Tri-Generation System Configuration Selection Based on Energy and Exergy Analyses
Abstract
:1. Introduction
2. System Description and Parameters Used for Simulation
2.1. System Description
2.2. System Scale, Assumptions, and Specifications
2.3. Proposed Layouts and Description
3. Methodology
3.1. Energy Analysis
3.2. Exergy Analysis
- Component level:
- 2.
- System level:
4. Results and Discussion
4.1. Energy Analysis Results
4.2. Exergy Analysis Results
5. Conclusions
- The proposed systems show the superiority of energy efficiency over those in other relevant works because of the use of a heat pump to utilize the waste heat from PEMFCs. In detail, it can reduce energy consumption by 36.1% and 31.4% in heating and cooling modes, respectively, compared with relevant studies.
- All proposed systems essentially matched the demands for power and heat of the 4800 m2 greenhouse except the heating mode in case A, using a simple heat pump. In this case, the generated heat was approximately 98% of the required heat.
- Case C, with an internal heat exchanger, has the best performance with a PERs of 0.94 and 0.79 in cooling and heating modes, respectively. However, there is little difference in energy performance between cases B and C. Economic and environmental analyses should be conducted in ongoing studies for more comprehensive comparison of configurations.
- The exergy-based analysis clearly showed that exergy is mostly destroyed at evaporators and expansion valves. In cases B and C, the difference in pressure at the expansion valve is reduced by the cascade loop and the internal heat exchanger, respectively. In addition, a higher pressure in the evaporator allows for a warmer refrigerant stream, leading to a lower difference in temperature between the cold refrigerant and hot water streams. Decreases in both the pressure difference at the expansion valves and the temperature difference in the evaporator significantly reduced exergy destruction in the systems of cases B and C compared with that of case A.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Stream | P | T | M | Q |
---|---|---|---|---|
bar | °C | kg/s | kW | |
01 | 1.00 | 25.00 | 0.01 | 0.29 |
02 | 1.00 | 25.00 | 0.26 | 6.50 |
03 | 0.97 | 82.05 | 0.32 | 28.23 |
04 | 1.00 | 45.00 | 1.68 | 315.77 |
05 | 1.05 | 55.00 | 1.68 | 385.78 |
06 | 1.00 | 55.00 | 1.68 | 385.77 |
07 | 1.10 | 55.00 | 1.68 | 385.80 |
08 | 1.07 | 45.00 | 1.68 | 315.77 |
09 | 1.00 | 25.00 | 0.88 | 92.34 |
10 | 1.05 | 25.00 | 0.88 | 92.34 |
11 | 1.00 | 15.00 | 0.88 | 55.51 |
12 | 1.00 | 65.00 | 6.88 | 1872.33 |
13 | 1.00 | 65.00 | 6.88 | 1872.33 |
14 | 1.15 | 65.00 | 6.88 | 1872.48 |
15 | 1.10 | 70.00 | 6.88 | 2016.50 |
16 | 3.60 | 13.73 | 0.56 | 290.40 |
17 | 20.00 | 99.78 | 0.56 | 329.40 |
18 | 20.00 | 70.00 | 0.56 | 185.38 |
19 | 20.00 | 70.00 | 0.56 | 185.38 |
20 | 3.70 | 9.78 | 0.56 | 185.38 |
21 | 3.65 | 9.37 | 0.56 | 220.37 |
30 | 100.00 | |||
31 | 50.33 | |||
32 | 49.67 | |||
33 | 39.67 | |||
34 | 10.00 |
Stream | P | T | M | Q |
---|---|---|---|---|
