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Abstract: This article proposes a formal method of designing robotic systems focusing on communica-
tion between components, as well as standardization of the messages between those components. The
objective is to design a robotic system controller in a systematic way, focusing on communication at an
abstract agent level. Communication, thus organized, and its properly defined specification facilitate
the system’s further development. The method uses a standard message structure, based on IEEE
FIPA standards, for communication within robotic systems composed of agents. Communication-
focused top-down design of robotic systems based on binary decomposition is proposed, and used to
design a companion robot working in the kitchen environment. The implemented robotic system
is verified based on whether or not the specification conforms to the specified requirements. The
characteristics of the designed communication are evaluated. The obtained results prove that the
proposed method of designing robotic systems is formally correct, it facilitates the implementation of
agents, and separates specification of the system from its implementation. The method of designing
robotic systems is correct and useful. The proposed formal notation facilitates understanding of
how the system operates and organizes the design process. It puts the communication between
system components at the forefront. The resulting system specification facilitates the implementation.
The tools for experimental evaluation of its characteristics enable the confirmation that it fulfills the
requirements, and that the communication between the system components is correct.

Keywords: robot design; system design; communication approach; robotic agent; robot controller

1. Introduction

The energy consumption of electromechanical systems, including robots, depends on
the quality of control, and that is influenced by the control system architecture. This article
delves into the problem of producing the architecture of the control system by analysing
the task, or the category of tasks, that the system has to accomplish. Those tasks provide
guidance for the system decomposition. Systems are decomposed into modules (agents in
this case); however, those modules need to communicate to produce an integrated system.
All these aspects influence the optimality of energy consumption of the overall system, thus
it is necessary to study them. The presented design method addresses the pre-specification
design phase, which is the basis for the creation of system specification, which in turn is
the foundation of its implementation.

The spectrum of approaches to robotic system design stretches from purely implementation-
based to specification-based. Implementation-based approaches encompass: (1) coding the
system software in a universal programming language (e.g., C, C++, Python) targeting
a specific implementation platform, (2) composing the system out of library modules
(e.g., functions, procedures, software objects) coded in a universal programming language
(e.g., RCCL [1], PASRO [2]), (3) utilising a programming framework, which is composed
of a library of modules supplemented by use patterns (e.g., Player [3], MRROC++ [4]),
(4) composing the system out of components [5] (usually software black-boxes, or less
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frequently white-boxes, providing services through well defined interfaces), which form
a programming framework (e.g., OROCOS [6], ORCA [7], GenoM [8], ROS [9]). In all
implementation-based cases, the system specification is formulated as a general architecture
defined in terms of boxes and arrows diagrams. At the other end of this spectrum, systems
are built using model driven approaches [10]. The system specification is provided as a
system model that can be used for either manual or automatic code generation. In the
manual mode, the model is a blueprint for the developers writing the system code. In
the automatic mode, a compiler transforms the model into code automatically, usually
in many transformation steps—tool-chains are used for that purpose [11]. This article
addresses the problem of providing adequate guidance to the designer by proposing a
specification method rationalising the design decisions, at the same time facilitating the
system architecture design.

This article aspires to provide means for reasoning about the composition of the de-
signed system, both from the point of view of constituent elements and the point of view of
the communication between them. The problem tackled in this article is further aggravated
by the fact that, although many robotic systems have been created, there is no single method
of describing their architecture, e.g., [12–19]. References [20,21] suggest the decomposition
of the architecture presentation into structure and activities (style). Nevertheless, Refer-
ence [20] acknowledges that it is difficult to distinguish between those two elements in
the presentation of the majority of systems. Formal descriptions of robotic systems also
exist, e.g., [22–28]; however, this approach is not popular in the robotics community. This is
unfortunate as, besides a clear presentation, they enable formal verification of some system
properties at the specification stage of their design, e.g., [29,30]. As most robotics systems
have been designed using implementation-based methods, the composition of modules or
components dominates, i.e., bottom-up design prevails.

However, the method postulated here uses a decomposition-based top-down approach.
In the bottom-up method, the system’s task emerges from the composition of modules,
while in the top-down method, the system’s task is the design-guiding principle. Instead
of using an implementation-guided approach, the task-guided approach is favoured here.
This approach focuses on the system-specification stage.

It should be noted that even if formal system specification methods are employed,
the communication aspect is treated as an implementation detail, e.g., [31,32].

As robotic systems are usually inherently complex, the first problem the designer faces
is how to tackle this complexity. System engineering provides a hint—use decomposition.
Decomposition implies a division of the system into modules or components, allowing the
designer to subsequently focus on those elements. However, this subdivision also implies
that communication between them will have to be established. Although this communi-
cation aspect of system design is of paramount importance, it tends to be hidden behind
the computational aspects of individual system modules. The services that the modules or
components provide are at the forefront. Thus, this inter-module communication should
gain a prominent position in the design process, but usually is treated as subordinate.
Communication has to be discussed from two perspectives: (1) who communicates with
whom, (2) what is being communicated, i.e., the contents of the communication. The design
methodology proposed here takes into account all of these aspects of system design. The
novelty of the proposed design methodology lies in the rationalisation of the decomposi-
tion process and putting inter-module communication on equal terms with computational
aspects of modules.

Reference [20] points out that, for the majority of created systems, it is difficult to
determine both their structure and activities. Usually architectures are presented by using
informal textual descriptions and block diagrams with a very varied level of detail. This
usually leads to problems during implementation and documentation of such systems.
This is the consequence of the fact that the robotic system controller design lacks well-
established design methodology. Sometimes the design relies on the software specification
methods based on general software engineering practice, e.g., the specification is expressed



Energies 2022, 15, 7983 3 of 25

in terms of UML diagrams [33]. However, there is no hint as to how to create the system
architecture and how the task influences it. Knowing the hardware system composition and
the tasks that it will be put to, there is no standard procedure leading to the specification
of the structure and description of activities of the designed system. This paper tries to
fill this gap and formulate such a methodology, simultaneously taking into account the
abundant communication that appears in complex systems. The focus on communication
is its unique feature.

The theses of the article are as follows. The proposed design method leads to an
organised analysis of the communication at an abstract agent-level. The so-organised
communication and its properly defined specification facilitate further system develop-
ment. The proposed method uses a standard message structure for communication within
robotic systems composed of agents. It is based on the IEEE FIPA standard, as utilised
by multi-agent systems. The work contributes to the design of robotic systems in terms
of: (i) standardization of the message structure for communication within robotic systems
composed of agents applying IEEE FIPA standards (Foundation for Intelligent Physical
Agents, brings together the creators of the agent technology); (ii) top-down, binary, commu-
nication focused design method for robotic systems. However, our work does not concern
either the distribution of the system on multiple physical platforms [34,35] or the security
of communication [36–39].

The structure of the article is as follows. Section 3 introduces the notation used in
the article and presents the formal approach to the communication within robotic systems
composed of embodied agents. Section 4 describes the proposed communication-focused
design of robotics systems. Section 5 provides an example of the use of this approach.
Section 6 draws the conclusions.

2. Related Work

Many architectures of robotic systems have been proposed (e.g., reactive [40], behaviour-
based [12,29] subsumption [41]; however, layered architectures dominate. The decomposi-
tion into layers is conducted either based on the frequency of subsystem behaviour repetition
or on the subdivision into subtasks the system is to execute [20]. Three-layered structures
dominate, e.g., Sense–Plan–Act (SPA), subsumption [42], hybrid planning–reactive [43],
hierarchic [44,45]), biologically inspired [22,23,46], using belief–desire– intension (BDI) ap-
proach [47,48]. Two-layered structures also have been proposed [49]. However, all of
them provide guidance to the designer only as templates that can be used for the purpose
of imitation.

