Evaluation of the Effectiveness of Different LED Irradiators When Growing Red Mustard (Brassica juncea L.) in Indoor Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Red Musturd Variety
2.2. Cultivation Conditions
2.3. Irradiation Conditions
2.4. Evaluation of Biometric Indicators
2.5. Pigment Content
2.6. Nitrates Content
2.7. Measurement of Chlorophyll Fluorescence Parameters and Vegetation Indices
2.8. Energy Intensity Calculation
2.9. Statistical Data Processing
3. Results
3.1. Morphology
3.2. Biochemical Analysis of Leaves
3.3. Chlorophyll Fluorescence Parameters and Measurements of Vegetation Indexes
3.4. Energy Intensity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.T.; Kim, B.K.; Park, K.Y. Antimutagenic and anticancer effects of leaf mustard and leaf mustard kimchi. J. Korean Soc. Food Sci. Nutr. 2007, 12, 84–88. [Google Scholar] [CrossRef]
- Tian, Y.; Deng, F. Phytochemistry and biological activity of mustard (Brassica juncea): A review. CyTA-J. Food 2020, 18, 704–718. [Google Scholar] [CrossRef]
- Sturm, C.; Wagner, A.E. Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways. Int. J. Mol. Sci. 2017, 18, 1890. [Google Scholar] [CrossRef] [Green Version]
- Raiola, A.; Errico, A.; Petruk, G.; Monti, D.M.; Barone, A.; Rigano, M.M. Bioactive Compounds in Brassicaceae Vegetables with a Role in the Prevention of Chronic Diseases. Molecules 2017, 23, 15. [Google Scholar] [CrossRef] [Green Version]
- Jo, S.-H.; Cho, C.-Y.; Ha, K.-S.; Lee, J.-Y.; Choi, H.-Y.; Kwon, Y.-I.; Apostolidis, E. In vitro and in vivo anti-hyperglycemic effects of green and red mustard leaves (Brassica juncea var. integrifolia). J. Food Biochem. 2018, 42, e12583. [Google Scholar] [CrossRef]
- Naznin, M.T.; Lefsrud, M. An Overview of LED Lighting and Spectral Quality on Plant Photosynthesis. In Light Emitting Diodes for Agriculture; Dutta Gupta, S., Ed.; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Katzin, D.; Marcelis, L.F.; van Mourik, S. Energy savings in greenhouses by transition from high-pressure sodium to LED lighting. Appl. Energy 2020, 281, 116019. [Google Scholar] [CrossRef]
- Runkle, E.; Meng, Q.; Park, Y. LED applications in greenhouse and indoor production of horticultural crops. Acta Hortic. 2019, 1263, 17–30. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2021, 41, 742–780. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Andreev, S.N.; Barmina, E.V.; Bunkin, N.F.; Kartabaeva, B.B.; Nesvat, A.P.; Stepanov, E.V.; Taranda, N.I.; Khramov, R.N.; Glinushkin, A.P. Effect of visible light on biological objects: Physiological and pathophysiological aspects. Phys. Wave Phenom. 2017, 25, 207–213. [Google Scholar] [CrossRef]
- Paskhin, M.O.; Yanykin, D.V.; Gudkov, S.V. Current Approaches to Light Conversion for Controlled Environment Agricultural Applications: A Review. Horticulturae 2022, 8, 885. [Google Scholar] [CrossRef]
- Nair, G.B.; Dhoble, S.J. The Fundamentals and Applications of Light-Emitting Diodes; Nair, G.B., Ed.; Woodhead Publishing: Soston, UK, 2021; Chapter 5; pp. 127–152. [Google Scholar]
