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Abstract: Mixed obstacles have a great influence on the deflagration process of liquefied petroleum
gas (LPG)-air premixed combustible gas with concentration gradient. The arrangement of mixed
obstacles may further stimulate overpressure and flame propagation. In this work, based on exper-
imental and numerical simulations, this paper analyzes the flame and overpressure, and mainly
studies the coupling relationship among the explosion overpressure characteristics, the structure of
flame and the speed of flame propagation. The result shows that when the rectangular obstacle is
100 mm away from the ignition source, not only the speed of flame is the fastest, but also the time
required to reach the maximum over-pressure is the shortest. In this configuration, an elongated
flame is formed between a rectangular obstacle and a flat obstacle, and an obvious backflow structure
appears. In addition, the average growth rate of overpressure has a minimum value, reaching at
−35 MPa/s. The existence of rectangular obstacles further stimulates the overpressure. When the
rectangular obstacle is 400 mm away from the ignition source, the maximum overpressure value
is the highest among the four configurations. Besides, the time when the maximum area of flame
appears in the simulation is almost the same as the time when the maximum overpressure is obtained.
In addition, the average growth rate of overpressure increases significantly after touching the rect-
angular obstacle, which coincides with the mutation time of the front tip of the flame, overpressure
and area of flame after the flame encounters the rectangular obstacle. This research has an important
theoretical guiding significance for preventing LPG leakage and explosion accidents in a long and
narrow space.

Keywords: LPG-air mixture; mixed obstacles; overpressure; flame behaviors

1. Introduction

Explosions of combustible gas are frequent accidents in process industries, such as the
chemical industry, coal mines, and oil depots [1–3]. Most gas explosions occur in special
spatial structures called narrow spaces. In practical engineering, there are often various
types of devices in the long and narrow space, which can greatly disturb the deflagration
process when deflagration occurs. These devices are collectively referred to as obstacles.
The physical parameters [4–7] of the obstacles become the direct factors that affect the
explosion flame propagation and explosion intensity. The shape of the obstacles is the
most direct disturbance to the explosion flow field, and the overpressure peak caused
by triangular obstacles is 7% and 30% higher than that of square obstacles and circular
obstacles, respectively [8]. Longer obstacles provide sufficient acceleration time, resulting
in higher explosion overpressure and faster flame propagation [9]. Zhang et al. [10] used
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the perimeter of the orifice plate as the criterion for judging the sharpness of the orifice
plate and found that the perimeter is positively correlated with the recoil flame intensity. In
addition, the increase of the perimeter can cause the acceleration of the flame through the
orifice plate. Huang et al. [11] found that the influence of obstacles on the speed of flame
propagation and the growth rate of overpressure is more significant than the concentration
gradient. Moreover, in the case of the same obstacle blocking rate, the opening shape of the
obstacles has less influence on the critical pressure. The obstacle can only affect a limited
area around it, and the pressure behind the obstacle is sensitive to the size of the obstacle.
Extending the width and height of the obstacles can significantly reduce the explosion
pressure behind the obstacles [12]. The relative position of obstacles, ignition sources [13],
and vents [14,15] are also important factors. During the propagation of flame in H2-O2
mixtures with different blocking rates and different distances of obstacles, it is found that
obstacles with irregular shapes can detonate more quickly, which depend on the relative
position between the obstacle and the ignition source [16].

The existence of obstacles can disturb the flow field after the explosion to a great extent.
The obstacles can not only change the size of the overpressure to a certain extent, but also
have a significant impact on the shape [17,18] of the flame and the spread of flame [19].
After an explosion experiment in a closed duct with 17 different configurations of obstacles,
it is found that the mixed obstacles have the greatest influence on the flame acceleration
behavior when the distance is 1 to 4 times the length of the duct diameter [20]. As the angle
of the obstacle increases, the time from ignition to peak overpressure decreases. Under the
same obstacle angle, increasing the blocking rate can reduce the maximum speed of the
flame [21]. The presence of the obstruction has no effect on the flame contacting the duct
wall, but accelerates the reversal and propagation of the flame [22,23].