Ahmad and Babar [50] presented a systematic classification of software architectural
solutions for robotic systems. They suggest that architectural solutions support opera-
tions enabling information and resource distribution and development such as modelling,
designing and programming robotic software.

Among component-based approaches, the Robot Operating System (ROS) is becoming
the standard programming framework for developing robotic applications [9,51]. The ROS-
based software architecture is composed of components and connectors between them, that
are partially specified in the code and created at run-time. However, there are no generally
accepted rules and guidelines for developing applications to perform the required task.
Moreover, static information about the architecture during system configuration is limited,
and consistency checking during development is usually very difficult or even impossible.
The quality of the created software depends primarily on the skills and experience of the
developers and is mostly a matter of trial and error [52].

The service-driven architecture model or Service-Oriented Architecture (SOA) for
robotics relies on loosely connected, heterogeneous and dynamically composed services [53],
which are typically located in the cloud. SOA involves using Internet technologies to define
services through which robots can be accessed or robots can access the resources of other
machines. Service-based robotics enables robot operations by utilizing powerful comput-
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ing capacities, virtually unlimited storage, and communication resources available from
cloud-based infrastructures.

Model Driven Engineering (MDE) is a formal methodology that can be used for
the design of robotics software, which involves a transition from code-based software
development to model-based development [52]. MDE for robotics provides an opportunity
to systematically and simultaneously bring together different levels of abstraction at which
developers can work to improve the quality of the system in terms of security, reliability
and reusability. The model is defined in terms of formal meta-models (or generic models).
Software languages for the specification of system models play a similar role to that of
meta-models (e.g., [54]). In rare cases, meta-models are provided, guiding the developers
in the design of the system model (e.g., [55]). The problem is that the above mentioned
approaches must strike a balance between too much freedom of choice and too little—this
is termed proper freedom from choice [56,57]. Unfortunately, there is no one generally
accepted definition of a meta-model. Another major problem among existing model-
based robotic system design methodologies is their complexity. The software development
process is multi-stage, and the number of models required is significant. In consequence,
multiple domain languages and tools are needed to support the development process of
robotic systems.

3. Inter-Agent Communication
3.1. Notational Convention

Formalisation of the discussion of any subject requires adequate notation. The nu-
merosity of discussed abstract objects necessitates an introduction of a naming convention
to facilitate the decryption of the symbols used. The article discusses both the system
structure and its activities. The system structure is described in terms of agents a and their
subsystems s. Each agent has its own name, which, in general, is represented by j used
as a right subscript of the central symbol, i.e., aj, or its control subsystem cj. Similarly, a
subsystem of aj may have its own name v; thus, to distinguish it sj,v is used. Subsystems
interact with each other using input (left subscript x) and output (left subscript y) buffers,
i.e., xsj,v, ysj,v. Usually the type of subsystem s′ from which the information is received

or to which it is dispatched is denoted by a left superscript of a buffer symbol, i.e., s′
xsj,v,

s′
ysj,v, where s ∈ {c, e, r} and s′ ∈ {c, e, r, E, R, T}, i.e., control subsystem c, virtual effector
e, virtual receptor r, real effector E, real receptor R or an inter-agent transmission buffer
T. The internal memory of a subsystem is denoted by ssj,v. As it is not connected to other
subsystems, no leading subscript x or y is used. As the values contained in the buffers
change in time, a discrete time index has to be introduced for each of the subsystems
separately. If the time counter is i, the contents of a specific buffer are labeled with a right
superscript, e.g., xsi

j,v or ysi+1
j,v , to denote that the contents are considered at the current

instant i or the next one i + 1, respectively.
The activities of an agent result from the activities of its subsystems and their interac-

tion through the abovementioned buffers. The activities of a subsystem sj,v of an agent aj
are described hierarchically by using the following concepts. At the lowest level appear
transition functions sf j,v,ω , terminal conditions sf τ

j,v,ω , error conditions sf ε
j,v,ω , where ω is the

name of a particular function. At the intermediate level, behaviours sB j,v,γ appear, where
γ is the name of a particular behaviour. At the highest level, a finite state machine (FSM)
sF j,v appears. sF j,v is represented by a graph containing nodes/states sSν

j,v (where ν is a
particular state designator) and directed arcs labeled by initial conditions sf σ

j,v,δ, where δ is
its name. In general all functions are symbolised by f . Terminal, error and initial conditions
are predicates and are distinguished by the right superscript τ, ε and σ, respectively. Such
a superscript is missing in the case of a transition function.

A group of agents agq, where q is the group name, aggregates one or more agents or
subgroups. A group of agents is used as a component of a robotic system when the exact
internal structure is unknown or when this component will be decomposed. Communica-
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tion between groups agq and agq′ is carried out through the communication channel Ck
q,q′ ,

where k is its name, and q and q′ are the names of the communicating groups of agents.
One or more communication channels may exist between a pair of agent groups. The
communication channels Ck

q,q′ and Ck
q′ ,q are identical.

3.2. Influence of Communication on System Activities

An embodied agent a is subdivided into subsystems, namely: a single control sub-
system c and zero or more virtual and real effectors (e and E, respectively) and zero or
more virtual and real receptors (r and R, respectively) (Figure 1) [27,28,58–60]. As only the
control subsystem of an agent has the capability of interacting with other agents (precisely
speaking with their control subsystems) this subsystem will be the focus of our attention.
The primary activity of the control subsystem cj of an agent aj, is the computation of the
control subsystem transition function cf j,m (m is the name of the particular function), which
in the decomposed form can be presented as:

cci+1
j := c,cf j,m(

cci
j,

e
xci

j,
r
xci

j,
T
xci

j)

e
yci+1

j := c,ef j,m(
cci

j,
e
xci

j,
r
xci

j,
T
xci

j)

r
yci+1

j := c,rf j,m(
cci

j,
e
xci

j,
r
xci

j,
T
xci

j)

T
yci+1

j := c,T f j,m(
cci

j,
e
xci

j,
r
xci

j,
T
xci

j)

(1)

From the point of view of inter-agent communication, the utilisation of the transmission
input buffer T

xcj and output buffer T
ycj is most important. Whenever cf j,m is used, c,T f j,m

is the only partial function producing the contents of the output buffer T
ycj. Thus, only

the partial transition function c,T f j,m produces the response of the agent aj to the messages

inserted into T
xcj by the other agents. However, all partial transition functions use T

xcj to
compute the commands for other subsystems of the agent aj; thus, the obtained message
influences all the activities of the agent. The transition function (1) takes in its arguments at
discrete time i and computes the values dispatched to the other subsystems at time i + 1.
This defines the subsystem sampling time. Hence the elementary action of a subsystem is
defined for a single sampling period and consists of:

1. Computation of the transition function cf j,m and assigning the computed values

to appropriate components of the output buffer ycj = [ e
ycj,

r
ycj,

T
ycj] and internal

memory ccj,
2. Dispatching the contents of ycj to the associated subsystems,
3. Incrementation of the discrete time counter i,
4. Acquiring into xcj = [ e

xcj,
r
xcj,

T
xcj] new input values from the cooperating subsystems.

