Parametric Investigation on the Electrical-Thermal Performance of Battery Modules with a Pumped Two-Phase Cooling System
Abstract
:1. Introduction
2. Model Development
2.1. Electrothermal Model for Battery
2.2. Electrothermal Model for Battery Pack
2.2.1. Electrical Model for Battery Module
2.2.2. Thermal Model for Battery Module
- Solid domain
- Liquid domain
3. Model Validation
- Electrothermal model
- VOF model
4. Results and Discussion
4.1. Performance of the Pumped Two-Phase Cooling System
4.2. Parametric Study
4.2.1. Saturation Temperature
4.2.2. Mass Flux
4.2.3. Subcooling Degree
5. Conclusions
- (1)
- The pumped two-phase cooling BTMS could obtain excellent cooling performance with lower system pressure compared with the direct cooling system due to the use of the low-pressure refrigerant R1233zd. The average temperature of the module and the temperature difference among cells could be maintained under 40 °C and 5 K under a 2C discharging rate.
- (2)
- A lower saturation temperature, higher mass flux, and higher subcooling degree of the refrigerant enhanced the heat transfer between the module and the refrigerant, thus achieving lower average temperature and a higher temperature decrease rate in the battery module. An increase in the saturation temperature and decrease in the subcooling degree could reduce the temperature difference within the module. However, the mass flux of the refrigerant showed a two-stage effect on the temperature uniformity in the module. The results shows that the cooling performance of the BTMS could be improved by controlling the above three operation parameters.
- (3)
- The battery consistency in the module was mainly dominated by the temperature uniformity in the pack, and showed a positive relationship with it. Meanwhile, the battery consistency deteriorated with a lower average temperature.
- (1)
- The aging model should be integrated into the electrothermal model to further investigate the effects of operation parameters on the aging performance.
- (2)
- More realistic cyclic conditions should be tested to validate the effectiveness of the pumped two-phase cooling BTMS.
- (3)
- The optimum design of cooling structure for the pumped two-phase cooling BTMS should be paid more attention to achieve better cooling performance.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Specific heat capacity (J/(kg·K)) | |
E | Energy per unit mass (J/kg) |
Rated voltage (V) | |
Surface tension force (N) | |
h | Convective heat transfer coefficient (W/(m2·K)) |
I | Current (A) |
k | Turbulent kinetic energy (m2s−2) |
In-plane thermal conductivity of the cell (W/(m·K)) | |
Through-plane thermal conductivity of the cell (W/(m·K)) | |
Thermal conductivity of cold plate (W/(m·K)) | |
Effective thermal conductivity of fluid (W/(m·K)) | |
Km | Turbulent viscosities of momentum |
Mass transfer rate | |
L | Length (m) |
P | Battery consistency |
q | Heat generation (W) |
R | Resistance of cell |
Sh | Extra energy involved in phase change (J) |
T | Temperature (K) |
Tw | Temperature of solid wall (K) |
Tl | Temperature of fluid (K) |
Uocv | Open circuit voltage of the cell (V) |
UL | Terminal voltage of the cell (V) |
Velocity vector | |
Operating voltage (V) | |
Normalized voltage | |
Average normalized voltage | |
V | Volume (m3), voltage (V) |
Greek letters | |
Volume fraction | |
Turbulent dissipation rate (m2s−3) | |
Dynamic viscosity () | |
Density (kg m−3) | |
ϕ | Fluid property |
Subscripts and superscript | |