bar | °C | kg/s | kW | |
01 | 1.00 | 25.00 | 0.01 | 0.29 |
02 | 1.00 | 25.00 | 0.26 | 6.50 |
03 | 0.97 | 82.05 | 0.32 | 28.23 |
04 | 1.00 | 45.00 | 1.68 | 315.77 |
05 | 1.05 | 55.00 | 1.68 | 385.78 |
06 | 1.00 | 55.00 | 1.68 | 385.77 |
07 | 1.08 | 55.00 | 1.68 | 385.79 |
08 | 1.05 | 45.00 | 1.68 | 315.77 |
09 | 1.00 | 25.00 | 1.11 | 116.26 |
10 | 1.03 | 25.00 | 1.11 | 116.27 |
11 | 1.00 | 15.00 | 1.11 | 69.89 |
12 | 1.00 | 65.00 | 6.90 | 1876.42 |
13 | 1.00 | 65.00 | 6.90 | 1876.42 |
14 | 1.05 | 65.00 | 6.90 | 1876.47 |
15 | 1.00 | 70.00 | 6.90 | 2020.76 |
16 | 8.90 | 45.48 | 0.60 | 323.65 |
17 | 20.00 | 89.26 | 0.60 | 342.91 |
18 | 19.97 | 70.00 | 0.60 | 198.62 |
19 | 19.97 | 70.00 | 0.60 | 198.62 |
20 | 9.00 | 39.62 | 0.60 | 198.62 |
21 | 8.95 | 39.41 | 0.60 | 253.63 |
22 | 3.65 | 17.22 | 0.19 | 100.29 |
23 | 11.00 | 70.55 | 0.19 | 108.92 |
24 | 11.00 | 45.00 | 0.19 | 53.92 |
25 | 11.00 | 45.00 | 0.19 | 53.92 |
26 | 3.70 | 9.78 | 0.19 | 53.92 |
30 | 100.00 | |||
31 | 61.23 | |||
32 | 38.77 | |||
33 | 28.77 | |||
34 | 10.00 |
Stream | P | T | M | Q |
---|---|---|---|---|
bar | °C | kg/s | kW | |
01 | 1.00 | 25.00 | 0.01 | 0.29 |
02 | 1.00 | 25.00 | 0.26 | 6.50 |
03 | 0.97 | 82.05 | 0.32 | 28.23 |
04 | 1.00 | 45.00 | 1.68 | 315.77 |
05 | 1.05 | 55.00 | 1.68 | 385.78 |
06 | 1.00 | 55.00 | 1.68 | 385.77 |
07 | 1.10 | 55.00 | 1.68 | 385.80 |
08 | 1.07 | 45.00 | 1.68 | 315.77 |
09 | 1.00 | 25.00 | 1.14 | 119.62 |
10 | 1.03 | 25.00 | 1.14 | 119.62 |
11 | 1.00 | 15.00 | 1.14 | 71.91 |
12 | 1.00 | 65.00 | 6.88 | 1872.33 |
13 | 1.00 | 65.00 | 6.88 | 1872.33 |
14 | 1.15 | 65.00 | 6.88 | 1872.48 |
15 | 1.10 | 70.00 | 6.88 | 2016.55 |
16 | 8.90 | 39.20 | 0.40 | 212.17 |
17 | 8.90 | 47.88 | 0.59 | 320.16 |
18 | 20.00 | 91.55 | 0.59 | 339.38 |
19 | 20.00 | 70.00 | 0.59 | 195.31 |
20 | 20.00 | 70.00 | 0.40 | 132.42 |
21 | 20.00 | 70.00 | 0.40 | 132.42 |
22 | 9.00 | 39.62 | 0.40 | 132.42 |
23 | 8.95 | 39.41 | 0.40 | 142.15 |
24 | 20.00 | 70.00 | 0.19 | 62.90 |
25 | 19.97 | 44.53 | 0.19 | 53.17 |
26 | 3.70 | 9.78 | 0.19 | 53.17 |
27 | 3.65 | 24.73 | 0.19 | 100.88 |
28 | 8.90 | 67.39 | 0.19 | 107.99 |
30 | 100.00 | |||
31 | 62.78 | |||
32 | 37.22 | |||
33 | 27.22 | |||
34 | 10.00 |
EP,k | EP,k | ED,k | εk | yk | |
---|---|---|---|---|---|
kW | kW | kW | % | % | |
Pump 1 | 0.03 | 0.02 | 0.01 | 70.99 | 0.02 |
Pump 2 | 0.16 | 0.11 | 0.05 | 71.49 | 0.11 |
Pump 3 | 0.01 | 0.00 | 0.00 | 72.37 | 0.00 |
Compressor 1 | 39.48 | 34.68 | 4.80 | 87.85 | 12.09 |
Evaporator 1 | 10.83 | 2.10 | 8.73 | 19.41 | 22.01 |
Evaporator 2 | 2.51 | 1.07 | 1.45 | 42.47 | 3.65 |
Condenser 1 | 30.97 | 28.51 | 2.47 | 92.04 | 6.22 |
Expansion valve 1 | - | 6.88 | - | 17.34 | |
Total system | 39.67 | - | 24.37 | - | 61.44 |
EP,k | EP,k | ED,k | εk | yk | |
---|---|---|---|---|---|
kW | kW | kW | % | % | |
Pump 1 | 0.02 | 0.01 | 0.01 | 70.99 | 0.02 |
Pump 2 | 0.05 | 0.04 | 0.02 | 71.69 | 0.05 |
Pump 3 | 0.00 | 0.00 | 0.00 | 72.23 | 0.00 |
Compressor 1 | 19.49 | 17.07 | 2.42 | 87.59 | 8.41 |
Compressor 2 | 9.19 | 7.6 | 1.60 | 82.59 | 5.56 |