- Mitchell, C.A.; Dzakovich, M.P.; Gomez, C.; Lopez, R.; Burr, J.F.; Hernández, R.; Kubota, C.; Currey, C.J.; Meng, Q.; Runkle, E.S.; et al. Light-Emitting Diodes in Horticulture. Hortic. Rev. 2015, 43, 1–88. [Google Scholar] [CrossRef]
- Mengxi, L.; Zhigang, X.; Yang, Y.; Yijie, F. Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell Tissue Organ Cult. 2010, 106, 1–10. [Google Scholar] [CrossRef]
- Avercheva, O.; Berkovich, Y.A.; Smolyanina, S.; Bassarskaya, E.; Pogosyan, S.; Ptushenko, V.; Erokhin, A.; Zhigalova, T. Biochemical, photosynthetic and productive parameters of Chinese cabbage grown under blue–red LED assembly designed for space agriculture. Adv. Space Res. 2014, 53, 1574–1581. [Google Scholar] [CrossRef]
- Kasajima, S.-Y.; Inoue, N.; Mahmud, R.; Kato, M. Developmental Responses of Wheat cv. Norin 61 to Fluence Rate of Green Light. Plant Prod. Sci. 2008, 11, 76–81. [Google Scholar] [CrossRef]
- Meng, Q.; Kelly, N.; Runkle, E.S. Substituting green or far-red radiation for blue radiation induces shade avoidance and promotes growth in lettuce and kale. Environ. Exp. Bot. 2019, 162, 383–391. [Google Scholar] [CrossRef]
- Claypool, N.; Lieth, J. Physiological responses of pepper seedlings to various ratios of blue, green, and red light using LED lamps. Sci. Hortic. 2020, 268, 109371. [Google Scholar] [CrossRef]
- Kim, H.-H.; Wheeler, R.; Sager, J.; Goins, G. A Comparison of Growth and Photosynthetic Characteristics of Lettuce Grown under Red and Blue Light-Emitting Diodes (LEDS) with and without Supplemental Green LEDS. Acta Hortic. 2004, 659, 467–475. [Google Scholar] [CrossRef]
- Kamal, K.Y.; Khodaeiaminjan, M.; El-Tantawy, A.A.; El Moneim, D.A.; Salam, A.A.; Ash-Shormillesy, S.M.A.I.; Attia, A.; Ali, M.A.S.; Herranz, R.; El-Esawi, M.A.; et al. Evaluation of growth and nutritional value of Brassica microgreens grown under red, blue and green LEDs combinations. Physiol. Plant. 2020, 169, 625–638. [Google Scholar] [CrossRef]
- Li, L.; Tong, Y.-X.; Lu, J.-L.; Li, Y.-M.; Yang, Q.-C. Lettuce Growth, Nutritional Quality, and Energy Use Efficiency as Affected by Red–Blue Light Combined with Different Monochromatic Wavelengths. HortScience 2020, 55, 613–620. [Google Scholar] [CrossRef]
- Bian, Z.; Cheng, R.; Wang, Y.; Yang, Q.; Lu, C. Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes. Environ. Exp. Bot. 2018, 153, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Kim, J. Light Quality Affects Water Use of Sweet Basil by Changing Its Stomatal Development. Agronomy 2021, 11, 303. [Google Scholar] [CrossRef]
- Kim, H.; Wheeler, R.; Sager, J.; Gains, G.; Naikane, J. Evaluation of Lettuce Growth Using Supplemental Green Light with Red and Blue Light-Emitting Diodes in a Controlled Environment—A Review of Research at Kennedy Space Center. Acta Hortic. 2006, 711, 111–120. [Google Scholar] [CrossRef]
- Sirtautas, R.; Viršilė, A.; Samuolienė, G.; Brazaitytė, A.; Miliauskienė, J.; Sakalauskienė, S.; Duchovskis, P. Growing of leaf lettuce (Lactuca sativa L.) under high-pressure sodium lamps with supplemental blue, cyan and green LEDs. Zemdirb. Agric. 2014, 101, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Kitazaki, K.; Fukushima, A.; Nakabayashi, R.; Okazaki, Y.; Kobayashi, M.; Mori, T.; Nishizawa, T.; Reyes-Chin-Wo, S.; Michelmore, R.W.; Saito, K.; et al. Metabolic Reprogramming in Leaf Lettuce Grown Under Different Light Quality and Intensity Conditions Using Narrow-Band LEDs. Sci. Rep. 2018, 8, 7914. [Google Scholar] [CrossRef]