f | Liquid phase |
g | Vapor phase |
i | Number of cell parts |
n | Number of cells |
Abbreviation | |
BTMS | Battery Thermal Management System |
CSF | Continuum Surface Force |
EV | Electric Vehicle |
ECM | Equivalent Circuit Model |
LUT | Look-Up Table |
RNG | Renormalization Group |
SOC | State Of Charge |
References
- Xiao, B.; Wang, W.; Zhang, X.; Long, G.; Fan, J.; Chen, H.; Deng, L. A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers. Powder Technol. 2019, 349, 92–98. [Google Scholar] [CrossRef]
- Liang, M.; Fu, C.; Xiao, B.; Luo, L.; Wang, Z. A fractal study for the effective electrolyte diffusion through charged porous media. Int. J. Heat Mass Transf. 2019, 137, 365–371. [Google Scholar] [CrossRef]
- Baghdadi, I.; Briat, O.; Delétage, J.Y.; Gyan, P.; Vinassa, J.M. Lithium battery aging model based on Dakin’s degradation approach. J. Power Sources 2016, 325, 273–285. [Google Scholar] [CrossRef]
- Paul, S.; Diegelmann, C.; Kabza, H.; Tillmetz, W. Analysis of ageing inhomogeneities in lithium-ion battery systems. J. Power Sources 2013, 239, 642–650. [Google Scholar] [CrossRef]
- Liu, H.; Wei, Z.; He, W.; Zhao, J. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Convers. Manag. 2017, 150, 304–330. [Google Scholar] [CrossRef]
- Ashwin, T.R.; Mcgordon, A.; Jennings, P.A. Electrochemical modelling of Li-ion battery pack with constant voltage cycling. J. Power Sources 2017, 341, 327–339. [Google Scholar] [CrossRef]
- Chen, S.; Peng, X.; Bao, N.; Garg, A. A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module. Appl. Therm. Eng. 2019, 156, 324–339. [Google Scholar] [CrossRef]
- Huo, Y.; Rao, Z. Investigation of phase change material based battery thermal management at cold temperature using lattice Boltzmann method. Energy Convers. Manag. 2017, 133, 204–215. [Google Scholar] [CrossRef]
- Kelly, K.J.; Mihalic, M.; Zolot, M. Battery usage and thermal performance of the Toyota Prius and Honda Insight during chassis dynamometer testing. In Proceeding of the IEEE 2002 Battery Conference on Applications & Advances, Long Beach, CA, USA, 18 January 2002. [Google Scholar]
- Huang, Y.; Wang, S.; Lu, Y.; Huang, R.; Yu, X. Study on a liquid cooling-based battery thermal management system considering transient regime pertaining. Appl. Therm. Eng. 2020, 16, 114394. [Google Scholar]
- Yang, W.; Zhou, F.; Liu, Y.; Xu, S.; Chen, X. Thermal performance of honeycomb-like battery thermal management system with bionic liquid mini-channel and phase change materials for cylindrical lithium-ion battery. Appl. Therm. Eng. 2021, 188, 116649. [Google Scholar] [CrossRef]
- Lai, Y.; Wu, W.; Chen, K.; Wang, S.; Xin, C. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack. Int. J. Heat Mass Transf. 2019, 144, 118581. [Google Scholar] [CrossRef]
- Chen, F.; Huang, R.; Wang, C.; Yu, X.; Liu, H.; Wu, Q.; Qian, K.; Bhagat, R. Air and PCM cooling for battery thermal management considering battery cycle life. Appl. Therm. Eng. 2020, 173, 115154. [Google Scholar] [CrossRef]
- Samimi, F.; Babapoor, A.; Azizi, M.; Karimi, G. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers. Energy 2016, 96, 355–371. [Google Scholar] [CrossRef]
- Babapoor, A.; Azizi, M.; Karimi, G. Thermal management of a Li-ion battery using carbon fiber-PCM composites. Appl. Therm. Eng. 2015, 82, 281–290. [Google Scholar] [CrossRef]
- Hong, S.H.; Jang, D.S.; Park, S.; Yun, S.; Kim, Y. Thermal performance of direct two-phase refrigerant cooling for lithium-ion batteries in electric vehicles. Appl. Therm. Eng. 2020, 173, 115213. [Google Scholar] [CrossRef]