Evaporator 1 | 10.83 | 8.78 | 2.06 | 81.00 | 7.16 |
Evaporator 2 | 3.16 | 1.54 | 1.62 | 48.76 | 5.63 |
Condenser 1 | 30.61 | 28.56 | 2.05 | 93.29 | 7.14 |
Condenser 2 | 8.30 | 6.91 | 1.39 | 83.27 | 4.83 |
Expansion valve 1 | - | - | 2.15 | - | 7.46 |
Expansion valve 2 | - | - | 0.84 | - | 2.91 |
Total system | 28.77 | - | 14.15 | - | 49.18 |
EP,k | EP,k | ED,k | εk | yk | |
---|---|---|---|---|---|
kW | kW | kW | % | % | |
Pump 1 | 0.03 | 0.02 | 0.01 | 70.99 | 0.03 |
Pump 2 | 0.16 | 0.11 | 0.04 | 71.69 | 0.16 |
Pump 3 | 0.00 | 0.00 | 0.00 | 72.23 | 0.00 |
Compressor 1 | 19.46 | 17.06 | 2.40 | 87.66 | 8.68 |
Compressor 2 | 8.02 | 6.6 | 1.40 | 82.49 | 5.08 |
Evaporator 1 | 10.83 | 8.77 | 2.07 | 80.91 | 7.47 |
Evaporator 2 | 3.23 | 1.35 | 1.87 | 41.88 | 6.77 |
Condenser 1 | 30.65 | 28.52 | 2.13 | 93.06 | 7.69 |
Internal HEX | 1.69 | 1.21 | 0.48 | 71.65 | 1.73 |
Expansion valve 1 | - | - | 1.43 | - | 5.18 |
Expansion valve 2 | - | - | 1.05 | - | 3.81 |
Total system | 27.67 | - | 12.89 | - | 46.60 |
References
- Ghazanfari Holagh, S.; Abdollahi Haghghi, M.; Chitsaz, A. Which methane-fueled fuel cell is of superior performance in CCHP applications; solid oxide or molten carbonate? Fuel 2022, 312, 122936. [Google Scholar] [CrossRef]
- Milewski, J.; Badyda, K. Tri-generation systems based on hightemperature fuel cells. In Proceedings of the International Conference on Power Engineering (ICOPE), Kobe, Japan, 16 November 2009. [Google Scholar]
- Raj Singh, U.; Sai Kaushik, A.; Sekhar Bhogilla, S. A novel renewable energy storage system based on reversible SOFC, hydrogen storage, Rankine cycle and absorption refrigeration system. Sustain. Energy Technol. Assess. 2022, 51, 101978. [Google Scholar] [CrossRef]
- Rinaldi, G.; McLarty, D.; Brouwer, J.; Lanzini, A.; Santarelli, M. Study of CO2 recovery in a carbonate fuel cell tri-generation plant. J. Power Sources 2015, 284, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Roushenas, R.; Zarei, E.; Torabi, M. A novel trigeneration system based on solid oxide fuel cell-gas turbine integrated with compressed air and thermal energy storage concepts: Energy, exergy, and life cycle approaches. Sustain. Cities Soc. 2021, 66, 102667. [Google Scholar] [CrossRef]
- Tse, L.K.C.; Wilkins, S.; McGlashan, N.; Urban, B.; Martinez-Botas, R. Solid oxide fuel cell/gas turbine trigeneration system for marine applications. J. Power Sources 2011, 196, 3149–3162. [Google Scholar] [CrossRef]
- Wang, S.; Lu, X.; Mei, S.; Zhu, Y. Solid Oxide Fuel Cell Trigeneration System and Performance Analysis. Tianjin Daxue Xuebao (Ziran Kexue Yu Gongcheng Jishu Ban)/J. Tianjin Univ. Sci. Technol. 2021, 54, 1061–1069. [Google Scholar] [CrossRef]
- Loreti, G.; Facci, A.L.; Baffo, I.; Ubertini, S. Combined heat, cooling, and power systems based on half effect absorption chillers and polymer electrolyte membrane fuel cells. Appl. Energy 2019, 235, 747–760. [Google Scholar] [CrossRef]
- DOE. Quadrennial Technology Review 2015; DOE: Washington, DC, USA, 2015.