When the combustible gas in the narrow space explodes, the deflagration process
is extremely unstable. The recombination and dissociation in the gas mixture leads to
intensified convection [24]. A shock wave can be induced under the interference of obstacles,
and it is easy to change from deflagration to detonation (DDT) [25–27]. This can not only
make the destruction greatly enhanced, but can also bring huge losses. Compared with
the curved channel in the staggered case, the straight channel parallel to the propagation
direction of flame is more favorable to generate strong shock focusing [28]. The shape of
the obstacles are closely related to the DDT process. The angles of triangular obstacles are
more conducive to the stretching and convolution of the flame than circular obstacles [29].
Changes in the geometry of sharp obstacles [30] have a certain effect on vortex shedding
and shock reflection, which promote flame acceleration and DDT propagation.

Under the disturbance of obstacles, the flow field becomes turbulent. Rayleigh-Taylor
(R-T) [31] instability is the main cause of turbulent flow [32] and flame deformation [33]
in blocked ducts. R-T instability accompanies the entire propagation process of the flame
when the flame passes through the obstacle, and corresponds to the flame acceleration at
each stage. The effect of Kelvin-Helmholtz (K-H) instability on tip flame propagation is
more pronounced [34]. Similarly, as the number of obstacles increases, the K-H instability
and R-T instability formed within the flow field become stronger. These eventually lead
to a more pronounced stretching of the flame and a greater turbulent intensity of flame
propagation [35]. When the explosion flame propagates, the instability leads to differences
in the density gradient and pressure gradient in the duct. The interaction of density
gradient and pressure gradient leads to the formation of oblique pressure moments, which
is the main cause of vortices. During the propagation of flame, the amount of vortex
formed at the obstacles or in the combustion gas is more pronounced. This is because
when crossing the obstacles, the sudden acceleration of the flame in the duct under the
effect of the R-T destabilization state generates pressure waves [36]. When the blocking
rate increases, the degree of pressure wave deformation becomes greater, and the intensity
of turbulence during the propagation of flame becomes larger. The obstacles with tip
structures promote the generation of flow instabilities [37], which tend to form shear layers
and subsequently become vortices. Cubic obstacles can produce higher overpressure
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and the speed of flame [38] than cylindrical obstacles. The hydrogen volume fraction
in premixed combustible gas has a great incentive effect on deflagration process [39].
The effects of both diffusion thermal instability and hydrodynamic instability on flame
instability are enhanced as the hydrogen content increases [40]. The coupling of obstacles
and hydrogen volume fraction affects the dynamics, and leads to more drastic changes in
flame structure morphology [22].

According to existing papers, the research on gas explosions in ducts mainly focus on
uniform premixing. However, in the actual explosion process, the gas usually does not fill
the long and narrow space uniformly, and is often non-uniformly distributed. The study
of explosive overpressure characteristics and the flame behavior of premixed gases under
nonuniformity has also become a focus area of research in recent years [41,42]. In channels
without obstacles, concentration gradients usually lead to greater acceleration. In contrast,
in the channels with obstacles, concentration gradients can enhance or delay acceleration,
which depend on the average concentration of the premixed gas. In general, the speed
of flame propagation and overpressure are greater in more well-mixed methane-air. In
poorly mixed methane-air, the speed of flame propagation and overpressure decrease and
a distinct triple flame appears. As the volume fraction gradient of the gas increases, the
triple flame structure becomes more obvious. However, as the distance of the obstacle from
the ignition source increases, there is a delay in the moment of triple flame appearance [43].
The speed of flame propagation increases again after the flame passes the obstacles, then the
triple flame disappears and forms an incomplete mushroom-type flame downstream of the
obstacles [44]. Although considerable efforts have been made on non-uniform explosion
mechanisms, the details of the explosion behavior of premixed gases in blocked ducts
under non-uniformity remain unclear.