- Yang, P.; Wang, Y.; Li, J.; Bian, Z. Effects of Brassinosteroids on Photosynthetic Performance and Nitrogen Metabolism in Pepper Seedlings under Chilling Stress. Agronomy 2019, 9, 839. [Google Scholar] [CrossRef] [Green Version]
- Vaštakaitė-Kairienė, V.; Brazaitytė, A.; Samuolienė, G.; Viršilė, A.; Miliauskienė, J.; Jankauskienė, J.; Novičkovas, A.; Duchovskis, P. The influence of LED light photoperiod on growth and mineral composition of Brassica microgreens indoors. Acta Hortic. 2022, 1337, 143–150. [Google Scholar] [CrossRef]
- Jones-Baumgardt, C.; Ying, Q.; Zheng, Y.; Bozzo, G.G. The growth and morphology of microgreens is associated with modified ascorbate and anthocyanin profiles in response to the intensity of sole-source light-emitting diodes. Can. J. Plant Sci. 2021, 101, 212–228. [Google Scholar] [CrossRef]
- Jones-Baumgardt, C.; Llewellyn, D.; Zheng, Y. Different Microgreen Genotypes Have Unique Growth and Yield Responses to Intensity of Supplemental PAR from Light-emitting Diodes during Winter Greenhouse Production in Southern Ontario, Canada. HortScience 2020, 55, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Craver, J.K.; Gerovac, J.R.; Lopez, R.G.; Kopsell, D.A. Light Intensity and Light Quality from Sole-source Light-emitting Diodes Impact Phytochemical Concentrations within Brassica Microgreens. J. Am. Soc. Hortic. Sci. 2017, 142, 3–12. [Google Scholar] [CrossRef]
- Makus, J.; Zibilske, L.; Lester, G. Effect of light intensity, soil type, and lithium addition on spinach and mustard greens leaf constituents. Subtrop. Plant Sci. 2006, 58, 35. [Google Scholar]
- Ying, Q.; Jones-Baumgardt, C.; Zheng, Y.; Bozzo, G. The Proportion of Blue Light from Light-emitting Diodes Alters Microgreen Phytochemical Profiles in a Species-specific Manner. HortScience 2021, 56, 13–20. [Google Scholar] [CrossRef]
- Samuolienė, G.; Viršilė, A.; Brazaitytė, A.; Jankauskienė, J.; Sakalauskienė, S.; Vaštakaitė, V.; Novičkovas, A.; Viškelienė, A.; Sasnauskas, A.; Duchovskis, P. Blue light dosage affects carotenoids and tocopherols in microgreens. Food Chem. 2017, 228, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Ying, Q.; Kong, Y.; Jones-Baumgardt, C.; Zheng, Y. Responses of yield and appearance quality of four Brassicaceae microgreens to varied blue light proportion in red and blue light-emitting diodes lighting. Sci. Hortic. 2020, 259, 108857. [Google Scholar] [CrossRef]
- Yan, Z.; He, D.; Niu, G.; Zhou, Q.; Qu, Y. Growth, Nutritional Quality, and Energy Use Efficiency of Hydroponic Lettuce as Influenced by Daily Light Integrals Exposed to White versus White Plus Red Light-emitting Diodes. HortScience 2019, 54, 1737–1744. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Runkle, E.S. Growth Responses of Red-Leaf Lettuce to Temporal Spectral Changes. Front. Plant Sci. 2020, 11, 571788. [Google Scholar] [CrossRef] [PubMed]
