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Abstract: Distribution transformers are an integral part of the power distribution system network
and emerging smart grids. With the increasing dynamic service requirements of consumers, there is a
higher likelihood of transformer failures due to overloading, feeder line faults, and ineffective cooling.
As a consequence, their general longevity has been diminished, and the maintenance efforts of utility
providers prove inadequate in efficiently monitoring and detecting transformer conditions. Existing
Supervisory Control and Data Acquisition (SCADA) metering points are sparsely allocated in the
network, making fault detection in feeder lines limited. To address these issues, this work proposes
an IoT system for real-time distribution transformer load monitoring and anomaly detection. The
monitoring system consists of a low-cost IoT gateway and sensor module which collects a three-phase
load current profile, and oil levels/temperature from a distributed transformer network, specifically
at the feeder side. The data are communicated through the publish/subscribe paradigm to a cloud
IoT pipeline and stored in a cloud database after processing. An anomaly detection algorithm in the
form of Isolation Forest is implemented to intelligently detect likely faults within a time window
of 24 h prior. A mobile application was implemented to interact with the cloud database, visualize
the real-time conditions of the transformers, and track them geographically. The proposed work can
therefore reduce transformer maintenance costs with real-time monitoring and facilitate predictive
fault analysis.

Keywords: Internet of Things; big data; cloud computing; smart grid; load monitoring; deep learning;
anomaly detection

1. Introduction

Transformers form the fundamental elements for power distribution networks. Their
primary function is to distribute electric power to the low-voltage consumers side from the
generating power stations through a conducting system of transmission feeders. Feeders are
designed based on the current carrying capacity and the respective voltage drop required
by the transformers. This constitutes the main feeder and many secondary feeders which
connect commercial enterprises or domestic communities with the central power grid.
Their operational ability is specified by rating condition, which guarantees a long service
life of typically 20–25 years [1]. With the increasing need for energy requirements from
consumers driven by the rise of technological advancements, their lifespan is significantly
diminished. Overloading, overheating and feeder line faults are the major causes of failures.
Its operational condition determines the availability of electricity to entire areas and is
imperative to effectively manage the components of the distribution grid to mitigate the
disruption of services.

Utility providers in many countries have attempted to address these prevalent prob-
lems by using the Supervisory Control and Data Acquisition (SCADA) [2]. SCADA is a
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computer system that detects data on temperature, voltage, power, and current. While
this system reduces the frequent need to send utility personnel for site visits by providing
access to data, it has certain limitations. It cannot acquire transformer health data such as
the temperature, oil level, or load status of each feeder. If there is any power outage at a
single feeder, the utility providers will only be alerted by customer complaints or during
a maintenance inspection. Peharda et al. [2] introduce a technique that incorporates data
available from SCADA systems to schedule maintenance to circumvent the lack of real-time
transformer condition access. By using winding temperatures, the relative aging rate was
calculated, and with active power, the working hours were estimated. There is an evident
requirement for smart and reliable solutions to reduce the cost of manual labor, improve
transformer monitoring and identify failing equipment in time to maintain the continuity
of the power grid functionalities [3].

The emergence of technologies such as cloud computing and the Internet of Things
(IoT) introduces opportunities to efficiently solve these problems. They aid the conception of
smart cities by facilitating advancements such as smart homes [4], smart transportation [5],
smart cafes [6], smart healthcare [7], and smart grids [8]. As reported in [9], the aging assets
of the power distribution network reveal the need for intelligent, secure data collection
devices, with efficient frameworks to handle huge volumes of data for real-time fault
detection and predictive maintenance. The rise of machine learning and deep learning
success in multiple practical domains has motivated researchers to explore its applicability
in time-series problems. In particular, recurrent neural networks and long short-term mem-
ory networks have the capability to model temporal dependencies. However, addressing
complex patterns of seasonality and trend remains an open problem.

There is a need for scalable time-series anomaly detection from long-term IoT data to
enable predictive maintenance and effective monitoring. As such, the feasibility of multiple
machine learning and deep learning methods for anomaly detection using real-time data is
studied and reported as well.

The proposed work presents the following contributions:

• An enhanced real-time distribution transformer monitoring system leveraging a low-
cost IoT gateway and sensor set the module to collect the three-phase load current
profile, temperature, and oil level.

• An exhaustive comparison of different anomaly detection algorithms for automated
fault diagnosis.

• The system uses cloud and Big Data principles to achieve scalability and security and
enable further intelligent analytics for optimizing energy consumption profiles.

• The real-time information including geographical location markers is communicated
to utility providers through a mobile application, and additionally, it sends alerts in
the case of faults.

This paper is organized as follows: Section 2 provides the core terminologies, Section 3
provides a review of recent literature, Section 4 outlines the design requirements, Section 5
explores the proposed architecture, Section 6 presents the implementation, Section 7 puts
forth the machine learning components, Section 8 presents the results, Section 9 carries out
a discussion, and Section 10 concludes the work.