This elementary action is iterated until a predicate cf τ
j,m, called the terminal condition,

or cf ε
j,m, called an error condition, becomes true. The process of iterating the elementary ac-

tion is called a behaviour cB j,m and can be represented by a graph (Figure 2). As behaviour
depends on the transition function, terminal condition and error condition, it is parame-
terised by all of them: cB j,m (cf j,m, cf τ

j,m, cf ε
j,m); however, for brevity the dependence on cf ε

j,m
will be neglected. Once behaviour cB j,m terminates its actions, another behaviour has to be
chosen. This choice is based on a predicate cf σ

j,v,m,m′ , called the initial condition (m and m′

are the designators of the nodes connected by the directed arc labeled by cf σ
j,v,m,m′ ). Initial

conditions label the directed arcs connecting the nodes of a graph representing a Finite State
Machine (FSM) cF j. With each of its nodes (states) cSm

j , a behaviour cB j,m is associated;
thus, switching states switches behaviours. As initial conditions are parameterised by the
contents of input buffers, here again the acquired message influences the activities of the
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agent. Hence the messages introduced into the input buffer T
xcj can influence the activities

of an agent in three ways:

• In each iteration of the behaviour through the influence on the values computed by
the iterated transition function (1),

• By terminating the behaviour, i.e., by causing the terminal condition cf τ
j,m to be satisfied,

• By selecting a new behaviour, i.e., by causing an adequate initial condition cf σ
j,v,m,m′ to

become true.

All these ways of influencing the activities of an agent result from the assumed model
of an embodied agent. However, the designer of the system can also exert influence on
the structure of the FSM cF j. Some of its states can be distinguished as communication
states (a single such state is quite common), in which the behaviour of the agent waits for a
message. Once a message is obtained, the FSM reacts to it by directing the execution to an
appropriate section of the FSM, which is responsible for the execution of a set of behaviours
that compose a service—a service-oriented architecture (SOA) results. At each of the four
mentioned communication levels, FIPA messages can be utilised.

Figure 1. Internal structure of an agent aj.

It should be noted that this propagation of the received message through the four levels
of the agent execution structure is beneficial from the point of view of the agent’s reactivity
to outside stimuli, i.e., incoming messages. Each message can be accessed at the control
subsystem sampling rate. If the currently executed service has to be interrupted, e.g., due
to the request for a higher priority service, this subsystem, and hence the agent, will detect
this through the evaluation of the terminal condition associated with the currently executed
behaviour. The satisfaction of the terminal condition will cause the current behaviour
to be aborted, and that in turn will initiate the evaluation of the initial condition, what
will result in switching the FSM state, e.g., the state responsible for invoking the newly
requested service. Such an instantaneous switch from one service to the other might not be
possible, e.g., if the current service consists in the delivery of a cup of tea to the user, this
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cup cannot be simply dropped to start the execution of the higher priority service. In this
case the FSM will need to pass through an intermediate state, in which it will execute a
behaviour of placing the cup in a safe location, and only then proceeding to the execution
of a new service.

cS1j,m,ω

cS2j,m,ω

cS3j,m,ω

cS4j,m,ω

Compute cfj,m,ω

Send s
ycj,m

Increment i

Receive into s
xcj,m

cfτj,m,ξ ∨ cfεj,m,β

¬ cfτj,m,ξ ∧ ¬ cfεj,m,β

Figure 2. The cj FSM cF j executing any behaviour.

It is worth noticing that in the case of complex robotic systems, e.g., cognitive robots,
their control systems contain many CT type agents [28,61], i.e., computational agents, hav-
ing the capability of communicating with other agents, but lacking effectors and receptors.
In this case (1) becomes:  cci+1

j := c,cf j,m(
cci

j,
T
xci

j)

T
yci+1

j := c,T f j,m(
cci

j,
T
xci

j)
(2)

In other words , the activities of the FSM of such an agent (its control subsystem, to be
precise) mainly rely on the inter-agent communication, i.e., the contents of the messages
transferred between such agents. Thus, c,T f j,m is of paramount importance.

3.3. Structure of a Communicate

To take into account all the necessary possibilities of message contents, we propose
that the contents of the output and input buffers—a communicate—be set in accordance
with the IEEE FIPA standards. The partial transition function c,T f j,m should produce the

content of the output buffer T
ycj as a messageMi

j,j′ (where j and j′ are the designators of the

communicating agents) and accept the content of the input buffer T
xcj in the format ofMi

j′ ,j
(see Figure 3). A communicate transmitted from agent aj to agent aj′ at instant i is a tuple:

Mi
j,j′ = 〈V ,Z ,L,O, I , tb, mw, mt, mc〉 (3)

Figure 3. MessagesMj,j′ andMj′ ,j transmitted between aj and aj′ .
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The tupleMi
j,j′ , according to FIPA ACL Message Structure Specification standard [62],

contains the following items:

• Performative verb V ∈ V̂ , where V̂ is a set of possible performative verbs defined
by [62]: V̂ = {accept-proposal, agree, cancel, cfp, confirm, disconfirm, failure, inform,
inform-if, inform-ref, not-understood, propagate, propose, proxy, query-if, query-
ref, refuse, reject-proposal, request, request-when, request-whenever, subscribe}. It
defines the intention of sending the communicate (request, inquiry, statement, etc.),
and how the recipient of the message should interpret it.

• Content Z of the communicate. If the language L is provided, the content should
conform to the syntax and semantics of that language.

• Name of language L ∈ L̂ used to formulate the content, where L̂ is a set of languages
used for the formulation of contents of the communicates. Proper indication of the
language expressing the content of each message helps the sender of the message to
correctly formulate the content of the message, and the recipient to correctly under-
stand this content. The FIPA standard does not require a language to be defined (no
syntax and semantics are required). Different languages can be assigned to different
communicative acts between pairs of agents.

• Name of the ontology O ∈ Ô, where Ô is a set of ontologies. An ontology defines the
meaning and relations between symbols used in the message content. An ontology
is needed when it is not enough to define the language and performative verb to
understand the message content correctly, and also when the agent does not have the
common knowledge required for its operation. The ontology determines for the agent
how to understand the message in the context of knowledge that the ontology specifies.

• Name of the interaction protocol I ∈ Î , where Î is a set of possible interaction
protocols defined by [62]: Î = {query, request, subscribe, request-when, cfp, icfp,
propose, ...}. It defines the pattern of interaction governing the conversation. The
protocol organizes the exchange of messages and determines their order. Conversation
between agents is usually bi-directional, and the goal is not only to pass an information
item, but also to request and obtain a piece of information, to query the other agent,
subscribe to a specific piece of information, etc. Thus, pairs of input and output buffers
are considered (T

xcj,
T
ycj); and for the sake of brevity, the pair is denoted as T

x,ycj.

• Reply-by tb ∈ T̂ , is a timestamp indicating the latest time by which the reply to this
communicate should be produced.

• Reply-with identifier mw ∈ M̂ and in-reply-to identifier mt ∈ M̂. The pair of identifiers
is used to combine messages into short-term conversations. If the sender of the
message wants the recipient’s reply to match the message it sent, it should set the mw
identifier value. In turn, the recipient who wants to refer to the message with the mw
identifier should set this value in mt.

• Conversation identifier mc ∈ M̂ identifies the ongoing sequence of communicative
acts that together form a conversation.

The figure T̂ is a set of timestamps, and M̂ is a set of identifiers of communicates sent.
While M̂ is a set of all communicates. The symbol f M : M̂ → M̂ is a function mapping a
message to its identifier. The set of all messages that can be sent by the agent aj is denoted
as a

yM̂j. The set of all messages that can be received by the agent aj is denoted as a
xM̂j.

