Development of a Biomass Gasification Process for the Coproduction of Methanol and Power from Red Sea Microalgae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgal Biomass Feedstock
2.2. Process Concept and Modeling
3. Results and Discussion
3.1. Process Development and Simulation
3.1.1. Gasification
3.1.2. Power and Methanol Production
3.2. Model Validation
3.3. Parametric Study
3.3.1. Effect of Gasifier Temperature
3.3.2. Effect of the Steam/Biomass Ratio on the Syngas Composition
3.3.3. Effect of Char Split Ratio on the Syngas Composition
3.3.4. Effect of Air Flow Rate on Power Generation
3.3.5. Split Ratio of the Methanol-Recycled Feed
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conti, J.; Holtberg, P.; Diefenderfer, J.; LaRose, A.; Turnure, J.T.; Westfall, L. USDOE Energy Information Administration (EIA); Office of Energy Analysis: Washington, DC, USA, 2016. [Google Scholar]
- Jiang, N.; Shen, Y.; Liu, B.; Zhang, D.; Tang, Z.; Li, G.; Fu, B. CO2 capture from dry flue gas by means of VPSA, TSA and TVSA. J. CO2 Util. 2020, 35, 153–168. [Google Scholar] [CrossRef]
- Daneshvar, E.; Wicker, R.J.; Show, P.-L.; Bhatnagar, A. Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorizatio—A review. Chem. Eng. J. 2022, 427, 130884. [Google Scholar] [CrossRef]
- Prasad, R.; Gupta, S.K.; Shabnam, N.; Oliveira, C.Y.B.; Nema, A.K.; Ansari, F.A.; Bux, F. Role of Microalgae in Global CO2 Sequestration: Physiological Mechanism, Recent Development, Challenges, and Future Prospective. Sustainability 2021, 13, 13061. [Google Scholar] [CrossRef]
- Peng, L.; Fu, D.; Chu, H.; Wang, Z.; Qi, H. Biofuel production from microalgae: A review. Environ. Chem. Lett. 2020, 18, 285–297. [Google Scholar] [CrossRef]
- In-na, P.; Umar, A.A.; Wallace, A.D.; Flickinger, M.C.; Caldwell, G.S.; Lee, J.G.M. Loofah-based microalgae and cyanobacteria biocomposites for intensifying carbon dioxide capture. J. CO2 Util. 2020, 42, 101348. [Google Scholar] [CrossRef]
- Rodas-Zuluaga, L.I.; Castañeda-Hernández, L.; Castillo-Vacas, E.I.; Gradiz-Menjivar, A.; López-Pacheco, I.Y.; Castillo-Zacarías, C.; Boully, L.; Iqbal, H.M.; Parra-Saldívar, R. Bio-capture and influence of CO2 on the growth rate and biomass composition of the microalgae Botryococcus braunii and Scenedesmus sp. J. CO2 Util. 2021, 43, 101371. [Google Scholar] [CrossRef]
- Fantini, M. Biomass availability, potential and characteristics. In Biorefineries; Springer: Berlin/Heidelberg, Germany, 2017; pp. 21–54. [Google Scholar]
- Yoo, C.; Jun, S.-Y.; Lee, J.-Y.; Ahn, C.-Y.; Oh, H.-M. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol. 2010, 101, S71–S74. [Google Scholar] [CrossRef]
- Aziz, M. Integrated hydrogen production and power generation from microalgae. Int. J. Hydrogen Energy 2016, 41, 104–112. [Google Scholar] [CrossRef]
- Bhola, V.; Swalaha, F.; Ranjith Kumar, R.; Singh, M.; Bux, F. Overview of the potential of microalgae for CO2 sequestration. Int. J. Environ. Sci. Technol. 2014, 11, 2103–2118. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.A.; Hossain, M.M. Gasification performance of various microalgae biomass—A thermodynamic study by considering tar formation using Aspen plus. Energy Convers. Manag. 2018, 165, 783–793. [Google Scholar] [CrossRef]
- Parvez, A.M.; Afzal, M.T.; Hebb, T.G.V.; Schmid, M. Utilization of CO2 in thermochemical conversion of biomass for enhanced product properties: A review. J. CO2 Util. 2020, 40, 101217. [Google Scholar] [CrossRef]