- Cen, J.; Li, Z.; Jiang, F. Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management. Energy Sustain. Dev. 2018, 45, 88–95. [Google Scholar] [CrossRef]
- An, Z.; Jia, L.; Li, X.; Ding, Y. Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel. Appl. Therm. Eng. 2017, 117, 534–543. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, F. A novel electric vehicle thermal management system based on cooling and heating of batteries by refrigerant. Energy Convers. Manag. 2021, 237, 14145. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wu, J.T. Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles. Energy Convers. Manag. 2020, 207, 112569. [Google Scholar] [CrossRef]
- Choi, E.J.; Jin, Y.P.; Min, S.K. Two-phase cooling using HFE-7100 for polymer electrolyte membrane fuel cell application. Appl. Therm. Eng. 2018, 148, 868–877. [Google Scholar] [CrossRef]
- Fang, Y.; Ye, F.; Zhu, Y.; Li, K.; Shen, J.; Su, L. Experimental investigation on system performances and transient response of a pumped two-phase battery cooling system using R1233zd. Energy Rep. 2020, 6, 238–247. [Google Scholar] [CrossRef]
- Zhu, Y.; Fang, Y.; Su, L.; Ye, F. Experimental investigation of start-up and transient thermal performance of pumped two-phase battery thermal management system. Int. J. Energy Res. 2020, 44, 11372–11384. [Google Scholar] [CrossRef]
- Xie, Y.; Zheng, J.; Hu, X.; Lin, X.; Liu, K.; Sun, J.; Zhang, Y.; Dan, D.; Xi, D.; Feng, F. An improved resistance-based thermal model for prismatic lithium-ion battery charging. Appl. Therm. Eng. 2020, 180, 115794. [Google Scholar] [CrossRef]
- Kenney, B.; Darcovich, K.; MacNeil, D.D.; Davidson, I.J. Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules. J. Power Sources 2012, 213, 391–401. [Google Scholar] [CrossRef]
- Hosseinzadeh, E.; Arias, S.; Krishna, M.; Worwood, D.; Barai, A.; Widanalage, D.; Marco, J. Quantifying cell-to-cell variations of a parallel battery module for different pack configurations. Appl. Energy 2021, 282, 115859. [Google Scholar] [CrossRef]
- Park, S.; Jang, D.S.; Lee, D.; Hong, S.H.; Kim, Y. Simulation on cooling performance characteristics of a refrigerant-cooled active thermal management system for lithium ion batteries. Int. J. Heat Mass Transf. 2019, 135, 131–141. [Google Scholar] [CrossRef]
- Shen, M.; Gao, Q. Structure design and effect analysis on refrigerant cooling enhancement of battery thermal management system for electric vehicles. J. Energy Storage 2020, 32, 101940. [Google Scholar] [CrossRef]
- Chen, S.C.; Wan, C.C.; Wang, Y.Y. Thermal analysis of lithium-ion batteries. J. Power Sources 2005, 140, 111–124. [Google Scholar] [CrossRef]
- Bernardi, D.; Pawlikowski, E.; Newman, J. A General Energy Balance for Battery Systems. J. Electrochem. Soc. 1985, 132, 5. [Google Scholar] [CrossRef] [Green Version]
- Forgez, C.; Do, D.V.; Friedrich, G.; Morcrette, M.; Delacourt, C. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J. Power Sources 2010, 195, 2961–2968. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, X.; Shang, B.; Li, G. Unbalanced discharging and aging due to temperature differences among the cells in a lithium-ion battery pack with parallel combination. J. Power Sources 2016, 306, 733–741. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Huber, M.L.; McLinden, M.O. REFPROP9.0; NIST: Boulder, CO, USA, 2010. [Google Scholar]
- ANSYS FLUENT Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2009.