4. Robotic System Design Method

The design method assumes that the designer begins with a general robotic system
characterized by a set of generic tasks for the robot. Next, he/she specifies the tree of
requirements, making the requirements ever more detailed and thus expanding the tree.
Based on that, the robotic system is divided into smaller parts (agent groups), and as
a result, the communication channels appear. The decomposition is stopped when the
requirements are fully addressed, and the resulting agent groups are within the mental
grasp of the designer, so that they can be substituted by agents. During decomposition,
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adequate specification of communication has to be produced. Finally, the specification of
agents’ interfaces is done. The top-down approach based on system decomposition implies
that system properties follow directly from the requirements. This is in contrast to the
bottom-up compositional approach, where system properties emerge during the design
process. Detailed specification of communication is completed when the agents substitute
the groups. The process is depicted in Figure 4 and consists of the following steps.

Figure 4. Binary decomposition process.

1. Specification of system requirements. The designer formulates a set of tasks that the
robot should perform. On this basis, a set of requirements is formulated for the robotic
system. Each general requirement is specified as a set of more detailed requirements;
thus, a hierarchy of requirements is formulated. It can be represented as a requirement
tree. This tree will serve as a basis for system decomposition.
The output of this step is a hierarchy of requirements, specified as a tree.

2. Binary decomposition of a robotic system. The designer divides the system into
smaller elements, assuring proper assignment of tasks (requirements) to each of
them. Each decomposition step has to produce elements that have clearly defined
and coherent tasks. The elements that are the result of decomposition are groups
of agents agq. This step considers an iterative process consisting of the following
stages concerning the analysis of successive requirements from the tree in the top-
down order.

(a) Decomposition of a group. One group of agents is divided into two groups,
thus the name—binary decomposition. When agq is decomposed into agp and
agr, the following notation is used: agq := 〈agp,agr〉.

(b) Creation of new channels. The need for creation of one to N new communica-
tion channels might arise. In this case, it is necessary to correctly determine
which component needs an action to be realized (e.g., answer in the case of
query interaction protocol, command execution in the case of request interac-
tion protocol, new information in the case of subscribe interaction protocol).
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(c) Reallocation of existing channels. After each decomposition step, the de-
signer must decide on the proper allocation of the existing communication
channels, associated with the decomposed group, to the newly created groups.
When group agq is decomposed into agp and agr, and Ck

q,q′ is reallocated to agp,

the following notation is used: Ck
q,q′ 7→ Ck

p,q′ . When both decomposed groups
agp and agr need to communicate with the non-decomposed group agq′ the
channel is split into two: Ck

q,q′ 7→ Cm
p,q′ , Cn

r,q′ .

(d) Complementing communication channels. Due to the analysis of new re-
quirements, there may be a need to supplement the existing communication
channels, without need for creating new ones.

Stop condition. The decomposition process stops when all of the requirements are
processed. When the designer concludes that the agent groups have clearly defined
and coherent tasks that are comprehensively understood by the programmer he/she
should substitute each of the existing agent groups by single agents. Otherwise, the
analysis of the requirements has to be repeated, making them more detailed.
The output of binary decomposition are sets of agents â, and of communication
channels Ĉ. Any group of agents can be composed of a single agent. Specific agents
have strictly assigned functionalities.

3. Specification and conversion of the communication channels. The next step is to
specify the communication exchanged between the pairs of agents aj and aj′ , substitut-
ing groups agq and agq′ , between which the communication channel Ck

q,q′ was created
initially. There is a need to properly convert the communication channel into the
specification of input and output buffers, and to define the patterns of communication
between the agents aj and aj′ . This results in the creation of four buffers for agents
aj and aj′ : two input buffers: T

xcj,
T
xcj′ and two output buffers: T

ycj,
T
ycj′ . Buffers T

ycj

and T
ycj′ are used to send, while T

xcj and T
xcj′ to receive the communicates. Those

communicates are specified by a number of interaction protocols. The interaction
protocol Ip

j,j′ (or Ip
j′ ,j—depending on who initiates the communication) specifies the

pattern of communication between the agents. A conversation is an exchange of
messages within a specific communication channel. A number of interaction protocols
can be associated with one communication channel.
The definition of the interaction protocol determines the performative verbs for the
specific messages. Moreover, every message contains the communication language,
and possibly the ontology used.
While specifying new communication channels, an analysis targeted at communica-
tion deadlocks is mandatory. In our approach the analysis is focused on the newly
created channels, therefore, it is easier to conduct. This article does not delve into dead-
lock analysis, as it focuses on the problem of system decomposition. However, in [31],
communication analysis of Embodied Agent-based systems is provided, and in [59],
a Petri-Net-based description of Embodied Agents is presented. The formal specifica-
tion and verification of FIPA interaction protocols by means of Colored Petri Nets is
proposed in [63]. Therefore, the system designers utilising this approach can check
deadlocks with the known tools for Petri-Net deadlock analysis, and the proposed
decomposition method enables concentration of the analysis on a part of a complex
system, making the analysis simpler.
The output of this step is the specification of each of the defined communication
channels from the set Ĉ. Each channel Ck

j,j′ specifies the sets of interaction protocols

Îj,j′ . Each interaction protocol Ip
j,j′ ∈ Îj,j′ defines a set of messages that are sent

from the agent aj to the agent aj′ : M̂j,j′ , and back from the agent aj′ to the agent aj:
M̂j′ ,j. The messages should contain the performative verb V , interaction protocol I ,
and optionally the language L and ontology O.
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4. Specification of agent interfaces. The previous steps concentrated on the communi-
cation channels, while the current focuses on the agents (or groups of them). This
step specifies the following elements: sets of performative verbs yV̂j and xV̂j that
agents send and receive, respectively, in the communicates, and the sets of languages
yL̂j and xL̂j used in those communicates, as well as sets of ontologies yÔj and xÔj
employed by those communicates. The specification of the interfaces organizes the
project, and enables the detection of inconsistencies. Moreover, it helps to organize
the handling of errors that occur when an unsupported message is received. However,
this is not discussed in this article.

The design process should be iterative as, after the initial system design, it may be
necessary to relapse and re-run through it several times.

5. Illustrative Example: Robot Companion

The herein presented illustrative example shows how to apply the proposed design
method. It is purposefully kept simple to let the reader concentrate on the method, however
the resulting system is of utility. The purpose of a robot companion is to assist users (usually
elderly) at their homes. A survey of robot tasks that the elderly person might request is
presented in [64]. A robot companion, as pointed out in [65,66], should exhibit the following
capabilities: (1) moving around in the user’s home; (2) being safe for humans, household
appliances and furniture; (3) being aware of the dynamic environment; (4) having a simple
and intuitive human-robot interface (e.g., voice, display, gestures, tactile); (5) possessing
manipulation capability; (6) having a friendly look; (7) having its own task management.
A robot companion should be versatile and address as many requests of the elderly as
possible. However, there are still technology limitations that force robot specialization.
The mentioned range of tasks for a companion robot is wide, therefore an analysis of the
requirements set for a specific robot should be carried out and a selection has to be made.

5.1. Formulation of Requirements

For brevity, we shall focus on the Robot Companion helping in a kitchen. The
above general requirements should be analysed from the point of view of the chosen
task. The most general requirement for the Robot Companion is that it should be able
to acquire and subsequently execute human commands. Next, the robot should decide
upon the necessary activity, i.e., interpret the command. To be able to perform the activity,
there is a need for creating and managing a plan and afterwards executing it. As the Robot
Companion interacts with an elderly person, who can change his/her mind, it is crucial for
it to be able to interrupt the action currently performed and schedule the next one. To plan
in a kitchen environment, the Robot Companion must be able to model this environment.
The environment in which it works is dynamic, so in order to correctly plan its activities,
the Robot Companion should deduce what activities it should perform. Moreover, it must
identify and understand relationships (including spatial ones) between objects, both ex-
isting currently and those that will result from the execution of the plan. To execute the
plan, it has to be able to sense and influence the environment using appropriate sensors
and actuators. The environment is dynamic, because the robot and other agents change the
positions and orientations of objects, thus, the Robot Companion should be able to update
the environment model. The hierarchy of proposed requirements is presented in Figure 5.
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Figure 5. Requirement hierarchy for the Robot Companion.