- Bortoleto, G.G.; de Miranda, H.L.; de Campos, R.H. Biodiesel from Microalgae: Third Generation Biofuel. In Plant-Based Genetic Tools Biofuels Production; Bentham Science Publishers: Sharja, United Arab Emirates, 2017; pp. 169–198. [Google Scholar]
- Talaghat, M.R.; Mokhtari, S.; Saadat, M. Modeling and optimization of biodiesel production from microalgae in a batch reactor. Fuel 2020, 280, 118578. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Zawawi, N.A.; Kasim, F.H.; Inayat, A.; Khasri, A. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renew. Sustain. Energy Rev. 2016, 53, 1333–1347. [Google Scholar] [CrossRef]
- Fiori, L.; Valbusa, M.; Castello, D. Supercritical water gasification of biomass for H2 production: Process design. Bioresour. Technol. 2012, 121, 139–147. [Google Scholar] [CrossRef]
- Motta, I.L.; Miranda, N.T.; Maciel Filho, R.; Maciel, M.R.W. Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. Renew. Sustain. Energy Rev. 2018, 94, 998–1023. [Google Scholar] [CrossRef]
- Abdelaziz, O.Y.; Hosny, W.M.; Gadalla, M.A.; Ashour, F.H.; Ashour, I.A.; Hulteberg, C.P. Novel process technologies for conversion of carbon dioxide from industrial flue gas streams into methanol. J. CO2 Util. 2017, 21, 52–63. [Google Scholar] [CrossRef]
- Al-Rabiah, A.A.; Alshehri, A.S.; Ibn Idriss, A.; Abdelaziz, O.Y. Comparative Kinetic Analysis and Process Optimization for the Production of Dimethyl Ether via Methanol Dehydration over a γ-Alumina Catalyst. Chem. Eng. Technol. 2022, 45, 319–328. [Google Scholar] [CrossRef]
- Abashar, M.E.E.; Al-Rabiah, A.A. Highly efficient CO2 hydrogenation to methanol via in-situ condensation and sorption in a novel multi-stage circulating fast fluidized bed reactor. Chem. Eng. J. 2022, 439, 135628. [Google Scholar] [CrossRef]
- Abashar, M.E.E.; Al-Rabiah, A.A. Investigation of the efficiency of sorption-enhanced methanol synthesis process in circulating fast fluidized bed reactors. Fuel Process. Technol. 2018, 179, 387–398. [Google Scholar] [CrossRef]
- Ali, D.A.; Gadalla, M.A.; Abdelaziz, O.Y.; Hulteberg, C.P.; Ashour, F.H. Co-gasification of coal and biomass wastes in an entrained flow gasifier: Modelling, simulation and integration opportunities. J. Nat. Gas Sci. Eng. 2017, 37, 126–137. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, B.; Zhang, Y.; Huang, Y.; Xu, M. Investigation on pyrolysis of low lipid microalgae Chlorella vulgaris and Dunaliella salina. Energy Fuels 2014, 28, 95–103. [Google Scholar] [CrossRef]
- Adnan, M.A.; Hossain, M.M. CO2 gasification of microalgae (N. Oculata)—A thermodynamic study. MATEC Web Conf. 2018, 154, 1002. [Google Scholar] [CrossRef] [Green Version]
- Peng, G. Methane Production from Microalgae via Continuous Catalytic Supercritical Water Gasification: Development of Catalysts and Sulfur Removal Techniques. Ph.D. Thesis, EPFL, Lausanne, Switzerland, 2015. [Google Scholar]
- Adnan, M.A.; Susanto, H.; Binous, H.; Muraza, O.; Hossain, M.M. Feed compositions and gasification potential of several biomasses including a microalgae: A thermodynamic modeling approach. Int. J. Hydrogen Energy 2017, 42, 17009–17019. [Google Scholar] [CrossRef]