- Baniasadi, E.; Toghyani, S.; Afshari, E. Exergetic and exergoeconomic evaluation of a trigeneration system based on natural gas-PEM fuel cell. Int. J. Hydrogen Energy 2017, 42, 5327–5339. [Google Scholar] [CrossRef]
- Chen, X.; Gong, G.; Wan, Z.; Luo, L.; Wan, J. Performance analysis of 5 kW PEMFC-based residential micro-CCHP with absorption chiller. Int. J. Hydrogen Energy 2015, 40, 10647–10657. [Google Scholar] [CrossRef]
- Khan, M.S.; Mubeen, I.; Jingyi, W.; Zhang, Y.; Zhu, G.; Yan, M. Development and performance assessment of a novel solar-assisted multigenerational system using high temperature phase change material. Int. J. Hydrogen Energy 2022, 47, 26178–26197. [Google Scholar] [CrossRef]
- Bellos, E.; Lykas, P.; Tzivanidis, C. Pumped Thermal Energy Storage System for Trigeneration: The Concept of Power to XYZ. Appl. Sci. 2022, 12, 970. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yang, L.; Entchev, E.; Cho, S.; Kang, E.C.; Lee, E.J. Hybrid Solar Geothermal Heat Pump System Model Demonstration Study. Front. Energy Res. 2021, 9, 778501. [Google Scholar] [CrossRef]
- Najafi, B.; Casalegno, A.; Intini, M.; De Antonellis, S.; Rinaldi, F. A trigeneration system based on polymer electrolyte fuel cell and desiccant wheel—Part A: Fuel cell system modelling and partial load analysis. Energy Convers. Manag. 2015, 106, 1450–1459. [Google Scholar] [CrossRef]
- Samjungtech. Absorption Chiller & Fan Coil Unit. Available online: http://www.samjungtech.com/renew_2016/eng/data/busi02_catalog.pdf (accessed on 6 October 2022).
- Javadi, M.A.; Khodabakhshi, S.; Ghasemiasl, R.; Jabery, R. Sensivity analysis of a multi-generation system based on a gas/hydrogen-fueled gas turbine for producing hydrogen, electricity and freshwater. Energy Convers. Manag. 2022, 252, 115085. [Google Scholar] [CrossRef]
- Mitchell, J.; Braun, J.E. Principles of Heating, Ventilation, and Air Conditioning in Buildings; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Bellos, E.; Tzivanidis, C. Investigation of the Environmentally-Friendly Refrigerant R152a for Air Conditioning Purposes. Appl. Sci. 2019, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- LG. Inverter scroll chiller. Available online: https://www.lg.com/gr/leaflets/170502_ISChiller_Catalog_EU.PDF (accessed on 6 October 2022).