5.2. Decomposition of the Robot Companion

The Robot Companion can be treated as a monolithic system represented as a group of
agents agRoCo. For brevity, only two decomposition steps (the first and fourth) are described
in detail, the remaining are only outlined.

The first decomposition is due to the requirement at the root of the tree (see Figure 5)
that says that a robotic system should acquire and execute human commands. The division
agRoCo := 〈agac,agec〉 results in two agent groups:

• agac (ac for acquire commands)—group responsible for acquiring the commands from
a human

• agec (ec for execute commands)—group responsible for execution of the commands.

These two groups communicate by sending commands and responses. In general,
communication channels Ck

j,j′ created in the successive steps of the decomposition process
are marked by consecutive integers k. Those numbers remain unchanged during the
design process. Moreover, those channels are also marked with the symbols of the groups,
however, those will evolve. The communication channel C1

ac,ec is created between groups
agac and agec (Table 1).

Table 1. Summary of the first step of agRoCo decomposition process. The arrows show which groups
are the result of the decomposition of the initial group. Dashed lines show emerging communication
channels. The light coloured groups form the decomposition tree fringe, which shows which groups
exist at the current step—the dark ones disappear, because they were decomposed.

Requirements acquire and execute human commands

Decomposition agRoCo := 〈agac,agec〉
agac tasks acquiring commands from a human
agec tasks executing commands

Channel reallocation —
New channels C1

ac,ec
C1

ac,ec transmits commands to be executed

The second division results from the requirement that the robotic system interprets
the commands obtained from a human, and decides about the command to be executed
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first. The group agac is decomposed into: aghi (human-machine interface), and agda (de-
cides upon command to be executed). It results in reallocation of the communication
channel C1

ac,ec 7→ C1
da,ec, and creation of the new one: C2

ic,hi, that is used to pass interpreted
human commands.

The third division results from the requirements that demand the creation and man-
agement of a plan, and allow the interruption of the current action and scheduling the
next one. The group agda is divided into agco (coordinates command execution and schedul-
ing), and agcp (creates and manages a plan). Two channels are reallocated: C1

da,ec 7→ C1
co,ec,

C2
da,hi 7→ C2

co,hi. Also, a new one is created: C3
co,cp, that is used to request for plan generation.

In the fourth step the designer takes into account that the Robot Companion should
infer actions, model the environment and manage the knowledge (see Figure 5). Inference
of actions requires a component responsible for creating abstract plans: agpl (pl for planner).
In turn, the group responsible for knowledge management will provide knowledge about
the objects and relationships between them: agkm (km for knowledge manager). Thus,
the group agcp is split into two: agcp := 〈agpl,agkm〉 (see Table 2). There is a need to reallocate
the channel C3

co,cp and it is obvious that it will be handled by the group responsible for
creating the plan: C3

co,cp 7→ C3
co,pl. A new channel C4

pl,km must be created between the new
groups to enable the transfer of knowledge extracted from the knowledge base.

Table 2. Summary of the fourth step—agcp decomposition.

Requirements infer actions, model environment, knowledge
management

Decomposition agcp := 〈agpl,agkm〉
agpl tasks planning

agkm tasks knowledge management

Chann. reallocation C3
co,cp 7→ C3

co,pl
New channels C4

pl,km
C1

co,ec transmits commands to be executed
C2

co,hi transmits interpreted human commands
C3

co,pl transmits generated plan
C4

pl,kmtransmits knowledge needed by planner

In the fifth step, we take into account that the robotic system must execute the plan,
influence and sense the environment by controlling the robot. Thus, agec is decomposed
into: agex (responsible for influencing and sensing the environment by operating the hard-
ware) and agta (responsible for executing the plan). C1

co,ec is reallocated: C1
co,ec 7→ C1

co,ta.
Two communication channels are created: C5

ex,ta, where the low-level commands for the
hardware, i.e., acquiring sensor readings and controlling the actuators, are transmitted,
and C6

ta,km passing the knowledge needed by ata.
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The last step takes into account that the robotic system should update the environment
model. As there already exists a group responsible for managing the environment model
(agkm), and sensor data are provided by agex, and a communication channel C6

ta,km exists
already; thus, only the content transmitted by this channel has to be supplemented.

After exhausting the requirement tree, the decomposition process is complete. Six
groups of agents emerged (see Figure 6). Again for brevity the description of decomposition
of agex, that controls the robot hardware, has been omitted here. Hardware configuration
is described below. Five groups (agta, agpl, agkm, agco, aghi) are transformed into respective
agents: â = {ata, apl, akm, aco, ahi}. Those agents have clearly defined and coherent tasks.
apl generates a plan based on problem definition; akm manages the knowledge database; aco
coordinates a set of commands received from a human, orders plans from apl, and schedules
their execution; ata executes the plan and dispatches low-level instructions to agex; ahi
acts as a human-machine interface. Further decomposition would result in too much
fragmentation and too much communication effort. Moreover, during decomposition, six
communication channels were identified: Ĉ = {C1

co,ta, C2
co,hi, C3

co,pl, C4
pl,km, C5

ex,ta, C6
ta,km}.

Figure 6. The decomposition after six steps of the process.

5.3. Hardware Configuration

The Velma robot (Figure 7) has adequate capabilities to satisfy agex requirements. Thus,
it became the hardware part of the Robot Companion [67]. It is the torso of a humanoid
robot with two KUKA LWR arms and additional F/T sensors embedded in the wrists
to which three-fingered BarrettHand grippers are attached. The torso is mounted on a
1 DOF revolute column which also supports a 2 DOF neck equipped with cameras and
Kinect sensor (the head). Arms are torque controlled, employing impedance control [67,68].
The control laws offer two basic modes of operation: Cartesian and configuration space [69].
The neck and grippers are position-controlled. The control system is implemented using
the FABRIC programming framework [70].
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Figure 7. Velma robot operating in the environment.

5.4. Specification of Communication Channels

At this stage of design, the messages sent between pairs of agents need to be refined,
leading to the specification of the interaction protocols. Each communication channel
should have a specified set of interaction protocols according to which the conversations
take place. Moreover, every interaction protocol should contain: performative verbs,
languages that specify the content of the messages, and possibly the ontologies. Due to the
limited space, only two communication channels are described. However, the creation of
the remaining follows the same pattern.

The communication channel C1
co,ta is used to send plans to be executed. The first mes-

sage deals with requesting from ata to execute the plan. The plan should be understandable
to the agents; therefore, the task notation using HFSM (HFSM for Hierarchical Finite State
Machine) is chosen. As aco requests from ata, the performative verb is Vrequest, and the
content Z is expressed using LHFSM. LHFSM is used for requesting the execution of the
generated plan; thus, a typical message is up to dozens of kB.