2. Background

An anomaly is defined as an observation at a point in the time series that differs signif-
icantly from the previous observations. A sequence is basically: xt−w, xt−w+1, · · · , xt−1, xt,
where t is the current time, and w is the window of interest. Consider this sequence as a
series of values from a single measuring source, i.e., an oil temperature sensor. This follows
a certain distribution, Gaussian or otherwise, denoted by p(x). Suppose a new value xi is
recorded, such that p(xi) < r, where r is a dynamic threshold reflecting the cumulative
contributions of the preceding data values; then, it shows a potential anomaly [10].

Generally, anomaly detection has two primary approaches. Representation learning
is when the goal is to learn the overall distribution of the time-series data so anomalous
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points are rendered obvious. Due to complex seasonality, trend, and noise saturation, it
is recommended to transform raw time series into feature spaces where the context is
simplified. For instance, anomalies are easier to detect in time series with these aforemen-
tioned components removed. This is employed in recent works with deep learning such
as [11,12]. Fault detection involves the selection of an empirical threshold for the learned
representation based on statistical tests such as the 3-sigma rule. However, static thresholds
might be insufficient if the data are complex and clear thresholds are not known for the
domain. This is common when standard machine learning is used as in [13,14].

While many works in the literature have addressed pervasive issues in a satisfactory
way, there remain considerable limitations. They are isolated systems and are constrained
to operate within their testing environment only. Real-time data are collected but com-
municated to relevant stakeholders only in the case of faults. This hinders the efficiency
of monitoring and therefore affects the reliability of the system. Additionally, the imple-
mentations were deployed on customs servers, privacy and security are another concern.
Recently, Gupta et al. [15] presented an efficient home energy management and analytics
system that utilizes smart meter data together with Big Data processing paradigms to
provide a granular perspective on real-time consumption. The unified platform was scal-
able and allowed monitoring home energy consumption from both utility and consumer
levels. The multi-faceted nature of such solutions in similar contexts motivates the research
employed in this work. Anomaly detection with time series is challenging because of
intricate temporal dependencies, abrupt fluctuations in trend and seasonality, and the
limited availability of labeled anomaly datasets. If there are unlabeled anomalies in the
underlying distribution, the model will learn them along with the normal data, leading to
problematic performance during implementation. Noticeably, this is not resolved in the
context of distribution transformers.

The proposed system adopts the advantages of the cloud, automated learning, and Big
Data processing pipelines to be expandable, scalable, and secure while addressing the
limitations of the current literature.

3. Related Work

This section outlines related existing work for energy management systems at the
larger level as well as transformer monitoring pertaining to the context of our work.

Many developments were observed in the Energy Management System (EMS) area,
especially applied to housing [16], commercial [17], and manufacturing sectors for power
management and minimizing energy utilization. Anomaly detection approaches that
extend the features of IoT elements that are already part of EMS can create more value
by using much of the shared system infrastructure. Ref. [16] set up an IoT-based energy
management system for smart homes where energy consumption data are acquired from
smart homes with a System on Chip (SOC) and communicated to stakeholders. Ref. [17]
proposed a general blueprint for an IoT-based energy management system that measures
levels of current, voltage and derived power using sensors interfaced with Arduino UNO.
SMS alerts are sent based on thresholds via a GSM-enabled network to users.

Machine learning is increasingly being applied for load forecasting, where it is em-
ployed oriented toward residential community or commercial entity levels for peak demand
predictions and power planning [18]. The authors in [19] propose an IoT dashboard for
visualizing the readings of voltage, current, real power, reactive power, apparent power,
power factor, and energy consumption, with a Gaussian support vector machine regression
for forecasting energy consumption using the historical monthly reported readings of the
same variable along with recorded weather conditions.

The works in [19–21] in particular purport that anomaly detection is a worthwhile
addition for future studies, which can build on top of existing IoT and ML systems.

Wornpuen et al. [22] introduce one of the first transformer monitoring systems in
the literature. They separated their transformer measuring units into small groups of
clients and designated a central master. The clients measure voltage, current, power,
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and temperature, and they communicate with the master using radio frequency at the
433 MHz bands. The master unit has a Global Service Mobile (GSM) modem and transmits
all data from itself and the client to a remote database server.

The authors in [23] expand the scope using IoT, and they additionally consider oil sen-
sors, vibration sensors, and humidity sensors in their work. They use a PIC microcontroller
to interface with the sensors and a GPRS module to send the collected values to an online
interface for utility engineers. However, their system is only active for any emergency
conditions and does not provide real-time monitoring capabilities.

A real-time transformer health monitoring system was proposed by [24]. The system
uses a short message service (SMS) to obtain any abnormality information about the
systems to designated mobile phones. The proposed GSM-based system also integrates
a PIC microcontroller and sensors to monitor load currents, over-voltage, transformer oil
level, and oil temperature.

The work in [25] developed a transformer monitoring system for detecting health
based on the parameters of voltage, current, and temperature. The sensors were connected
to a PIC microcontroller, which sent data through a GSM-enabled network to a server.