Compared with previous studies on deflagration of a single obstacle, research on
the deflagration of mixed obstacles is deepened further in this paper. Based on the study
of deflagration with mainly flat obstacles [30], this paper focuses on the overpressure
characteristics, the structure of flame and the speed of flame propagation of mixed obstacles
during the deflagration process of LPG-air premixed combustible gas with concentration
gradient. Based on the experimental and numerical simulation methods, the explosion
experiments of non-uniform premixed gas were first conducted in a duct with flat obstacles,
and then the validity of the numerical simulations is verified. For the deflagration process
of gas, pressure and flame are the two most intuitive and direct research objects. The
pressure and flame were studied in depth by means of simulation, such as the average
growth rate of overpressure dp/dt and the area of flame. The research found that some
new characteristics of flame and pressure appear in different configurations, in which a
unique side branch of flame appears. The results of the study provide a theoretical basis
for the prevention and management of gas explosions in a long and narrow space, such
as various types of ducts. Moreover, these can greatly provide scientific guidance for the
investigation of oil and gas deflagration accidents.

2. Experiment Setup
2.1. Geometrical Structure of the Square Duct with Flat Obstacles

The pipe gallery in the actual project is narrow and long, and the length-diameter
ratio greater than 10/1 [45] is often regarded as the large length-diameter ratio. Therefore,
we study the deflagration process in a long and narrow channel with an aspect ratio of
10/1 under the disturbance of mixed obstacles. Figure 1 shows the structural model of the
experimental duct. The duct size is 100 mm × 100 mm × 1000 mm, which is mainly made
of a Q235-A steel plate. The thickness of the steel plate is 5 mm. To facilitate the observation
of the flame, a 20 mm thick fully transparent explosion-proof plexiglass panel is installed
on the front of the duct. The ignition source is located in the center of the left side of the
duct, and there is a pressure monitoring point at 30 mm from the ignition source on the
left side. There are three flat obstacles with a thickness of 5 mm and a blocking rate of 0.3
inside, which are 200 mm, 500 mm and 800 mm away from the ignition source.
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Figure 1. Schematic diagram of the explosion duct.

2.2. Experimental Methods

Figure 2 is a schematic diagram of the experimental system. The left end of the duct
is closed. In order to prevent the premixed gas from leaking out, the outlet of the duct is
sealed with a polyvinyl chloride (PVC) film. Before the experiment, in order to form three
parts with different concentrations of combustible gases, PVC films are used to separate
them at the distance of 350 mm and 650 mm from the ignition source, and then the three
chambers in the duct were inflated separately. The concentration inside each gas chamber
is uniform, and the equivalence ratios of the three regions are 1.5, 1.2 and 1, respectively. In
addition, the LPG charging rate is controlled in terms of the pressure gauge and flow gauge.
The high-speed camera is placed in front of the observation window with appropriate
shading measures. After proper preparation, the adjustable igniter is used for ignition,
which can be adjusted by knob voltage to determine the ignition energy. The model of
the igniter is KTGD-B, and the ignition energy used in the experiment is 20 J. In each
experiment, LPG is injected into the chamber through the upper plate of the duct. When
the combustible gas is ignited and exploded, the PVC film ruptures and the combustion gas
and unburned gas rush out of the duct. A CY-301 type digital pressure transducer is used
to collect pressure data. The range of the pressure sensor is 0 to 5 Mpa. The accuracy of the
pressure transducer is 0.1%FS, and the sampling rate is 1000 times per second. A high-speed
camera with 1280 × 1024 pixels is used to record the explosion process simultaneously in
the experiment, and the version of the high-speed camera is MC1362. To ensure the validity
of the experimental data, the explosion experiment is repeated at least three times, and we
take their average.
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3. Numerical Model

In this paper, we use Fluent for numerical simulation and choose Large Eddy Sim-
ulation (LES) with the WALE model [4,46] and premixed combustion model with Non-
Adiabatic and the Zimont model for simulation. The continuity equation, momentum
equation, and energy equation of LES are well documented in the related literature, so they
are not listed separately in this paper.

Figure 3 shows the mesh model of the experimental duct. To meet the computational
requirements, ANSYS ICEM 2021R2 is used to divide the computational domain into
structured meshes with a cell size of 3 mm [47] and a hexahedral mesh number of 399,976.
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3.1. Materials

The LPG used in the experiment contains more than 95% propane, so the propane
is used instead of LPG in the simulation [48]. A premixed gas of propane and air is
considered to be the ideal gas. The constant pressure specific heat capacity of the mixture
is approximated by a piecewise polynomial related to temperature, and the viscosity is
calculated by Sutherland’s law [49]. Table 1 shows the non-uniform concentrations and
some detailed parameters for the three parts of the experiment.
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Table 1. Detailed computational conditions of propane.