- Brazaitytė, A.; Miliauskienė, J.; Vaštakaitė-Kairienė, V.; Sutulienė, R.; Laužikė, K.; Duchovskis, P.; Małek, S. Effect of Different Ratios of Blue and Red LED Light on Brassicaceae Microgreens under a Controlled Environment. Plants 2021, 10, 801. [Google Scholar] [CrossRef]
- Meng, Q.; Boldt, J.; Runkle, E.S. Blue Radiation Interacts with Green Radiation to Influence Growth and Predominantly Controls Quality Attributes of Lettuce. J. Am. Soc. Hortic. Sci. 2020, 145, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Teng, Z.; Pearlstein, D.J.; Chen, P.; Yu, L.; Zhou, B.; Luo, Y.; Sun, J. Effects of Different Light-Emitting Diode Illuminations on Bioactive Compounds in Ruby Streaks Mustard Microgreens by Ultra-High Performance Liquid Chromatography–High-Resolution Mass Spectrometry. ACS Food Sci. Technol. 2022, 2, 9. [Google Scholar] [CrossRef]
- Ying, Q.; Kong, Y.; Zheng, Y. Growth and Appearance Quality of Four Microgreen Species under Light-emitting Diode Lights with Different Spectral Combinations. HortScience 2020, 55, 1399–1405. [Google Scholar] [CrossRef]
- Yudina, L.; Sukhova, E.; Mudrilov, M.; Nerush, V.; Pecherina, A.; Smirnov, A.A.; Dorokhov, A.S.; Chilingaryan, N.O.; Vodeneev, V.; Sukhov, V. Ratio of Intensities of Blue and Red Light at Cultivation Influences Photosynthetic Light Reactions, Respiration, Growth, and Reflectance Indices in Lettuce. Biology 2022, 11, 60. [Google Scholar] [CrossRef]
- Semenova, N.; Smirnov, A.; Grishin, A.; Pishchalnikov, R.; Chesalin, D.; Gudkov, S.; Chilingaryan, N.; Skorokhodova, A.; Dorokhov, A.; Izmailov, A. The Effect of Plant Growth Compensation by Adding Silicon-Containing Fertilizer under Light Stress Conditions. Plants 2021, 10, 1287. [Google Scholar] [CrossRef] [PubMed]
- Bochenek, G.; Fällström, I. How green is white light? A comparison of basil growth under green or white enriched LED light regimes. Acta Hortic. 2015, 1107, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Shichijo, C.; Katada, K.; Tanaka, O.; Hashimoto, T. Phytochrome A-mediated inhibition of seed germination in tomato. Planta 2001, 213, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Vastakaite, V.; Virsile, A. Light—Emitting Diodes (LEDs) for Higher Nutritional Quality of Brassicaceae Microgreens. Res. Rural. Dev. 2015, 1, 111–117. [Google Scholar]
- Massa, G.; Graham, T.; Haire, T.; Flemming, C.; Newsham, G.; Wheeler, R. Light-emitting Diode Light Transmission through Leaf Tissue of Seven Different Crops. HortScience 2015, 50, 501–506. [Google Scholar] [CrossRef]
- Li, Q.; Deng, M.; Xiong, Y.; Coombes, A.; Zhao, W. Morphological and Photosynthetic Response to High and Low Irradiance of Aeschynanthus longicaulis. Sci. World J. 2014, 2014, 347461. [Google Scholar] [CrossRef] [Green Version]
- Nájera, C.; Urrestarazu, M. Effect of the Intensity and Spectral Quality of LED Light on Yield and Nitrate Accumulation in Vegetables. HortScience 2019, 54, 1745–1750. [Google Scholar] [CrossRef] [Green Version]
- Technical Regulation of the Customs Union “On Food Safety” (TR CU 021/2011). Available online: https://eacgroupcompany.com/en/regulations/trcu021-2011 (accessed on 25 September 2022).