- Ge, Y.; Tassou, S.; Chaer, I.; Sugiartha, N. Performance evaluation of a tri-generation system with simulation and experiment. Appl. Energy 2009, 86, 2317–2326. [Google Scholar] [CrossRef]
- Havelský, V. Energetic efficiency of cogeneration systems for combined heat, cold and power production. Int. J. Refrig. 1999, 22, 479–485. [Google Scholar] [CrossRef]
- Kong, X.-Q.; Wang, R.-Z.; Li, Y.; Wu, J.-Y. Performance research of a micro-CCHP system with adsorption chiller. J. Shanghai Jiaotong Univ. (Science) 2010, 15, 671–675. [Google Scholar] [CrossRef]
- Murugan, S.; Horák, B. Tri and polygeneration systems—A review. Renew. Sustain. Energy Rev. 2016, 60, 1032–1051. [Google Scholar] [CrossRef]
- Ziegler, F.; Riesch, P. Absorption cycles. A review with regard to energetic efficiency. Heat Recovery Syst. CHP 1993, 13, 147–159. [Google Scholar] [CrossRef]
- Javadi, M.; Jafari Najafi, N.; Khalili Abhari, M.; Jabery, R.; Pourtaba, H. 4E analysis of three different configurations of a combined cycle power plant integrated with a solar power tower system. Sustain. Energy Technol. Assess. 2021, 48, 101599. [Google Scholar] [CrossRef]
- Ranjbar Hasani, M.; Nedaei, N.; Assareh, E.; Alirahmi, S.M. Thermo-economic appraisal and operating fluid selection of geothermal-driven ORC configurations integrated with PEM electrolyzer. Energy 2023, 262, 125550. [Google Scholar] [CrossRef]
Refrigerant Candidates | R134a | R22 | R152a |
---|---|---|---|
Comp. Outlet Pressure (bar) | 41 | 30 | 20 |
Ozone Depletion Potential (ODP) | 0 | 0.05 | 0 |
Global Warming Potential (GWP) | 1300 | 1700 | 120 |
Component | Specification | Unit | Value |
---|---|---|---|
Tri-generation system | Lighting and control load | kW | 10 |
PEMFCs module | Capacity | kW | 25 |
Operating temperature | °C | 65 | |
Fuel type | - | NG | |
Stack electrical efficiency | % | 50 | |
Stack conversion rate | - | 1 | |
Heat to cooling water | % | 35 | |
Heat to cathode off-gas | % | 5 | |
Heat to anode off-gas | % | 10 | |
Heat loss | % | 20 | |
Voltage | V | 1.2 | |
Cooling water input temperature | °C | 45 | |
Cooling water output temperature | °C | 55 | |
Water pump isentropic efficiency | % | 70 | |
Adsorption chiller | Coefficient of performance (COP) | - | 0.5 |
Rated output power | kW | 72 | |
Rated water inlet temperature | °C | 70 | |
Rated water outlet temperature | °C | 65 | |
Greenhouse | Surface area | m2 | 4800 |
Heating load factor of glass greenhouse | kW/(m2 °C) | 0.00616 | |
Winter indoor temperature | °C | 15 | |
Winter outdoor temperature | °C | −15 | |
Summer indoor temperature | °C | 25 |
Unit | Case A | Case B | Case C | |
---|---|---|---|---|
Natural gas input rate | kg/h | 19.377 | 19.377 | 19.377 |
PEMFCs output power | kW | 100.0 | 100.0 | 100.0 |
Power for lighting and control | kW | 10.0 | 10.0 | 10.0 |
Power for heat pump system | kW | 39.7 | 28.8 | 27.2 |
Power for EHP | kW | 50.3 | 61.2 | 62.8 |
Total cooling power output (QC) | kW | 241.3 | 279.6 | 284.9 |
Cooling power by EHP (QC1) | kW | 132.4 | 161.1 | 165.2 |
Cooling power by adsorption chiller (QC2) | kW | 72.0 | 72.0 | 72.0 |
Cooling power by cooling water (QC3) | kW | 36.9 | 46.5 | 47.7 |
Total heating power output (QH) | kW | 305.2 | 340.3 | 345.1 |
Heating power by EHP (QH1) | kW | 161.2 | 196.3 | 201.1 |
Heat power by heat pump loop (QH2) | kW | 144.0 | 144.0 | 144.0 |
PERCooling | - | 1.12 | 0.96 | 0.94 |
PERHeating | - | 0.82 | 0.79 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, T.; Kim, Y.-S.; Lee, D.-K.; Ahn, K.-Y.; Lee, S.-M. Tri-Generation System Configuration Selection Based on Energy and Exergy Analyses. Energies 2022, 15, 7958. https://doi.org/10.3390/en15217958
Bui T, Kim Y-S, Lee D-K, Ahn K-Y, Lee S-M. Tri-Generation System Configuration Selection Based on Energy and Exergy Analyses. Energies. 2022; 15(21):7958. https://doi.org/10.3390/en15217958
Chicago/Turabian StyleBui, Tuananh, Young-Sang Kim, Dong-Keun Lee, Kook-Young Ahn, and Sang-Min Lee. 2022. "Tri-Generation System Configuration Selection Based on Energy and Exergy Analyses" Energies 15, no. 21: 7958. https://doi.org/10.3390/en15217958
APA StyleBui, T., Kim, Y. -S., Lee, D. -K., Ahn, K. -Y., & Lee, S. -M. (2022). Tri-Generation System Configuration Selection Based on Energy and Exergy Analyses. Energies, 15(21), 7958. https://doi.org/10.3390/en15217958