- Raheem, A.; Dupont, V.; Channa, A.Q.; Zhao, X.; Vuppaladadiyam, A.K.; Taufiq-Yap, Y.-H.; Zhao, M.; Harun, R. Parametric characterization of air gasification of Chlorella vulgaris biomass. Energy Fuels 2017, 31, 2959–2969. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Jiang, Q.; Song, Z.; Posarac, D. Optimization of Methanol Yield from a Lurgi Reactor. Chem. Eng. Technol. 2011, 34, 817–822. [Google Scholar] [CrossRef]
- Nestler, F.; Schütze, A.R.; Ouda, M.; Hadrich, M.J.; Schaadt, A.; Bajohr, S.; Kolb, T. Kinetic modelling of methanol synthesis over commercial catalysts: A critical assessment. Chem. Eng. J. 2020, 394, 124881. [Google Scholar] [CrossRef]
- Graaf, G.H.; Stamhuis, E.J.; Beenackers, A.A.C.M. Kinetics of low-pressure methanol synthesis. Chem. Eng. Sci. 1988, 43, 3185–3195. [Google Scholar] [CrossRef]
- Hanchate, N.; Ramani, S.; Mathpati, C.S.; Dalvi, V.H. Biomass gasification using dual fluidized bed gasification systems: A review. J. Clean. Prod. 2021, 280, 123148. [Google Scholar] [CrossRef]
- Thunman, H.; Seemann, M.; Berdugo Vilches, T.; Maric, J.; Pallares, D.; Ström, H.; Berndes, G.; Knutsson, P.; Larsson, A.; Breitholtz, C.; et al. Advanced biofuel production via gasification—Lessons learned from 200 man-years of research activity with Chalmers’ research gasifier and the GoBiGas demonstration plant. Energy Sci. Eng. 2018, 6, 6–34. [Google Scholar] [CrossRef]
- Duman, G.; Uddin, M.A.; Yanik, J. Hydrogen production from algal biomass via steam gasification. Bioresour. Technol. 2014, 166, 24–30. [Google Scholar] [CrossRef]
- Fernandez-Lopez, M.; Pedroche, J.; Valverde, J.L.; Sánchez-Silva, L. Simulation of the gasification of animal wastes in a dual gasifier using Aspen Plus®. Energy Convers. Manag. 2017, 140, 211–217. [Google Scholar] [CrossRef]
Species | Media | Biomass Productivity (g/L/d) | Lipid Productivity (mg/L/d) | Location in Saudi Arabia | Abundance Level |
---|---|---|---|---|---|
Chlorella | Fresh | 0.23 | 78 | S | Very common |
Cylindrotheca | Marine | 0.43 | 114 | Q + R | Very common |
Nannochloropsi sp. | Marine | 0.21 | 52 | H | Very common |
Vulgaris | Fresh | 0.16 | 30 | D | Rare |
Thalassiosira | Marine | 0.06 | 43 | D + R | Rare |
Chlamydomonas sp. | Fresh | 0.43 | 22 | Q + R | Very common |
Dunaliella salina | Salt | 0.27 | 53 | Q + R | Very common |
Oscillatoria | Fresh | 0.37 | 27 | H | Rare |
Nannochloropsis oculata | Marine | 0.05 | 24 | S + R | Common |
Spirulina platensis | Salt | 0.29 | 75 | Q | Common |
Amphora | Marine | 0.23 | 117 | D | Common |
Oscillatoria | Fresh | 0.37 | 27 | H | Rare |
Euglena gracilis | Fresh | 0.18 | 37 | S | Common |
Neochloris oleoabundans | Fresh | 0.46 | 164 | R | Very rare |
Biomass 1 Nannochloropsis oculata | Biomass 2 Dunaliella salina | |
---|---|---|
Proximate Analysis (wt% dry) | ||
Moisture | 6.71 | 4.00 * |
Ash | 6.4 | 7.2 * |
Volatiles | 78.94 | 76.3 * |
Fixed Carbon | 7.95 | 12.3 * |
Ultimate Analysis (wt% dry) | ||
Carbon (C) | 47.5 | 48.1 |
Hydrogen (H) | 6.15 | 7.1 |
Oxygen (O) | 46.35 | 23.3 |
Nitrogen (N) | n.a | 9.4 |
Sulfur (S) | n.a | 0.9 |
Other properties | ||
HHV (MJ/kg) | 15.07 | 21.2 |
Aziz et al. (2017) | Gaël (2015) | Fiori et al. (2012) | Adnan et al. (2018) | Adnan et al. (2017) | Raheem et al. (2017) | |
---|---|---|---|---|---|---|
Products | MCH + Electricity | SNG | Hydrogen | Syngas | Syngas | Syngas |
Feedstock | Chlorella vulgaris | Phaeodactylum tricornutum | Spirulina | Nannochloropsis oculta | Nannochloropsis oculta | Chlorella vulgaris |
Gasifier type | Fluidized bed | Fixed bed | Fluidized bed | Fluidized bed | Fluidized bed | Fluidized bed |