While executing the plan, ata sends its status (name of its current state). Together with
the performative verb Vinform it sends Z from a specified set of states: Z ∈{Idle, Run, Error,
Terminating, Finished, Failed, Replan}. The language LSW (SW for Supervised Worker)
was proposed to organize the list, thus, Z should be formulated using LSW. The detailed
description of Z is as follows. Idle—awaiting for the next plan. Running—executing
a plan. Error—the plan execution ended with an error. Terminating—the plan execution is
being terminated. Succeeded—the plan is finished with success. Preempted—the plan is
preempted due to an interruption from aco. Replan—the plan cannot be further executed
and a new plan is required.

The agent aco confirms each message it receives from ata by a message with the perfor-
mative verb Vconfirm and empty content, as the intention provides complete information.

In the case when the plan has to be interrupted, aco sends an interrupting message to
ata. The performative verb is Vcancel, and again sending any content is not necessary. The
messages sent with LSW have no content, so their size is 100 to 200 bytes, and are sent every
time ata modifies its internal state. The detailed specification is presented as follows.

V ∈ {con f irm, cancel} ⇒ (L = LSW) ∧ (Z = −) (4)

V ∈ {request} ⇒ (L = LHFSM) ∧ (Z = plan)

These four messages make up the interaction protocol Icoordinate
co,ta . The interaction proto-

col managing the conversation between aco and ata, together with the detailed formulation
of the messages is shown in Figure 8.
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Figure 8. Icoordinate
co,ta interaction protocol. The initiator agent aco, that contains the pair of buffers

T
x,ycco, starts the interaction, while the participating agent ata, that contains the pair of buffers T

x,ycta

takes part in it. The dashed lines are lifelines, arrows represent particular communicates. A diamond
indicates an alternative in messaging. The sub-diagram ’loop’ means the repetition of its contents.

The communication channel C4
pl,km is used to transmit knowledge, in the form of

queries produced by apl, and answers formulated and sent by akm. For both agents,
to understand the queries and knowledge, the language LWM (WM for World Model)
is proposed. The agent initiating the conversation is apl, asking for knowledge using Z
expressed using LWM. The ontology ORoCo specifies the knowledge about the robot’s
environment. It is built from scratch in OWL to keep it as simple as possible. The ontology
was inspired by the KnowRob2 project [71]. It was used to implement a simple knowledge
base. The performative verb for the message is Vquery−ref. Agent akm formulates the answer
to the query, and informs the inquirer; thus, the performative verb is Vinform−ref.

The interaction protocol Iquery
pl,km , together with the detailed formulation of the messages

is presented in Figure 9. After designing the six communication channels, the system
shown in Figure 10 results.

Figure 9. Interaction protocol Iquery
pl,km .

Figure 10. The considered part of Robot Companion realised as five agents: ata, akm, aco, ahi, and apl,
including interaction protocols. The group agex is not shown.

The size of the content formulated using LWM depends on the purpose of the mes-
sage, e.g., requests are up to 250 bytes, but the size of answers depends on particular
knowledge—from 250 bytes (in the case of, e.g., state of the gripper) up to 1 MB (in the
case of complex or accurate information about the environment). The messages are sent
every time the knowledge is needed, i.e., mainly during plan generation.
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5.5. Agents in the Robot Companion System

Having defined the communication between agents, we can proceed to the specifica-
tion of the embodied agents themselves. A crude specification of the agents arises from
the system decomposition, however, a more detailed description is required. Thus, a brief
description of key behaviours and specification of the FSMs governing them, for each agent,
is presented below (Figure 11). All of the agents considered here (Figure 10) contain only
their control subsystem—they are purely computational agents.

The objective of the coordinator agent aco is to select one task out of all the tasks
requested and coordinate its execution. The problem of task execution coordination and its
solution for service robots is published in [72,73].

Based on configurable parameters and the scheduling algorithm, aco decides when to
switch the plan being executed by ata to another one. The agent manages the procedure of
suspending the current and starting the next plan execution. The FSM cF co of the control
subsystem cco of the agent aco is tailored to fit the Robot Companion requirements. The
FSM has 5 states (Figure 11a). A brief description of the behaviours executed in each of
them is shown in Table 3. The agent receives the communicates from ahi in state cS trigger

co ,
from apl in state cScompSP

co , and from ata in all states.
Version October 21, 2022 submitted to Energies 18 of 26

(a) cco FSM graph (b) cpl FSM graph

(c) ckm FSM graph (d) cta FSM graph

Figure 11. FSMs governing the behaviours of the agents, i.e. their control subsystems. The arc labels 
specify conditions; missing labels are always True. The conditions are checked as soon as a behaviour 
terminates.

Table 3. Mapping of the states of cco FSM to aco behaviours

State Behaviour Description

cS trigger
co

cBco,trigger aco is idle, it receives a new command by Irequest
hi,co and ata state by Icoordinate

co,ta

cSprocReq
co

cBco,procReq aco stores the task it received from ahi and calculates its deadline and start time

cScompSP
co

cBco,compSP
aco requests apl to update plans (initiates Irequest

co,pl ) of all tasks awaiting execution and based on
them determines the schedule parameters

cSschedule
co

cBco,schedule

aco executes the scheduling algorithm that produces a decision. The decision is either to switch
the plan being executed to another one, or to continue with the current one. A transition labelled
(continue or switch) is satisfied if the decision (continue or switch) of the schedule algorithm is
made.

cSswitch
co

cBco,switch aco executes the plan switch procedure. It initiates the Icoordinate
co,ta protocol.

The purpose of apl is to generate the plan on demand of aco, in response to Irequest
co,pl . 571

During plan generation it may need additional knowledge, so it queries akm using Iquery
pl,km . 572

The activities of the control subsystem cpl of the agent apl are governed by the FSM shown 573

in fig. 11b. In each state of the FSM, an associated behaviour is executed (Tab. 4). 574

Figure 11. FSMs governing the behaviours of the agents, i.e., their control subsystems. The arc
labels specify conditions; missing labels are always True. The conditions are checked as soon as
a behaviour terminates.
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Table 3. Mapping of the states of cco FSM to aco behaviours.

State Behaviour Description

cS trigger
co

cBco,trigger aco is idle, it receives a new command by Irequest
hi,co and ata state by Icoordinate

co,ta

cSprocReq
co

cBco,procReq aco stores the task it received from ahi and calculates its deadline and start time

cScompSP
co

cBco,compSP
aco requests apl to update plans (initiates Irequest

co,pl ) of all tasks awaiting execution and, based on
them, determines the schedule parameters

cSschedule
co

cBco,schedule

aco executes the scheduling algorithm that produces a decision. The decision is either to switch
the plan being executed to another one, or to continue with the current one. A transition labelled
(continue or switch) is satisfied if the decision (continue or switch) of the schedule algorithm
is made.

cSswitch
co

cBco,switch aco executes the plan switch procedure. It initiates the Icoordinate
co,ta protocol.

The purpose of apl is to generate the plan on demand of aco, in response to Irequest
co,pl .

During plan generation it may need additional knowledge, so it queries akm using Iquery
pl,km .

The activities of the control subsystem cpl of the agent apl are governed by the FSM shown
in Figure 11b. In each state of the FSM, an associated behaviour is executed (Table 4).

Table 4. Mapping of the states of cpl FSM to apl behaviours.

State Behaviour Description
cS idle

pl
cBpl,idle apl waits for a planning problem to be transmitted through Irequest

co,pl

cS initialize
pl

cBpl,initialize apl initializes the planning problem, multiple possible initiations of Iquery
pl,km

cSsearch
pl

cBpl,search apl searches for the solution

cSfinalize
pl

cBpl,finalize apl generates the plan

The agent akm is responsible for query answering and for updating the knowledge
database. At initialization the agent starts the Isubscribe

km,ta protocol, which results in receiving
updates on the environment states. Its activity is governed by the FSM shown in Figure 11c.
In each state of the FSM, a corresponding behaviour is executed (Table 5).