The researchers in [26] outline another IoT transformer system that monitors faults
by using current, voltage, temperature, and humidity data. They implemented a proto-
type with the NodeMCU microcontroller and interfaced it with sensors, relays, buzzers,
and LEDs. The readings were forwarded to an online web portal which could be monitored
by relevant stakeholders. The overloading of distribution transformers can have significant
consequences on power distribution.

To mitigate this, an-IoT based thermal monitoring and protection system was proposed
by [27]. A node MCU microcontroller is utilized to interface with temperature, humidity,
and current sensors. A DC fan was also integrated to provide a cooling mechanism in
overheating scenarios. To avoid complete termination and load-shedding, a three-phase
logical tripping mechanism was introduced. The proposed system was cost-effective, but
the authors reported some delays during the testing phase.

Nelson et al. [28] proposed a remote monitoring system to observe the conditions
of distribution transformers. In addition to the temperature and oil level monitoring us-
ing sensors, the authors also utilize an energy meter to track transformer loading and a
microphone to monitor humming noise. The sensors were interfaced with a PIC microcon-
troller to provide real-time monitoring. A health index was also proposed to describe the
transformer’s health status based on the four measures.

The authors in [29] propose an IoT-based real-time monitoring and maintenance of
distribution transformers. Voltage, load current, temperature, and oil level were measured
by interfacing with the ATMEGA328 microcontroller. By Messaging Queuing Telemetry
Transport (MQTT) instead of HTTP, the proposed system was energy-efficient and provided
better response time. Despite the numerous contributions in the literature in the context
of real-time monitoring of transformers, automatic fault and anomaly detection remains
a challenge.

The existing works in transformer monitoring are summarized in Table 1. Therefore,
in this work, we leverage machine learning and IoT to provide real-time monitoring
and anomaly detection for transformers. The proposed research is dealing with the last
mile within the power distribution system. Most of the reported literature shows the
performance on the higher-voltage side, where the utility monitoring system can only show
the load of the whole transformer. Our work is completed on the lower-voltage side of the
transformer where the utility personnel can monitor the performance of each feeder of the
transformer remotely using a mobile application or web dashboard. Such a system allows
the utility to isolate any failure at the granular feeder level (low-voltage) rather than at a
whole transformer level (high-voltage).
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Table 1. Summary of recent literature focusing on smart transformer monitoring and management.

Source Application Implementation Limitations

[22] Transformer monitoring
Measure voltage, current, power, and temperature.

Communicates with a GSM modem to a remote
database server.

Does not utilize IoT and
machine learning.

[23] Transformer monitoring
using IoT

PIC microcontroller to interface with the sensors
and a GPRS module to transmit the readings.

Does not provide
real-time monitoring.

[24] Transformer health
monitoring

GSM-based system integrated with PIC
microcontroller to monitor load currents,
over voltage, transformer oil level and oil

temperature

The system was not tested in
operational scenarios and
does not utilize machine

learning for fault detection.

[25] Transformer health
monitoring using IoT

Observes temperature, voltage, and current of the
transformer. PIC microcontroller to interface with

sensors and data sent through
GSM-enabled network.

Does not utilize machine
learning for fault detection.

[26] IoT-based transformer
monitoring and protection

Monitors current, voltage, temperature,
and humidity data. The sensors were interfaced
with NodeMCU microcontroller. Buzzers, LEDs,

and web application provide cost-effective,
user-friendly, and remote monitoring.

Does not utilize machine
learning for fault detection.

[27]
Thermal monitoring and

protection system for
transformers using IoT

Node MCU microcontroller was used to interface
temperature, humidity, and current sensor.
Cooling system and tripping mechanism

were introduced.

Reported delays during
testing and does not utilize

machine learning for
fault detection.

[28] Remote monitoring system
for transformers

PIC microcontroller was used to interface
temperature and oil level sensors. Energy meter
provided transformer loading information and a

microphone was used to measure humming noise.

The system was not tested in
operational scenarios and
does not utilize machine

learning for fault detection.

[29]
IoT-based real-time

monitoring and maintenance
of distribution transformers

Monitors voltage, load current, temperature,
and oil level by interfacing sensors to ATMEGA328

microcontroller. The system uses MQTT for
energy-efficient and faster communication.

The system was not tested in
operational scenarios and
does not utilize machine

learning for fault detection.

4. Design Requirements
4.1. Design Considerations

The objective of the proposed IoT-based transformer monitoring system is to acquire
operational and environmental parameters and transmit this to a client application in real
time. The system is deployed in a feeder network as shown in Figure 1.