Propane Concentration (%) Heat of Combustion (J/kg) Laminar Flame Speed (m/s) Unburnt Fuel Mass Fraction

4.80 6.0485 × 107 0.37 0.0845
4.03 5.0375 × 107 0.38 0.0602
3.84 4.7884 × 107 0.36 0.0547

3.2. Boundary and Initial Conditions

The solution mode is selected as Pressure-Based, Transient. The effect of gas gravity on
the flow field can be ignored in the explosion, so the effect of gravity is not considered. The
duct outlet is set as a pressure boundary condition, and the pressure is set as a boundary
condition with non-reflection [50] to ensure that it is not affected by the reflection of the
pressure waves. During the simulation, the duct is in a relatively stationary state and the
wall is set to a no-slip wall condition. Because the LPG explosion time is short, the changes
of temperature on the wall during the explosion is negligible. Hence the wall of the duct is
set to adiabatic, and the value of heat exchange with the outside is 0. Table 2 shows some
set conditions.

Table 2. Boundary and initial conditions.

Boundary Acoustic Wave Model Shear Condition Thermal Species

Pressure-Outlet Non-Reflection / 300 K 0
Wall / No-Slip 0 W/m2 /

The initial temperature is set to 300 K. The gauge pressure, the initial speed of flame
propagation and the progress variable are set to 0 before the formal calculation. To simulate
ignition, a hemisphere with a radius of 5 mm [51] is captured on the left side of the duct
and its reaction process variable is assigned a value of 1.

To ensure the convergence of the computational results, the time step length [52,53]
is set to 1 × 10−6 s in the solution, and 40 iterations are required in each time step. The
convergence criterion of energy and progress variable equation is less than 1 × 10−6 and
1 × 10−3 respectively, and the other equations are less than 2 × 10−5.

4. Results and Discussion
4.1. Numerical Verification

Figure 4 presents the flame position with the time under various grid resolutions. To
verify the grid independence, numerical simulations are applied with three different gird
resolutions, 2 mm, 3 mm and 4 mm. By calculating the maximum distance between the
flame and the ignition source, the tip position of the flame is obtained. The simulations are
validated by the experimental results. In addition, there is no obvious difference between
the simulations obtained by these three grids. Note that the smaller grid resolution can
better reproduce the experimental data. Considering the limitation of laboratory computing
power and computing time, this paper chooses 3 mm × 3 mm × 3 mm as the grid resolution.

Figure 5 shows the comparison results between the experimental flame combustion
process and the simulations. As can be seen in (a), in the initial stage, the front tip of the
flame is very smooth and spreads to the unburned combustible gas in a relatively regular
spherical flame, slowly developing into the fingertip-shaped. At 16 ms, the first flat obstacle
reduces the channel area, so the front tip of the flame gradually become sharp. Then, the
flame turned to the upper wall surface of the duct, this is because the pressure waves
through the obstacle first; a shear flow is formed between the upper surface of the obstacle
and the surface of the flame. After 21 ms, a reflux zone is formed and a clear vortex can
be seen, as shown in the red marked circle in (a). The vortex increases the surface area of
flame and introduces unburned gas into the area of flame. Eventually, the flame occupies
the unburned area in front of the first obstacle.
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Relative to the experiment, in the simulation results shown in (b), the flame structure
can fit the experiment well. The same reflux structure appears in the simulation, as the
black marked circle in the figure. However, there is a certain gap in the corresponding time,
which may be related to the unavoidable heat dissipation during the experiment. Based on
the details of the simulated flame structure, it is clear that the fold at the front of the flame
is significantly enhanced due to turbulence effects and the vortex around the obstacles.
Between the 24 ms and 32 ms, a large amount of unburned gas is mixed with the burned
high temperature premixed gas. At the black rectangular box in (b), the area of flame is
greatly increased, and various shapes of irregular flames appear, such as an S-type flame.

