.J.; Qi, L.L.; Zhang, G.X. Experimental analysis of the effect of temperature on coal pore structure transformation. Fuel 2021, 305, 121613. [Google Scholar] [CrossRef]
- Ni, Z.; Lin, B.Q.; Zhang, X.L.; Cao, X.; Zhong, L.B.; Gao, Y.B. Experimental study on the effect of high-voltage electrical pulses on the nanoscale pore structure of coal. Fuel 2021, 306, 121621. [Google Scholar] [CrossRef]
- Zheng, S.J.; Yao, Y.B.; Elsworth, D.; Wang, B.; Liu, Y. A novel pore size classification method of coals: Investigation based on NMR relaxation. J. Nat. Gas Sci. Eng. 2020, 81, 103466. [Google Scholar] [CrossRef]
- Zeng, J.; Li, W.; Liu, J.S.; Leong, Y.K.; Elsworth, D.; Tian, J.W.; Guo, J.C.; Zeng, F.H. Analytical solutions for multi-stage fractured shale gas reservoirs with damaged fractures and stimulated reservoir volumes. J. Petrol. Sci. Eng. 2020, 187, 106686. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.S.; Zeng, J.; Leong, Y.K.; Elsworth, D.; Tian, J.W.; Li, L. A fully coupled multidomain and multiphysics model for evaluation of shale gas extraction. Fuel 2020, 278, 118214. [Google Scholar] [CrossRef]
- Li, Z.Q.; Peng, J.S.; Li, L.; Qi, L.L.; Li, W. Novel Dynamic Multiscale Model of Apparent Diffffusion Permeability of Methane through Low-Permeability Coal Seams. Energy Fuel 2021, 35, 7844–7857. [Google Scholar] [CrossRef]
- Song, W.H.; Yao, B.W.; Yao, J.; Li, Y.; Sun, H.; Yang, Y.F.; Zhang, L. Methane surface diffffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir. Chem. Eng. J. 2018, 352, 644–654. [Google Scholar] [CrossRef]
- Barenblatt, G.I.; Zheltov, L.P.; Kochina, I.N. Basic concepts on the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mec. 1960, 24, 1286–1303. [Google Scholar] [CrossRef]
- Cui, X.J.; Bustin, R.M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams. AAPG Bull. 2005, 89, 1181–1202. [Google Scholar] [CrossRef]
- Mojgan, H.M.; Matthew, T.; Majid, S.; Philip, J.V. Carbon dioxide flow and interactions in a high rank coal: Permeability evolution and reversibility of reactive processes. Int. J. Greenh. Gas Con. 2018, 70, 57–67. [Google Scholar]
- Liu, C.J.; Wang, G.; Sang, S.; Rudolph, V. Changes in pore structure of anthracite coal associated with CO2 sequestration process. Fuel 2010, 89, 2665–2672. [Google Scholar] [CrossRef]
- Fan, C.J.; Elsworth, D.; Li, S.; Zhou, L.J.; Yang, Z.H.; Song, Y. Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery. Energy 2019, 173, 1054–1077. [Google Scholar] [CrossRef]
- Gensterblum, Y.; Ghanizadeh, A.; Krooss, B.M. Gas permeability measurements on Australian subbituminous coals: Fluid dynamic and poroelastic aspects. J. Nat. Gas Sci. Eng. 2014, 19, 202–214. [Google Scholar] [CrossRef]
- Li, S.; Dong, M.; Li, Z. Measurement and revised interpretation of gas flow behaviour in tight reservoir cores. J. Petrol. Sci. Eng. 2009, 65, 81–88. [Google Scholar] [CrossRef]
- Kumar, H.; Elsworth, D.; Mathews, J.P.; Marone, C. Permeability evolution insorbing media: Analogies between organic-rich shale and coal. Geofluids 2016, 16, 43–55. [Google Scholar] [CrossRef]
- Kwon, O.; Kronenberg, A.K.; Gangi, A.F.; Johnson, B. Permeability of Wilcox shale and its effective pressure law. J. Geophys. Res. 2001, 106, 339–353. [Google Scholar] [CrossRef]
- Yun, Z.; Jianfang, S.; Zhongchun, L. Study of numerical simulation method modelling gas injection into fractured reservoirs. Min. Miner. Depos. 2019, 13, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.B.; Liu, J.S.; Elsworth, D. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model. Int. J. Rock Mech. Min. 2008, 45, 1226–1236. [Google Scholar] [CrossRef]
- Harpalani, S. Gas Flow through Stressed Coal; California University: Berkeley, CA, USA, 1985. [Google Scholar]
- Zhang, S.W.; Liu, J.S.; Wei, M.Y.; Elsworth, D. Coal permeability maps under the influence of multiple coupled processes. Int. J. Coal Geol. 2018, 187, 71–82. [Google Scholar] [CrossRef]
- Golf-Racht, V.T.D. Fundamentals of Fractured Reservoir Engineering; Elsevier Scientifific Publishing Company: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Liu, H.H.; Rutqvist, J.; Berryman, J.G. On the relationship between stress and elastic strain for porousand fractured rock. Int. J. Rock Mech. Min. 2009, 46, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Berryman, J.G. Estimates and rigorous bounds on pore-fluid enhanced shear modulus in poroelastic media with hard and soft anisotropy. Int. J. Damage Mech. 2006, 15, 133–167. [Google Scholar] [CrossRef]