Each node is indicated by one, two, three, four and five are buses. The primary
feeder has a three-phase current I12 which originates from the step-down transformer and
diverges into specific sub-feeders based on the network configuration. Each of the four
loads is a small community of houses (n = 5), which consumes a certain level of power
from the primary feeder. The intermediary three-phase currents of I23, I34, and I25 facilitate
interconnection between the primary feeder and the loads. By focusing on monitoring each
available feeder available to a primary feeder, faults can be detected at a granular level,
thus improving the reliability and stability of the distribution network. Finally, the data
associated with temperature and oil levels are also collected, thereby adding to the holistic
nature of the proposed solution.
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Figure 1. Feeder network system for one area.

4.2. Functional Requirements

The proposed functional requirements describe the expected behavior of the system.

• The system authorizes utility providers to sign in with their credentials.
• The system allows authorized users to register multiple monitoring devices.
• The system should be able to monitor transformers parameters of three-phase current

across all feeders, temperature, and oil levels.
• The system allows authorized users to change the monitoring frequency of these parameters.
• The system allows authorized users to change the threshold conditions for detecting

anomalies remotely.
• The system makes available the collected data in real time to users through a cloud-

hosted mobile application.
• The system lists all registered monitoring devices and the ability to view individual

data across any time period.
• The system generates maps and displays to users the geographical locations of each

monitoring node in real time.
• The system generates alerts in the case of any detected fault and notifies the user

through the mobile application.
• The system visualizes the status of the transformers by changing the colors of the

location markers on the maps.
• The system displays graphs to visualize the data acquired from each transformer

in real time.

4.3. Non-Functional Requirements

The proposed non-functional requirements describe the performance and reliability
needs of the system.

• The system must be capable of real-time operations with a maximum latency of 20 s.
• The system must be efficient in terms of energy consumption and utilize minimal

power during operation.
• The system must be secure and private such that unauthorized access is not possible.
• The system should maintain local backups in the event of connection failures.
• The system should be able to scale with additional devices without affecting the

robustness of the existing infrastructure.
• The system must be manageable remotely and obscure complexity through a user-

friendly interface for users.

5. Proposed Architecture

The proposed system in this work follows the three-tier architecture for purposes of
modularity, scalability, and testing. The complete architecture is presented in Figure 2.
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The monitoring modules constitute the data acquisition layer. The cloud and Big Data ser-
vices constitute the cloud processing layer. A cross-platform mobile application constitutes
the application layer. Each zone consists of the primary feeder and sub-feeder network
discussed in the Design Requirements section. The monitoring module in a zone com-
municates with a central master monitoring module, which then propagates the collected
data to a Big Data processing cloud platform. The mobile application interfaces with the
stored data on the cloud and retrieves the monitoring status in real time. Alerts are also
generated in the event of abnormalities, and the conditions will be discussed further in the
next section.

Figure 2. Proposed architecture.

5.1. Data Acquisition Layer

The distribution transformer type monitored in this work is a three-phase transformer,
with a power rating of 1500 kVA, and steps down the voltage from 11 to 0.4 kV. In this
layer, there are two types of modules. There is the monitoring module deployed at each
main feeder, and there is a central gateway at a convenient location that provides internet
connectivity to the other modules. The monitoring module is separated from the gateway
module to reduce the overall cost of components and avoid the usage of excess power
needed to maintain connectivity with the cloud.

The monitoring module comprises of the Raspberry single board microcontroller
(RPi) [30], three-phase current sensors, temperature, oil level sensors, and GPS components
with relays. The sensors are interfaced to the RPi ports using the relays and communicate
using the inter-integrated circuit communication protocol (I2C). Digital signal conditioning
onboard the RPi is used to filter out undesired frequency and scale sensor values to the
required measurement range. This module is enabled with a communication protocol
called Long-Range Wide-Area Network (LoRa), which is a robust technology that offers
relatively better performance in challenging resource-constrained environments [31].

The gateway is another RPi but with LoRa, Wi-Fi/Cellular, and MQTT communication
capability. Message Queuing Telemetry Transport (MQTT) uses the publish/subscribe
model and is preferred for bandwidth-limited networks and allows edge devices to push
data directly to a cloud MQTT broker [31]. The gateway is initially registered on the cloud
services and subsequently establishes connections with the cloud processing layer and
publishes data at a user-configurable frequency. The RPi was selected against alternatives
such as Arduino, due to better I/O availability, memory, and computing performance.
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5.2. Cloud Processing Layer

This layer utilizes the services of IoT Core, Pub/Sub, Cloud Functions, and Firestore
Database provided by the Google Cloud Platform to create the Big Data processing and
storage pipeline [32]. These components realize the Big Data architectural principles of
data ingestion, aggregation, storage, and analytics [33].

IoT Core is a cloud-managed service allowing users to securely connect and ingest
data from distributed IoT devices. It consists of a device manager to register devices for
remote monitoring, and an MQTT protocol bridge which is used by the central gateway
to connect to the cloud platform. It also handles authentication and serves as the MQTT
broker for the communicating devices.