Figure 6 shows the comparison of overpressure between the experiment and simu-
lation, at a distance of 30 mm from the ignition source. In the initial stage, the pressure



Energies 2022, 15, 7999 8 of 16

profiles of both experiments and simulations change very slowly. The first peak Pv in
the experimental pressure curve before the maximum overpressure is reached. This is
because the PVC film installed at the outlet of the duct to prevent gas leakage during the
experiment, so Pv is caused by the rupture of the PVC film. The simulation process does not
utilize PVC film for sealing, so this peak does not occur. The time to reach the maximum
overpressure value in the simulation is a little earlier than in the experiment, because the
wall is set as adiabatic during the simulation and there is no heat exchange with the outside
world. However, a certain degree of heat dissipation is inevitable during the experiment.
In addition, before reaching the maximum overpressure, the simulated pressure value is
larger than the experimental one.
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After the flame rushes out of the duct, the experimental overpressure reaches a maxi-
mum value of 63.8 kPa. The simulated maximum overpressure value is 63.1 kPa, which is
almost the same as the experiment. For the moment when the maximum overpressure is
reached, the experiment is at the 31 ms, while the simulation is at the 29.2 ms. After this,
the massive release of the burned and unburned gas inside the duct, the pressure inside the
duct drops rapidly. Eventually, negative pressure appeared in the duct, as evidenced by
the negative pressure Pneg in the figure. Afterwards, the outside air is pressed into the duct,
causing the pressure to oscillate repeatedly around atmospheric pressure.

Therefore, the LES simulation in this paper is valid for the explosion simulation of
LPG-air premixed combustible gas under non-uniformity.

4.2. Model with Rectangular Obstacle

This paper focuses on the effects of mixed obstacles on the overpressure characteristics
and flame behavior during the deflagration of LPG-air premixed combustible gases with
concentration gradients. Figure 7 shows the duct model with mixed obstacles. With the
blocking rate and number of flat obstacles unchanged, a rectangular obstacle is added.
Since the total length of the pipeline is 1000 mm, the aspect ratio is 10/1 [45]. The distances
between the three flat obstacles are the same. The three flat obstacles are respectively
200, 500 mm and 800 mm away from the ignition source. For Obstacle-1, a rectangular
obstacle is placed in the middle of the ignition source and the first flat obstacle. In order
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to ensure that the distance from the rectangular obstacle to the flat obstacle in the three
configurations is the same, the distance from the location of the geometric center of the
rectangular obstacle to the ignition source is 100 mm, 400 mm and 700 mm. In addition, a
control group without the rectangular obstacle is set up.
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4.3. The Structure of Flame

Figure 8 depicts the development of the structure of flame on the iso-surface of the
reaction process variable c = 0.95. The initial flame expands spherically in all directions
before contacting a rectangular obstruction. Between 13 ms and 19 ms, the development
of the flame of Obstacle-2 and Obstacle-3 is the same as Obstacle-0. However, the front
tip of the flame in Obstacle-1 turns sharply and passes through the passage between the
obstacle and the upper side wall of the chamber. Because of the presence of the first flat
obstacle, a smaller recirculation area appears behind the rectangular obstacle, and the
side of the flame enters this area. The flame backflows and rolls up the surrounding gas,
accelerating the burning rate of flame, which leads to a further increase in the area of flame.
Between 19 ms and 24 ms, for Obstacle-2, there is no elongated flame branch between the
rectangular obstacle and the second flat obstacle like in Obstacle-1. This is because the
flame accelerates and passes through the second flat obstacle quickly due to the excitation
of the rectangular obstacle. Although the flame in Obstacle-1 is boosted by the rectangular
obstacle, the overall speed of flame propagation is still slow. There is enough time to ignite
the unburned gas between the rectangular obstacle and the first flat obstacle to form a
slender flame. Similarly, between 24 ms and the 26 ms, there is no flame branching between
the rectangular obstacle and the third flat obstacle in Obstacle-3. In the late development of
flame, Obstacle-1 shows a clear reflow structure after the rectangular obstacle. However, in
Obstacle-2 and Obstacle-3, the reflux after the rectangular obstacle is not obvious, which is
caused by the difference of the speed of flame propagation of the rectangular obstacle at
different positions.
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It can be found that the speed of flame propagation is the slowest in Obstacle-0
without a rectangular obstacle, while the speed of flame propagation in the other three
configurations is faster. Especially in Obstacle-1, the flame rushed out of the duct in 26 ms.
This is because the rectangular obstacles compress the flow field and greatly improve the
speed of flame propagation. However, when the flame of other configurations is 26 ms,
there is still a certain distance from the outlet of the duct. In addition, it can be clearly seen
that the flames under the four configurations form multiple reflux zones when passing
through multiple obstacles. The surface of the flame becomes more broken and turbulent.
This is the result of the coupling between the high pressure areas induced by the combustion
of unburned premixed gas and the vortex structure [4].