- Mavko, G.; Jizba, D. Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics 1991, 56, 1940–1949. [Google Scholar] [CrossRef]
- Cheng, A.H.D. Poroelasticity; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Wei, M.Y.; Liu, J.S.; Shi, R.; Elsworth, D.; Liu, Z.H. Long-Term evolution of coal permeability under effective stresses gap between matrix and fracture during CO2 injection. Transp. Porous Media 2019, 130, 969–983. [Google Scholar] [CrossRef]
- Robertson, E.P. Measurement and modeling of sorption-induced strain and permeability changes in coal. Colo. Sch. Mines. Arthur Lakes Libr. 2005, 31–112. [Google Scholar]
- Lou, Z.; Wang, K.; Zang, J.; Zhao, W.; Qin, B.B.; Kan, T. Effects of permeability anisotropy on coal mine methane drainage performance. J. Nat. Gas Sci. Eng. 2021, 86, 103733. [Google Scholar] [CrossRef]
- Wiesław, S.; Małgorzata, S.V.; Andrzej, G.; Krzysztof, P. Numerical studies of improved methane drainage technologies by stimulating coal seams in multi-seam mining layouts. Int. J. Rock Mech. Min. 2018, 108, 157–168. [Google Scholar]
- Salmachi, A.; Bonyadi, M.R.; Sayyafzadeh, M.; Haghighi, M. Identification of potential locations for well placement in developed coalbed methane reservoirs. Int. J. Coal Geol. 2014, 131, 250–262. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Chen, D.; Yin, Z. An investigation on the permeability of hydrate-bearing sediments based on pore-scale CFD simulation. Int. J. Heat Mass Transf. 2022, 192, 122901. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Moisture | 0.035 |
Ash | 0.081 |
Volatile matter | 0.055 |
Density/g·cm−3 | 1.56 |
Porosity | 0.041 |
a (Langmuir constant)/cm3·g−1 | 41.70 |
b (Langmuir constant)/MPa−1 | 1.50 |
Parameters | Values | Physical Meanings | Units |
---|---|---|---|
K | 2410 | Bulk modulus | MPa |
0.327 | Poisson’s ratio | - | |
3850 | Young’s modulus of coal matrix | MPa | |
2498 | Young’s modulus of coal | MPa | |
1.54 | Langmuir pressure constant | MPa | |
0.06328 | Langmuir volumetric strain constant | - | |
0.096 | Initial permeability of coal fractures | mD | |
0. 00096 | Initial permeability of coal matrix | mD | |
0.005 | Initial porosity of coal fractures | - | |
0.05 | Initial porosity of coal matrix | - | |
0.5, 1.0, 1.5 | Initial equilibrium pressure in coal sample | MPa |
Parameter | Value | Physical Meanings | Units |
---|---|---|---|
4800 | Young’s modulus of coal matrix | MPa | |
2758 | Young’s modulus of coal | MPa | |
4.823 | Langmuir pressure constant | MPa | |
0.007 | Langmuir volumetric strain constant | - | |
0.0385 | Initial permeability of coal fractures | mD | |
0.0000385 | Initial permeability of coal matrix | mD | |
0.0045 | Initial porosity of coal fractures | - | |
0.045 | Initial porosity of coal matrix | - |
Young’s Modulus | Coal 1# | Coal 2# | Coal 3# | Coal 4# |
---|---|---|---|---|
/MPa | 3000 | 2760 | 1800 | 2000 |
/MPa | 5200 | 4800 | 2850 | 4000 |
/MPa | 52 | 47 | 36 | 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhang, S.; Li, Z.; Chen, X.; Wang, L.; Feng, S. An Experimental and Numerical Study of Abrupt Changes in Coal Permeability with Gas Flowing through Fracture-Pore Structure. Energies 2022, 15, 7842. https://doi.org/10.3390/en15217842
Li L, Zhang S, Li Z, Chen X, Wang L, Feng S. An Experimental and Numerical Study of Abrupt Changes in Coal Permeability with Gas Flowing through Fracture-Pore Structure. Energies. 2022; 15(21):7842. https://doi.org/10.3390/en15217842
Chicago/Turabian StyleLi, Lin, Shufan Zhang, Zhiqiang Li, Xiangjun Chen, Lin Wang, and Shuailong Feng. 2022. "An Experimental and Numerical Study of Abrupt Changes in Coal Permeability with Gas Flowing through Fracture-Pore Structure" Energies 15, no. 21: 7842. https://doi.org/10.3390/en15217842
APA StyleLi, L., Zhang, S., Li, Z., Chen, X., Wang, L., & Feng, S. (2022). An Experimental and Numerical Study of Abrupt Changes in Coal Permeability with Gas Flowing through Fracture-Pore Structure. Energies, 15(21), 7842. https://doi.org/10.3390/en15217842