Pub/Sub is an asynchronous messaging service for event-driven applications and is
forwarded telemetry data in the form of messages from monitored transformers. These
messages are published to a topic in key-value formats, where paths are defined such as
{topic_transformer_id_feeder_number_current_phaseA} or {topic_transformer_id_temperature}.
Clients, such as the database, subscribe to these topics and are updated in real time as the
values of the transformer change. Cloud Functions facilitate the configuration of automatic
code triggers based on certain conditions. They are deployed as serverless functions and
therefore are scalable for real-time data processing. In this work, triggers are constructed
for new data and different detected anomalies. New data are appended to the database,
while alerts are sent to users in the case the sensor values violate certain conditions.

Firestore is a NoSQL cloud-hosted database that interfaces with the cloud functions to
retrieve the latest transformer data and allow the user application to access the data in a
controlled, uniform way.

5.3. Application Layer

The application layer is the interface with which users can view and be notified of the
monitored data parameters as visualizations or historical records. The mobile application
in this work is developed using the cross-platform libraries of Ionic and Angular. This
allows the same application, without many changes, to be accessed on different mobile
devices and web platforms. The list of transformers, their monitored parameters, and their
history can be observed on the application. A user can view the geographical locations
of the monitored transformers on maps. They are displayed as colored markers, where a
certain color represents the current health condition of the transformer. Data are exchanged
with the cloud database using the JSON format. A background service retrieves the latest
updates from the database based on the triggers specified in the cloud functions.

6. IoT System Implementation

The system was tested in the University City, Sharjah, United Arab Emirates using
simulations mirroring the power requirements and previous data of the locality. The sim-
ulations were generated in real time using the Power Systems Computer-Aided Design
(PSCAD) software. It is assumed that there is primarily a three-phased balanced load sys-
tem for these following experiments. It is worth mentioning that if the loads are unbalanced,
the current of the phases will be different. Therefore, some of the database recordings
were additionally modified to simulate the various scenarios that can be possible with
this system as well. These values were then propagated to different modules to emulate
the behavior of real transformers. Five monitoring modules were deployed with a central
gateway module situated at an equidistant location from the other modules. They are
assigned arbitrary IDs and Manufacturer names for this experiment. The readings were
transmitted by the module at a frequency of 15 min to provide a sample test case in this
section. We see that the five anomalies generated (all overloads) across a time period of
3 weeks were able to be captured. Figure 3 depicts the sequence diagram and the flow of
data from the transformers to the user application.



Energies 2022, 15, 7981 9 of 19

Figure 3. Sequence diagram of the system.

The data are propagated through the IoT core, to the Pub/Sub, and updated by the
Cloud Functions as per the topic messages. The data are available on Firestore where the
location, feeder currents, temperature, and oil level for transformer with ID = 05064 are
shown in Figure 4.

Figure 4. Transformer data available in cloud storage.

The threshold values for oil and temperature can be observed as well. The historical
data obtained from the transformer are sorted in order of acquisition timestamp.

Figure 5 shows the list of monitored transformers and the historical three-phase
current values accessed from Firestore by the mobile application in tabular format for
granular inspection. Feeder currents for Load 1 exceed the provided threshold from
3:30 p.m. The Cloud Functions take the threshold value from the database, compare it with
the current real-time value, update the application, and generate a notification alert for
the user.

The orange background around the transformer metadata indicates an alert for an
anomaly and redirects the user to more details. The values in green indicate current values
that did not exceed a threshold for Load 1 associated with a certain oil temperature anomaly,
while the values in red shows overloaded values. The mobile application is capable of
querying data for any or all transformers based on certain filters, such as date, time, location
and last detected faults.
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Figure 5. List of transformers and feeder current values on mobile application (green: normal, red:
anomaly).

Figure 6 shows the same three-phase balanced currents in terms of their root mean
square (RMS) value visualized in the form of graphs on the application with the threshold
values clearly indicated for convenient visual inspection.

Figure 6. Graph visualizations of feeder current values on mobile application.
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As can be noted, Load 1 feeder currents are crossing the upper threshold between
3:30 p.m. and 4:30 p.m. corresponding to oil temperature, which is consistent with the
tabular data presented previously.

Figure 7 shows the Google maps diagrams available on the mobile application for the
user to ascertain the geographical location of the transformers.

Figure 7. Map markers indicating status on mobile application.

The marker colors correspond to the following conditions and criteria. Other than the
operating condition, the other four states each have a certain type of fault.

1. Green: Operating (No Anomaly)
2. Red: Overload (Anomalous value (predicted) is high)
3. Purple: Down (Anomalous value (predicted) is low)
4. Yellow: Overheat (Temperature > 90 °C)
5. Blue: Malfunction (At least one current sensor is not recorded for 24 h)

When any of the conditions are met, the markers change color to represent the particu-
lar state of the transformer. In the event of multiple detected problems, the marker changes
color to the most recent condition that the transformer values have satisfied. For instance,
when a transformer’s condition is within the normal operation, the marker is green. If over-
heating (yellow) followed by an overload (red) is detected, the mobile application sends
two separate alerts but only indicates the overload (red) color on the map.