Table 5. Mapping of the states of ckm FSM to akm behaviours.

State Behaviour Description

cS idle
km

cBkm,idle
akm waits for three kinds of messages: a query passed by using Iquery

pl,km , Iquery
ta,km or a

new observation of the environment. Based on that it prepares a switch of state.

cSquestionAnswering
km

cBkm,questionAnswering
akm reasons using the knowledge database to answer the received query, and formu-
lates an appropriate message.

cSknowledgeSaving
km

cBkm,knowledgeSaving akm updates the knowledge database with the received information.

The agent ata communicates with aco, akm, and agex. It receives plans and plan ex-
ecution interruption messages from aco by means of Icoordinate

co,ta . In reaction to the plan
execution and interruption requests the ata states are switched. For the sake of brevity the
communication with agex is not presented. The FSM that governs the activity of ata is shown
in Figure 11d. In each state of the FSM, a corresponding behaviour is executed (Table 6).
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Table 6. Mapping of the states of cta to ata behaviours.

State Behaviour Description

cS idle
ta

cBta,idle
ata waits for a plan execution request, transmitted by communicates Mco,ta =
〈Vrequest,Z ,LHFSM,−, Icoordinate,−, mw,−, mc〉 within Icoordinate

co,ta interaction protocol.

cSrunning
ta

cBta,running

ata executes the plan specified by aco. The plan is defined by a Hierarchical Fi-
nite State Machine (HFSM); therefore, cSRunning

ta is a super state defined by the HFSM.
It constantly reports on the state of execution of the plan by sending Mta,co =
〈Vinform,Z ,LSW,−, Icoordinate,−, mw,−, mc〉. When the HFSM terminates or ata receives an
interruption message (Mco,ta = 〈Vcancel,Z ,LHFSM,−, Icoordinate,−, mw,−, mc〉) from aco (via
Icoordinate

co,ta ) the behaviour is terminated. In the case when it needs a piece of knowledge, it

initiates Irequest
ta,km interaction protocol to query the akm for it.

cSfinished
ta

cBta,finished ata waits for an acknowledgment from aco regarding the plan termination

5.6. Implementation

The system is implemented using ROS 1. The message exchange was performed using
the Remote Procedure Call (RPC) mechanism. Agents are implemented as ROS nodes.

The standardized message format, proposed by IEEE FIPA standards, and specified in
this article, is treated as a design pattern from the system implementation point of view.
It is implemented as an ROS service, and used for all agents. The interaction protocols of
the agents are specified with the ClassInterfaceInfo class. Thus, communicates of any
agent are specified by filling elements of IEEE FIPA standard communicate. For example,
the interaction protocol Irequest

co,pl is specified as:

C l a s s I n t e r f a c e I n f o ( [ ( ‘ request ’ , ‘ generatePlan ’ , [ GroundTaskNetwork ] , H i e r a r c h i c a l P l a n ) ] ) ,

where ‘request’ is the performative, ‘generatePlan’ is the query name, ‘[GroundTaskNet-
work]’ is the request content class expressed in LHFSM, ‘HierarchicalPlan’ is the response
content class given in LHFSM. Besides enforcing IEEE FIPA communicate standard, the
ClassInterfaceInfo class verifies if the content follows the specified language. The part
of the code responsible for communication has been separated, and used as programming
modules. The modules implement, e.g., the ClassInterfaceInfo class, all interfaces for
all agents and variety of world model objects being transmitted between the agents.

The standardization of interaction protocols enabled verification of the implementation
against the specification. It made it easier to verify the implementation of agents by checking
that all kinds of queries are supported at the agent code level and that the arguments and
returned value comply with the specification. Due to structured messages and well-
organised communication at the abstract agent-level, it is straightforward to implement
query checks in the agents and analyse inter-agent communication abstracting from the
implementation details. The approach presented in this article requires the definition of
six communication languages used in the system. Due to that the organization of data
structures into a hierarchy of classes emerged.

5.7. Experiment

In the previous sections, the proposed method was used to design a robotic system,
then its implementation was described. The experiment presented herein verifies that the
thus-produced specification conforms to the requirements. Moreover, the characteristics of
the designed communication are assessed. The mentioned characteristics are as follows:
the size of communicates, number of them, and frequency of their occurrence in specific
timeframes.

The sizes of the messages were estimated in Section 5.4, but their true sizes, their
number and frequency of occurrence, depend on particular tasks that the robotic system ex-
ecutes. Therefore, in order to determine whether the communication between the individual
components of the system is efficient, these characteristics should be verified in simulations,



Energies 2022, 15, 7983 20 of 25

and then in the real robotic system. The approach for testing the communication is also
sketched. Due to limited space, only one test case is described.

The designed robotic system was run under the following conditions. The group
agex is built of robot hardware components and software running on a machine with 4
core CPU and Linux OS with RT (real time) kernel. The software is semi-automatically
generated from the specification using FABRIC [70] and it meets hard RT requirements. The
remaining agents, i.e., aco, ata, ahi, apl, akm do not require hard RT, and they are deployed
on another machine with Linux OS and ROS 1. Both machines are connected by a LAN
using an Ethernet cable.

In the presented experiment, a complex task was performed that employs interleaved
planning and execution. The experimental task was to pour content of a jar into a bowl.
Both objects were initially located in an open cabinet. A video of the experiment is available
at the link : https://vimeo.com/720200335 (accessed on 21 October 2022). The provided
video, as well as Table 7, show that the requirements imposed on the system, as stated in
Section 5.1, are fulfilled.

During the experiment the occurrence of each message was logged along with the
metadata (size, sender, recipient, performative, and interaction protocol) and the time at
which it was sent. Based on this information, the detailed analysis presented below was
carried out.

The execution of a given task took 778 s. and required 1856 messages to be exchanged
between the agents. A timetable summarizing the experiment is shown in Table 7.

Table 7. Communicates and robot actions in the experiment.

Time [s] Event C, Used

0–37 akm receives an initial knowledge about the environment C5
ex,ta, C6

ta,km

83 ahi receives a new command, and requests aco to coordinate its execution C2
co,hi

97 aco requests apl for the plan #1 C3
co,pl

97–152 apl generates the plan #1, and queries akm C4
pl,km

153 aco receives the generated plan #1 from apl C3
co,pl

153–681 ata executes the plan, reports its state to aco C1
co,ta

293–315, 674–680 akm receives information about the modified environment from ata C5
ex,ta, C6

ta,km

300 the jar is grasped with the left gripper —

315 the jar is pulled out of the cabinet —

495 the bowl is grasped with the right gripper —

508 the bowl is pulled out of the cabinet —

620 the bowl is put down on the table and released —

680 the bowl is localized —

681 aco requests apl for the plan #2 C3
co,pl

681–682 apl generates the plan #2, and querries akm C4
pl,km

682 aco receives the generated plan #2 from apl C3
co,pl

682–778 ata executes the plan, reports its state to aco C1
co,ta

674–682 akm receives information about the environment from ata C5
ex,ta, C6

ta,km

763 the content of the jar is poured into the bowl —

778 the task is finished —

https://vimeo.com/720200335
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Agents aco, ata, ahi, apl and akm share the same codes for inter-agent communication.
The intensity of communication in the whole system is presented in Figure 12. There is
intense communication from 97 up to 152 s. (planning #1), and a few other communication
episodes. There are two planning processes. In the first one (#1) the robot plans how to
take the jar and bowl out of the cabinet, and put the bowl on the table. In the second one
(#2) the robot plans how to pour the contents of the jar into the bowl.