Figure 9 shows the variation of the front tip of the flame position with time for the four
configurations. The time when the front tip of the flame touches the rectangular obstacle
has been marked with circles in the figure. It can be seen that Obstacle-1 is the first to touch
the rectangular obstacle, and the compression of the flow field by the obstacle leads to
further increase of the speed of flame propagation. The front tip of the flame position has
exceeded the other three models after 12 ms. At 21 ms, the flame in Obstacle-2 touches
the rectangular obstacle and the speed of flame propagation starts to increase. Similarly,
at around 23 ms, the flame starts to be affected by the rectangular obstacle and the flame
spreads faster in Obstacle-3. After 26 ms, the front tip of the flame of Obstacle-2, Obstacle-3
and Obstacle-0 can rush out of the duct one after another. This result is consistent with the
order of contact with the rectangular obstacle, which shows that the closer the rectangular
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obstacle is to the ignition source, the faster the speed of flame propagation rises, and the
earlier the flame rushes out of the duct.
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4.4. The Overpressure Dynamics

Figure 10 shows the comparison of the pressure of the rectangular obstacle at different
positions during the simulation. The pressure increases slowly before the front tip of the
flame touches the obstacle and the four curves almost overlap. The pressure of Obstacle-1
starts to rise sharply after 13 ms. It can be concluded from Figure 9 that this is because
the flame is excited by the rectangular obstacle at this moment. In addition, the maximum
overpressure value of Obstacle-2 is the highest among the four configurations, reaching
70 kPa. This is because the rectangular obstacle in Obstacle-2 is located at 400 mm and the
flame is more fully developed [17] before reaching the rectangular obstacle compared to
Obstacle-1. For Obstacle-3, the rectangular obstacle is closer to the outlet, and the flame
rushes out of the duct after passing through the obstacle. This is detrimental to the increase
in overpressure, so the maximum overpressure is lower than Obstacle-0. The maximum
overpressure occurs after the flame rushes out of the duct, and it can be seen that the time
to reach the maximum overpressure is about 29.2 ms, 27 ms, 28.1 ms and 28.6 ms. In four
configurations, which indicates that the closer the rectangular obstruction is to the ignition
source, the shorter the time required to reach the maximum overpressure. After 26 ms, the
flame gradually rushes out of the duct, taking away a large number of combustion products
and unburned gas. As a result, the pressure in the duct gradually decreases. Interestingly,
after 30 ms, the pressure rises slightly on the way down, which is precisely because the
outside air rushes into the duct and forms convection with the combustion gas in the duct.
After 37 ms, the negative internal overpressure is generated. It can be clearly seen that the
negative pressure of Obstacle-3 is the most obvious. This is because the rectangular obstacle
is closer to the outlet of the duct and has a stimulating effect on the flame at the outlet. This
allows more gas to rush out of the pipe in a short period of time, bringing a greater negative
pressure. After that, due to the pressure difference, the outside air is pressed into the duct.
Then, the rest of the fuel burns again, and the overpressure can rise again to a certain extent.
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Then, the reciprocal outflow and reverse flow of the gas mixture gradually tends to balance,
and the overpressure inside the duct returns to normal atmospheric pressure finally.
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Figure 11 depicts the relationship between the area of flame and the time on the
iso-surface for the reaction process variable c = 0.95. After ignition, the area of flame in the
duct increases slowly. The area of flames of Obstacle-1, Obstacle-2 and Obstacle-3 increased
further after 12 ms, 21 ms and 23 ms, respectively. This result coincides with the time when
the front tip of the flame touches the rectangular obstacle in Figure 9. After 37 ms, it can be
seen that the area of flame under the four configurations has a rebound. This is due to the
pressure difference causing the outside air to enter the duct, and the combustible gas is fully
burned, which further increases the area of flame. Combined with Figure 10, it can be found
that the variation of the area of flame with time before reaching the maximum area of flame
is consistent with the variation of overpressure. Obstacle-0, Obstacle-1, Obstacle-2 and
Obstacle-3 show the maximum area of flame at 29 ms, 27 ms, 28 ms and 28 ms, respectively.
This result is almost the same as the time to obtain the maximum overpressure in Figure 10.
This confirms that the maximum overpressure value is obtained when the area of flame is
the largest. In addition, among the four configurations, Obstacle-1 has the largest peak area
of flame, followed by Obstacle-2 and Obstacle-0, while Obstacle-3 is the smallest, which is
also consistent with the variation of maximum overpressure. To sum up, it shows that the
overpressure is closely related to the area of flame.