7. Analysis Layer

To facilitate anomaly detection pertaining to the behavior of the transformers, a histor-
ical dataset consisting of readings from similar transformers sharing load capacity, man-
ufactured age, measuring units, and installed environment conditions is considered [34].
The dataset is sourced from a private company, KernelSphere Technologies, in the state of
Tripura, India. Much like the system proposed in this work, there is a consistency between
the dataset and the small volume readings acquired, where the summer months have
consistent behavior, but the winter months appear to have decreased power usage. It is
suspected that the presence of external factors, such as mild winter climates, and alternative
heating sources lead to this lower power usage.

7.1. Dataset

These data are originally collected via IoT meters placed on the distribution transform-
ers from 25 June 2019 to 14 April 2020 with a sampling frequency of 15 min. The parameters
measured or derived by the IoT devices were three-phase current (A), three-phase voltage
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(V), active power (kW), reactive power (kVar), and apparent power (kVA). Additionally,
the operational state of the transformers was also collected in terms of the ambient temper-
ature indicator (ATI), oil temperature indicator (OTI), and winding temperature indicator
(WTI). The OTI is connected to an alarm which in turn is connected to an oil temperature
trip (OTT). The OTT shuts off the electrical flow to the transformer to prevent further
overheating and potential equipment damage, and this is flagged as an anomaly [34].
After applying Augmented Dickey–Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–
Shin (KPSS) hypothesis testing and yielding a p-value < 0.05, the time-series readings of
three-phase current (IL1, IL2, IL3) and oil temperatures (OTI) are seen to be stationary.
Transformer faults arise when the three-line currents in the secondary become unequal due
to an increase in oil temperature and an unequal potential drop in the three lines. Line
currents are positively correlated with the oil temperature linearly and positively, as per
Pearson correlation. However, if there is a non-linear reason for this owing to external
factors, then linear methods fail to capture this relationship. Therefore, we also utilize deep
learning methods in addition to simpler methods.

After filtering missing data, the updated dataset consisted of 17,207 readings from
14 July 2019 to 14 April 2020. The training set consisted of 14,169, and the testing set
consisted of 3471 contiguous data readings. From both subsets, there are only 33 anomalous
readings in total.

7.2. Algorithms

The algorithms used in this work are selected with the rationale of inherently finding
anomalous patterns and/or capturing the general behavior of the normal data values. This
is intended to remove intermediary steps and introduce robustness for periodicity, trend,
and similar characteristics.

7.2.1. Isolation Forest

Isolation Forests (IF) are ensembles of binary decision trees generated for random
sub-samples from the dataset, wherein each tree in the ensemble is an Isolation Tree,
and anomalies are classified as instances that have short average path lengths on the
Isolation Trees. The methodology of the algorithm explicitly isolates anomalies rather
than profiling normal instances by leveraging two quantitative properties. First is that
the anomalous readings are far fewer in comparison, and their attribute values diverge
from those of normal instances. The anomaly score for decision making is defined in
Equation (1). Therefore, “few” and “different” points from the dataset are isolated and tend
to be situated near the root of the tree, whereas normal points cluster toward the deeper
end of the tree [14].

s(x, n) = 2−
E(h(x))

c(n) (1)

where h(x) is the path length of an instance x, c(n) is the average path length given, and n
is the number of nodes.

7.2.2. One-Class Support Vector Machines

One-Class Support Vector Machines (SVM) essentially capture the regions in a higher-
dimensional feature space where the probability density of the normal data is most dis-
tributed marking a spherical boundary, and the anomalies lie outside this margin. The vol-
ume of this hypersphere is minimized to tune the incorporation of outliers.

7.2.3. Recurrent Neural Networks

Recurrent neural networks (RNN) are generally applied to sequential and time-series
data, owing to their capability of processing short-term dependencies. To address the
limitations of vanishing gradients and capture long-term dependencies, long short-term
memory (LSTM) network variants are considered. The gated recurrent unit (GRU) is yet
another variant of RNN with fewer internal components than LSTM. LSTM fares better in
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accuracy when large, complex datasets are involved, while GRU converges similarly with
less memory consumption and faster speeds on smaller datasets. In this work, networks
using both variants are tested. LSTM networks foundationally contain three components
or activation gates responsible for providing memory to the network and controlling the
flow of information. These gates are the input gate it, the forget gate ft, and the output gate
ot, as defined in Equation (2):

it = σ(wi[xt, ht−1] + bi)

ft = σ
(

w f [xt, ht−1] + b f

)
ot = σ(wo[xt, ht−1] + bo)

(2)

where σ represents the sigmoid activation, wg represents the weights for the corresponding
gates, xt represents the input values at the current timestep, h(t−1) represents inputs from
the previous LSTM block, and bg represents bias values for corresponding gates.