Figure 12. Size (in bytes) of messages sent at specific times.

86% of the sent messages is below 0.5 kB, but there are larger ones too, going up to
852 kB. This shows a great variety of the size of communicates. During execution of a
command, agents apply specific communication, depending on the current situation (see
Table 7). The difference in the size of the communicates is in line with the estimates of the
various types of them made in Section 5.4.

The number of messages sent and received by particular agents is presented in Table 8.
Most of the communication is carried out by agents akm and apl through the communication
channel C4

pl,km. For the whole planning process #1 the required bandwidth is on average
32 kbps, but the peak (150 kbps) is at the end of the first planning process (sec. 153) (see
Figure 13). The number of communicates sent in planning #1 is equal to 1598. Later
on, the channel is not used (154–680 s), up to 681–682 s. where the planning #2 is done.
57 communicates are exchanged, with average bandwidth equal to 32 kbps. In total,
the minimum size of the communicate is 231 b, the maximum is equal to 98 kb, and the
average size is 654 b. It shows the accuracy of the predictions made during the construction
of the communication channels (see Section 5.4). The distribution of messages over time is
difficult to estimate accurately. The size of the message querying akm is small, as it contains
only the specification of the knowledge needed. However, the size of the reply from akm
depends on the specific piece of knowledge. The communicate size can be small (up to
1 kb), e.g., information on the gripper state, or creation of the hypothetical state of the
knowledge base; large (dozens of kb), e.g., sequence of positions of the bowl held by the
gripper, possible grasps of the jar; or even very large (up to 100 kb), e.g., the current state of
the whole environment.

Table 8. Number of messages sent and received by agents.

aco ahi akm apl ata
agex Received

aco 1 2 8 11
akm 925 83 24 1032
apl 2 730 732
ata 4 71 75

agex 14 1 15

send 6 1 815 927 92 24 1865
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Figure 13. Bandwidth used by C4
pl,km in every second of robotic system operation. The plot contains

only the time slots in which the communication takes place.

6. Conclusions

The article presents a method of designing robotic systems, which puts the commu-
nication between system components at the forefront. This systematic design method
facilitates system implementation and enables experimental evaluation of its characteristics,
thus confirming that it fulfills the requirements, and that the communication between the
system components is correct. This strengthens the authors’ claim that the communication-
focused top-down robotic system design method based on binary decomposition is correct
and useful. Decomposition based top-down design methods, if applied systematically,
assure that the resulting system fulfils the requirements, as opposed to bottom-up synthesis
techniques, which produce emergent system properties, which have to be deduced and
subsequently tested against the requirements. Moreover, it uses the standardization of the
message structure for communication within robotic systems composed of agents based on
the IEEE FIPA standard, known from multi-agent systems. In contrast to a commonly used
bottom-up approach, where designers take components from a library or a framework and
connect them complying with their interfaces, the proposed method is strictly top-down.
It separates the specification of the system from its implementation. It shows how to
systematically decompose groups and connect them by communication channels.

The communication focused system decomposition enables the analysis of the com-
munication on the abstract agent-level. Organized communication and its properly defined
specification facilitates the system’s further development. System-specific messages and
language definitions are grouped and separated from the implementation. The imple-
mentation of the software that handles the communication process is generic. Therefore,
there is no need to test the software multiple times. Only verification against the system
specifications is required.

Highlighting communication in the design process shows the critical aspects of its
operation. The bandwidth of communication channels and communication intensity can
be estimated in the development. On their basis, it is possible to properly define or
redefine the architecture of the entire robotic system and avoid bottlenecks. Application
of the communication focused system decomposition method, with adequately defined
requirements, allows for designing a robotic system with optimal control and energy
consumption.
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12. Matarić, M.J.; Michaud, F. The Handbook of Robotics. In The Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Chapter

Behavior-Based Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 891–909.
13. Bulter, Z.; Rizzi, A. Distributed and Cellular Robots. In Springer Handbook of Robotics; Khatib, O., Siciliano, B., Eds.; Springer:

Berlin/Heidelberg, Germany, 2008; pp. 911–920.
14. Yim, M.; Shen, W.M.; Salemi, B.; Rus, D.; Moll, M.; Lipson, H.; Klavins, E.; Chirikjian, G.S. Modular Self-Reconfigurable Robot

Systems [Grand Challenges of Robotics]. IEEE Robot. Autom. Mag. 2007, 14, 43–52. [CrossRef]
15. Farinelli, A.; Iocchi, L.; Nardi, D. Multirobot systems: A classification focused on coordination. IEEE Trans. Syst. Man Cybern.

Part B (Cybern.) 2004, 34, 2015–2028. [CrossRef]
16. Dudek, G.; Jenkin, M.R.M.; Milios, E.; Wilkes, D. A taxonomy for multi-agent robotics. Auton. Robot. 1996, 3, 375–397. [CrossRef]
17. Doriya, R.; Mishra, S.; Gupta, S. A brief survey and analysis of multi-robot communication and coordination. In Proceedings of

the 2015 International Conference on Computing, Communication & Automation, Noida, India, 15–16 May 2015; pp. 1014–1021.
[CrossRef]

18. Chibani, A.; Amirat, Y.; Mohammed, S.; Matson, E.; Hagita, N.; Barreto, M. Ubiquitous robotics: Recent challenges and future
trends. Robot. Auton. Syst. 2013, 61, 1162–1172. [CrossRef]

19. Campusano, M.; Fabry, J.; Bergel, A. Live programming in practice: A controlled experiment on state machines for robotic
behaviors. Inf. Softw. Technol. 2019, 108, 99–114. [CrossRef]

20. Kortenkamp, D.; Simmons, R.; Brugali, D. Robotic Systems Architectures and Programming. In Springer Handbook of Robotics,
2nd ed.; Siciliano, B., Khatib, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 283–306.

21. Coste-Maniere, E.; Simmons, R. Architecture, the backbone of robotic systems. In Proceedings of the IEEE International
Conference on Robotics and Automation ICRA ’00, San Francisco, CA, USA, 24–28 April 2000; Volume 1, pp. 67–72. [CrossRef]

22. Lyons, D.M.; Arbib, M.A. A Formal Model of Computation for Sensory-Based Robotics. IEEE Trans. Robot. Autom. 1989,
5, 280–293. [CrossRef]

23. Lyons, D.M. Adaptive behavior and intelligent systems without symbols and logic. In Studies in Cognitive Systems; Chapter
A Schema-Theory Approach to Specifying and Analysing the Behavior of Robotic Systems; Kluwer Academic: Alphen aan den
Rijn, The Netherlands, 2001; Volume 2, pp. 51–70.

http://doi.org/10.1177/027836498600500407
http://dx.doi.org/10.1177/0278364909348761
http://dx.doi.org/10.1109/MRA.2009.934837
http://dx.doi.org/10.1007/978-3-540-68951-5_6
http://dx.doi.org/10.1109/MRA.2007.339623
http://dx.doi.org/10.1109/TSMCB.2004.832155
http://dx.doi.org/10.1007/BF00240651
http://dx.doi.org/10.1109/CCAA.2015.7148524
http://dx.doi.org/10.1016/j.robot.2013.04.003
http://dx.doi.org/10.1016/j.infsof.2018.12.008
http://dx.doi.org/10.1109/ROBOT.2000.844041
http://dx.doi.org/10.1109/70.34764


Energies 2022, 15, 7983 24 of 25
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