Pressure (MPa) | 30 | 30 | 30 | 2-8 | 0.1 | n.r. |
Temperature (°C) | 600 | 450 | 700 | 700 | 800 | 850 |
Oxidant | Supercritical water | Supercritical water | Supercritical water | H2O/CO2/O2 | H2O/O2 | Air |
Catalyst | Ru/TiO2 | Ru/C | n.r. | — | — | — |
Capture method | Membrane | n.r. | n.r. | n.r. | n.r. | n.r. |
Gas composition | H2: 46.1% | H2: 24.1% | H2: 40.1% | H2: 31.3% | H2: 30.4% | H2: 30.7% |
CO: 3.10% | CO: 00.0% | CO: 05.8% | CO: 62.2% | CO: 63.2% | CO: 24.4% | |
CO2: 27.8% | CO2: 28.9% | CO2: 32.8% | CO2: 6.0% | CO2: 6.04% | CO2: 27.9% | |
CH4: 18.1% | CH4: 44.8% | CH4: 25.8% | CH4: 0.4% | CH4: 0.38% | CH4: 19.2% |
List of Assumptions |
---|
● Microalgae are made up of carbon, hydrogen, oxygen, and nitrogen. |
● The main components of volatile products are H2, CO, CO2, and CH4. |
● The process is isothermal and at a steady state. |
● N2 is considered inert in the entire process. |
● Particles are of uniform size and are of spherical shape. |
● Char only consists of graphitic carbon. |
Stream | WET-FEED | SYNG-H | HP-S | MP-S | FEED-IN | METH-MIX | METHANOL |
---|---|---|---|---|---|---|---|
Temperature () | 25 | 800 | 506 | 438 | 114 | 239 | 93 |
Pressure (kPa) | 105 | 100 | 6000 | 2000 | 4500 | 4500 | 280 |
Mass vapor fraction | 0 | 1 | 1 | 1 | 0.982 | 1 | 0 |
Mass liquid fraction | 0 | 0 | 0 | 0 | 0.018 | 0 | 1 |
Mass solid fraction | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Component flow rates in (kg/h) | |||||||
H2O | 0 | 8422 | 8322 | 10,715 | 8468 | 5961 | 59 |
N2 | 0 | 2403 | 0 | 0 | 5006 | 5006 | 0 |
O2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Algae | 92,000 | 0 | 0 | 0 | 0 | 0 | 0 |
CO | 0 | 16,413 | 0 | 0 | 17,959 | 2974 | 0 |
CO2 | 0 | 8769 | 0 | 0 | 12,012 | 18,136 | 0 |
H2 | 0 | 3037 | 0 | 0 | 19,240 | 17,924 | 0 |
CH4 | 0 | 50 | 0 | 0 | 104 | 104 | 0 |
C | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ash | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CH3OH | 0 | 0 | 0 | 0 | 482 | 13,165 | 12,115 |
Compound | Biomass | Biomass 1 | Biomass 2 |
---|---|---|---|
Duman et al. [34] | This Work | This Work | |
H2 | 55.9% | 50.24% | 44.6% |
CO | 0.6% | 8.23% | 4.08% |
CO2 | 34.4% | 30.64% | 25.7% |
CH4 | 10.9% | 10.89% | 25.5% |
Tar | 2.5% | n.c. | n.c. |
SN | 0.61 | 0.50 | 0.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rabiah, A.A.; Al-Dawsari, J.N.; Ajbar, A.M.; Al Darwish, R.K.; Abdelaziz, O.Y. Development of a Biomass Gasification Process for the Coproduction of Methanol and Power from Red Sea Microalgae. Energies 2022, 15, 7890. https://doi.org/10.3390/en15217890
Al-Rabiah AA, Al-Dawsari JN, Ajbar AM, Al Darwish RK, Abdelaziz OY. Development of a Biomass Gasification Process for the Coproduction of Methanol and Power from Red Sea Microalgae. Energies. 2022; 15(21):7890. https://doi.org/10.3390/en15217890
Chicago/Turabian StyleAl-Rabiah, Abdulrahman A., Jiyad N. Al-Dawsari, Abdelhamid M. Ajbar, Rayan K. Al Darwish, and Omar Y. Abdelaziz. 2022. "Development of a Biomass Gasification Process for the Coproduction of Methanol and Power from Red Sea Microalgae" Energies 15, no. 21: 7890. https://doi.org/10.3390/en15217890
APA StyleAl-Rabiah, A. A., Al-Dawsari, J. N., Ajbar, A. M., Al Darwish, R. K., & Abdelaziz, O. Y. (2022). Development of a Biomass Gasification Process for the Coproduction of Methanol and Power from Red Sea Microalgae. Energies, 15(21), 7890. https://doi.org/10.3390/en15217890