7.2.4. Auto-Encoders

Auto-encoders (AE) condense the sensor measurements into an embedding or low-
dimensional representation which is capable of capturing the correlation and interactions
inclusive of non-linearity. The reconstruction errors of the auto-encoder as it attempts
to recreate the original distribution by means of regression will be minimal in the case
of normal data instances. Anomalous data will result in larger reconstruction errors,
and based on the selection of an appropriate threshold, anomalies or deviations from the
normal behavior can be detected. A bidirectional layer can extend the traditional approach
using relevant sequence information across two directions, i.e., past to future and future to
past. In this work, AE models are constructed using LSTM and GRU separately with and
without a bidirectional layer.

8. Results

To assess the regression performance of the deep learning networks, the four measures
used are mean absolute error (MAE), mean squared error (MSE), root mean square error
(RMSE), and coefficient of determination (R2) as in Table 2. Lower scores indicate relatively
better predictions for MAE, MSE, and RMSE, as it indicates fewer errors between actual
and predicted values. R2 is a measure of goodness of fit defined in the range of 0 and 1,
where values closer to 1 exhibit better performance.

The GRU network, comprising three GRU cells (64, 32, and 16 units) with two dropout
layers between adjacent cells and a fully connected layer with linear activation, achieved
better results than its counterparts. It is hypothesized that the relatively simple nature
of the dataset, in addition to the minor effects of seasonality/trend and generally stable
behavior of the transformers, necessitated this model over complex approaches.

Table 2. Forecasting performance metrics for the deep learning methods.

Model MAE MSE RMSE R2

GRU 21.71 10.00 33.80 0.67
GRU-AE 24.73 12.91 36.00 0.76

Bidirectional GRU-AE 23.7 12.11 35.00 0.63
LSTM 22.00 11.00 33.4 0.67

LSTM-AE 23.67 10.0 33.4 0.67
Bidirectional LSTM-AE 25.54 12.82 36.00 0.82

Table 3 reports the True Positive Rate (TPR), True Negative Rate (TNR), False Positive
Rate (FPR), and False Negative Rate (FNR) extracted from the confusion matrix during the
classification of the 33 anomalies present.
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Table 3. Anomaly detection performance metrics for the best methods.

Model TPR TNR FPR FNR

IF 100.00 98.15 0.00 1.84
One-Class SVM 87.50 97.15 2.85 12.50

GRU 63.62 82.48 36.44 17.50

It is observed that the IF model has the best performance in identifying both anomalous
readings and normal readings with high TPR and TNR. This suggests a low prevalence
of false positives and false negatives at inference. The results emphasize the robustness
of IF in an unsupervised setting and its invariance to multiple inputs features’ scaling.
The IF predictions in Figure 8 appear to model the distribution density by proxy for
effective differentiation.

Figure 8. Original Dataset (left) versus Isolation Forest Predictions (right).

9. Discussion
9.1. Research Implications

Tracking, managing, and monitoring the operational measures of transformers is
necessary for the effective distribution of electric power to residential and commercial
levels. Generally, overheating is a serious concern due to the step-up/step-down voltage
transformations dissipating heat throughout the core and windings. This phenomenon
is exacerbated with poor oil heat transfer leading to insufficient cooling and circulation
of the internal machinery. Insulation issues, mostly due to oil temperature anomalies, are
reported to be one of the main factors of frequent transformer failures [35].

In alternate but analogous smart grid applications, the following studies were noted
to be of pertinence to the field. The work in [36] utilizes clustering techniques and edge
deployment to reduce the latency of a centralized model and perform anomaly detection
for generic application-agnostic smart meters that can be deployed for any specific purpose.
For anomaly detection in the performance of wind power grid integration and wind
turbines, Ref. [37] tests an Ensemble Empirical Mode Decomposition-based neural network
model on SCADA data acquired from a real wind farm and observes that abnormal behavior
such as mechanical failures due to weather effects can be identified. Ref. [38] evaluated
the performances of different machine learning and deep learning schemes for anomaly
detection on photovoltaic components for timely disclosing abnormalities in solar power
plants. The authors in [39] sought to detect distribution transformer parameters at a
distance without using fitted multiple sensor arrays. This was completed through finding
the optimum frequency representation for identifying the model, type and power rating
with genetic algorithms and machine learning. They also posit the need for anomaly
detection for the operational behavior of transformers and mention it as a vital future step.

We selected specific algorithms for testing and experimentation based on the frequency
of their occurrences achieving acceptable performances in recent works. The unsupervised
methods that we experiment with are representative of clustering, one-class learning
and the supervised methods that involve neural networks (recurrent) and auto-encoders.
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The rationale in comparing these varieties of algorithms is to establish the performances
of vastly different model architectures for the task at hand, which has minimal apriori
knowledge. A seminal survey [40] in the domain of anomaly detection enabled by smart
sensors for energy consumption management outlines the following categories’ techniques
for modeling of normal behavior and identification of abnormalities. Another study [21]
proposes anomaly detection with one-class SVM as one of the novel approaches with the
purpose of diminishing energy expenditure in buildings. The same authors as the last work
study the role of deep learning (with micromoments) for the detection of abnormal energy
consumption within household appliances.