Figure 12 shows the variation curve of the average growth rate of overpressure, named
dp/dt. The whole trend of the average growth rate of overpressure in four configurations
is relatively similar. As marked by the circles in the figure, at the time of 12 ms, Obstacle-1
is affected by the rectangular obstacle and the average growth rate of overpressure begin to
increase. However, the average growth rate of overpressure of Obstacle-2 and Obstacle-
3 increased significantly at 21 ms and the 23 ms, respectively. The moment coincides
with the mutation time of the front tip of the flame, overpressure and area of flame after
the flame encounters the rectangular obstacle. The maximum average growth rate of
overpressure occurs when the front end of the flame rushes out of the duct. Then, due
to the pressure difference between inside and outside, the duct average growth rate of
overpressure starts to decrease and becomes negative, as is marked by the rectangular box
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in the figure. When the rectangular obstacle is 100 mm away from the ignition source, the
average growth rate of overpressure shows a sudden change, reaching nearly −35 MPa/s.
This is because the speed of flame propagation in Obstacle-1 is much greater than the other
three configurations, and it also takes away most of the gas mixture as the flame rushes
out of the duct. In addition, at this time, most of the combustible gases in the duct have
been burned, and the area of flame drops rapidly. These factors result in a greater pressure
difference between the inside and outside of the duct, and the overpressure growth rate
decreases faster.
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5. Conclusions

On the basis of experimental and numerical simulations, this paper focuses on the
effect of mixing obstacles on the deflagration process of LPG-air premixed combustible gas
with concentration gradient. The results of the study can provide more insight into the
coupling relationship among the explosion overpressure characteristics, the structure of
flame and the speed of flame propagation. This further reduces the impact of oil and gas
deflagration accidents caused by obstacles disturbances. This research has an important
theoretical guidance for the prevention of LPG leakage and explosion accidents occurring
in a narrow and long space. Based on the study, the following conclusions are obtained:

(1) When the rectangular obstacle is 100 mm away from the ignition source, a slender
flame appeared between the rectangular obstacle and the first flat obstacle, which
leads to the final formation of a special reflux structure in the duct. The lateral branch
of the flame between obstacles is the most unique, and appears in this configuration.
The flame is the first to rush out of the duct. After that, Obstacle-2 and Obstacle-3 rush
out of the duct successively. The flame of Obstacle-0 without a rectangular obstacle
is the last to exit the pipe. This result is consistent with the order of contact with the
rectangular obstacle.

(2) The closer the rectangular obstruction is to the ignition source, the shorter the time
required to reach the maximum overpressure. However, the maximum overpressure
is obtained by rectangular obstacles in a moderate position, namely Obstacle-2. In
addition, when the maximum flame area occurs, the overpressure value also reaches
the maximum, and there is a close relationship between the two.

(3) The growth rate of overpressure increases significantly after contact with the rectangu-
lar obstacle. The moment coincides with the mutation time of the front tip of the flame,
overpressure and area of flame after the flame touches the rectangular obstacle. With
Obstacle-1, the rectangular obstacle closest to the ignition source, the overpressure
growth rate has the fastest decline, reaching −35 MPa/s, which is much less than the
other three configurations.
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