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Qiu, G.D.; Cai, W.H.; Wu, Z.Y.; Jiang, Y.; Yao, Y. Analysis on the value of coefficient of mass transferwith phase change in Lee’s equation. J. Harbin Inst. Technol. 2014, 46, 15–19. [Google Scholar]
- Lee, J.; O’Neill, L.E.; Lee, S.; Mudawar, I. Experimental and computational investigation on two-phase flow and heat transfer of highly subcooled flow boiling in vertical upflow. Int. J. Heat Mass Transf. 2019, 136, 1199–1216. [Google Scholar] [CrossRef]
- De Rossi, F.; Mauro, A.W.; Rosato, A. Local heat transfer coefficients and pressure gradients for R-134a during flow boiling at temperatures between −9 °C and +20 °C. Energy Convers. Manag. 2009, 50, 1714–1721. [Google Scholar] [CrossRef]
- Van Gils, R.W.; Danilov, D.; Notten, P.H.; Speetjens, M.F.; Nijmeijer, H. Battery thermal management by boiling heat-transfer. Energy Convers. Manag. 2014, 79, 9–17. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Xie, Z.; Li, H.; Peng, W. Parametric investigation on the performance of a direct evaporative cooling battery thermal management system. Int. J. Heat Mass Transf. 2022, 189, 122685. [Google Scholar] [CrossRef]
- Ding, C.; Wen, H. The influence of connection mode on the consistency and heat production of battery modules. J. Beijing Univ. Aeronaut. Astronaut. 2022, 48, 171–181. [Google Scholar] [CrossRef]
- Liang, J.; Gan, Y.; Tan, M.; Li, Y. Multilayer electrochemical-thermal coupled modeling of unbalanced discharging in a serially connected lithium-ion battery module. Energy. 2020, 209, 118429. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Rated capacity | 50 Ah |
Rated voltage | 3.65 V |
Positive electrode | LiNi0.6Co0.2Mn0.2O2 |
Negative electrode | Graphite |
Cut-off voltage at charge | 4.25 V |
Cut-off voltage at discharge | 2.75 V |
Parameter | Cell | Cold Plate | Thermal Pad |
---|---|---|---|
Density (kg/m3) | 2373 | 2689 | 3100 |
Specific heat capacity (J/(kg·K)) | 1120 | 951 | 930 |
Thermal conductivity (W/(m·K)) | Kin = 40.8; Kth = 1.17 | 237.5 | 5 |
Specifications | 148 mm × 98 mm × 26 mm | 296 mm × 208 mm × 15 mm | 296 mm × 208 mm × 2 mm |
Liquid Phase | Vapor Phase | |
---|---|---|
Density ( | ||
Specific heat capacity ( | ||
Thermal Conductivity | ||
Viscosity ( |
No. | Saturation Temperature (K) | Subcooling Degree (K) | Mass Flux (kg/m2s) | Discharge Rate (C) | Ambient Temperature (K) |
---|---|---|---|---|---|
1 | 291.15/293.15/295.15/297.15 | 4 | 1238 | 2 | 313.15 |
2 | 291.15 | 2/3/4/5 | 1238 | 2 | 313.15 |
3 | 291.15 | 4 | 742.8/990.4/1238/1485.6 | 2 | 313.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Ruan, L.; Li, R. Parametric Investigation on the Electrical-Thermal Performance of Battery Modules with a Pumped Two-Phase Cooling System. Energies 2022, 15, 7897. https://doi.org/10.3390/en15217897
Wang J, Ruan L, Li R. Parametric Investigation on the Electrical-Thermal Performance of Battery Modules with a Pumped Two-Phase Cooling System. Energies. 2022; 15(21):7897. https://doi.org/10.3390/en15217897
Chicago/Turabian StyleWang, Jun, Lin Ruan, and Ruiwei Li. 2022. "Parametric Investigation on the Electrical-Thermal Performance of Battery Modules with a Pumped Two-Phase Cooling System" Energies 15, no. 21: 7897. https://doi.org/10.3390/en15217897
APA StyleWang, J., Ruan, L., & Li, R. (2022). Parametric Investigation on the Electrical-Thermal Performance of Battery Modules with a Pumped Two-Phase Cooling System. Energies, 15(21), 7897. https://doi.org/10.3390/en15217897