Big Data powered by machine learning and predictive analytics allow for informed
decision making through timely warnings. The objective of this work was to implement
an automated end-to-end IoT system with machine learning integrated anomaly detection
for improved transformer maintenance and monitoring. While a plethora of recent work
address the IoT aspects of transformers, energy management systems, and smart grids,
few incorporate anomaly detection methods that are not reliant on static thresholding
or probabilistic change-points. The advantage of machine learning lies in the ability to
reasonably predict practical alarms without necessarily assuming time-series stationarity
or minor variations in expected data distributions [41]. The IF algorithm leverages a
combination of measurements and as such is posited to yield a better representation of the
condition of transformers and provide higher value to utility providers and maintenance
authorities. The one-class SVM and GRU models followed respectively in performance,
with the former being quite close to IF and the latter giving more false positives, which is
likely due to overfitting. We believe that our work addresses the relative scarcity of anomaly
detection methods focused on distribution transformers, as they are key components
(feeders especially) of the electric grid with its failures leading to energy loss, blackouts
and other critical adverse effects to the immediate communities.

9.2. Limitations and Future Work

While this work attempts to bridge the well-researched paradigms of IoT and ML
managing techniques seen in the smart grid domain with scarcer approaches of intelligent
fault detection, it is not without limitations. Firstly, the number of anomalies in this dataset
is very few (33), and their subtypes (root cause for fault) are not labeled. This might not be
representative of all types of faults that the transformer can incur. Secondly, knowledge
of day-to-day weather conditions could add more information to the model’s prediction
of normal readings and faults [42]. Lastly, the performance of the created model can
deteriorate over time, specifically due to concept drift (significant changes in relationship
between anomalies and predictor variables compared to training time) and data drift
(significant changes in the distributions of the predictor variables) [43]. A prolonged
deployment of this system can validate the robustness in a live setting.

The following statements present avenues for future work. A foremost phase would
be to integrate forecasting and anomaly detection in the same system with even the same
algorithm, since we can conduct both regression and reconstructive loss-based abnormal-
ity identification with the same RNN backbone [40]. The large distances between the
distribution transformers and electrical plants render the former susceptible to cyberat-
tacks wherein malicious hackers can capture real-time readings to distort transformer
performance. Separating among this type of forced anomaly and different types of faults
would offer more information to the stakeholders than communicating only “normal”
or “anomaly”. Inspired by the convolutional neural network-based fault classification
approach implemented in [44], our next steps can look at fault stratification through multi-
class classification as well. The IoT sensors we have utilized provide general operational
information; however, more involved sensors can allow for advanced approaches such
as dissolved gas analysis to generate additional insights regarding thermal and electrical
stresses sustained by oil-immersed transformers. The authors in [45] apply different classi-
fication algorithms to diagnose power transformers based on parts-per-million of different
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gases present in the oil at a given time. However, this improved accuracy comes at an
increased cost of sensors, and it is sensitive to the area (hospitals, houses, leisure venues)
and subject to the priorities of the utility planner involved.

10. Conclusions

This work proposed an enhanced IoT-based real-time monitoring system for feeder-
side distribution transformers to improve fault detection and provide timely alerts to
maintain the reliability of the power distribution network. To achieve these objectives,
the principles of Big Data processing and cloud services were utilized. The parameters of
three-phase feeder currents, temperature, oil temperature/level, and geographical coordi-
nates were collected in real time by a low-cost IoT module and made accessible through a
cross-platform mobile application. Experimental results show the system is resilient, scal-
able, secure, and efficient in communicating relevant information to the utility providers.
The Isolation Forest anomaly detection algorithm was found to detect 100% of the scarce
anomalies in a large real-time dataset. A key advantage of this finding is that a standard
IoT system collecting oil temperature and three-phase feeder currents in conjunction with
a lightweight algorithm can predict anomalous behavior 24 h before. Future works will
study techniques to reduce the number of IoT devices through the estimation and perform
exhaustive testing across various modalities in a live setting.
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GRU Gated Recurrent Unit
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IoT Internet of Things
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LoRa Long-Range Wide-Area Network
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MSE Mean Squared Error
MQTT Message Queuing Telemetry Transport
OTI Oil Temperature Indicator
OTT Oil Temperature Trip
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RNN Recurrent Neural Networks
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2. Peharda, D.; Ivanković, I.; Jaman, N. Using Data from SCADA for Centralized Transformer Monitoring Applications. Procedia Eng.

2017, 202, 65–75. [CrossRef]
3. Bhattarai, B.P.; Paudyal, S.; Luo, Y.; Mohanpurkar, M.; Cheung, K.; Tonkoski, R.; Hovsapian, R.; Myers, K.S.; Zhang, R.; Zhao, P.; et al.

Big Data Analytics in Smart Grids: State-of-the-art, Challenges, Opportunities, and Future Directions. IET Smart Grid 2019,
2, 141–154. [CrossRef]
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