- Brazaitytė, A.; Vaštakaitė-Kairienė, V.; Jankauskienė, J.; Viršilė, A.; Samuolienė, G.; Sakalauskienė, S.; Novičkovas, A.; Miliauskienė, J.; Duchovskis, P. Effect of blue light percentage on mineral elements content in Brassica microgreens. Acta Hortic. 2020, 1271, 119–126. [Google Scholar] [CrossRef]
- Simanavicius, L.; Viršilė, A. The effects of led lighting on nitrates, nitrites and organic acids in tatsoi. Res. Rural. Dev. 2018, 2, 95–99. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaitytė, A.; Jankauskienė, J.; Viršilė, A.; Sirtautas, R.; Novičkovas, A.; Sakalauskienė, S.; Sakalauskaitė, J.; Duchovskis, P. LED irradiance level affects growth and nutritional quality of Brassica microgreens. Cent. Eur. J. Biol. 2013, 8, 1241–1249. [Google Scholar] [CrossRef]
- Phansurin, W.; Jamaree, T.; Sakhonwasee, S. Comparison of Growth, Development, and Photosynthesis of Petunia Grown Under White or Red-blue LED lights. Korean J. Hortic. Sci. 2017, 35, 689–699. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Proshkin, Y.A.; Smirnov, A.A.; Semenova, N.A.; Dorokhov, A.S.; Burynin, D.A.; Ivanitskikh, A.S.; Panchenko, V.A. Assessment of Ultraviolet Impact on Main Pigment Content in Purple Basil (Ocimum basilicum L.) by the Spectrometric Method and Hyperspectral Images Analysis. Appl. Sci. 2021, 11, 8804. [Google Scholar] [CrossRef]
- Kior, A.; Sukhov, V.; Sukhova, E. Application of Reflectance Indices for Remote Sensing of Plants and Revealing Actions of Stressors. Photonics 2021, 8, 582. [Google Scholar] [CrossRef]
- Kusuma, P.; Pattison, P.M.; Bugbee, B. From physics to fixtures to food: Current and potential LED efficacy. Hortic. Res. 2020, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.K.; Guo, S.S.; Ai, W.D.; Qin, L.F. Effects of red and blue light emitting diodes (LEDs) on the growth and devel-opment of lettuce (var. Youmaicai). Search Technol. Pap. 2009, 1, 2565. [Google Scholar]
- Chang, C.-L.; Chang, K.-P. The growth response of leaf lettuce at different stages to multiple wavelength-band light-emitting diode lighting. Sci. Hortic. 2014, 179, 78–84. [Google Scholar] [CrossRef]
- Martineau, V.; Lefsrud, M.; Naznin, M.T.; Kopsell, D. Comparison of Light-emitting Diode and High-pressure Sodium Light Treatments for Hydroponics Growth of Boston Lettuce. HortScience 2012, 47, 477–482. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-L.; Xue, X.-Z.; Guo, W.-Z.; Wang, L.-C.; Qiao, X.-J. Growth and nutritional properties of lettuce affected by mixed irradiation of white and supplemental light provided by light-emitting diode. Sci. Hortic. 2016, 200, 111–118. [Google Scholar] [CrossRef]
- Samuolienė, G.; Sirtautas, R.; Brazaitytė, A.; Sakalauskaite, J.; Sakalauskienė, S.; Duchovskis, P. The Impact of Red and Blue Light-Emitting Diode Illumination on Radish Physiological Indices. Cent. Eur. J. Biol. 2011, 6, 821–828. [Google Scholar] [CrossRef]
- Naznin, M.T.; Lefsrud, M.G. Impact of LED irradiance on plant photosynthesis and action spectrum of plantlet. In Proceedings of the Optics and Photonics for Information Processing VIII, San Diego, CA, USA, 19 September 2014; p. 921602. [Google Scholar] [CrossRef]
- Cope, K.R.; Bugbee, B. Spectral Effects of Three Types of White Light-emitting Diodes on Plant Growth and Development: Absolute versus Relative Amounts of Blue Light. HortScience 2013, 48, 504–509. [Google Scholar] [CrossRef]
- Zabel, P.; Bamsey, M.; Schubert, D.; Tajmar, M. Review and analysis of over 40 years of space plant growth systems. Life Sci. Space Res. 2016, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Guo, S.; Zhao, P.; Wang, L.; Wang, X.; Li, J.; Bian, Q. Research on lettuce growth technology onboard Chinese Tiangong II Spacelab. Acta Astronaut. 2018, 144, 97–102. [Google Scholar] [CrossRef]
- Massa, G.; Wheeler, R.; Morrow, R.; Levine, H. Growth chambers on the International Space Station for large plants. Acta Hortic. 2016, 1134, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Bamsey, M.; Graham, T.; Thompson, C.; Berinstain, A.; Scott, A.; Dixon, M. Ion-Specific Nutrient Management in Closed Systems: The Necessity for Ion-Selective Sensors in Terrestrial and Space-Based Agriculture and Water Management Systems. Sensors 2012, 12, 13349–13392. [Google Scholar] [CrossRef]
- Morrow, R.; Richter, R.; Tellez, G.; Monje, O.; Wheeler, R.; Massa, G.; Onate, B. A New Plant Habitat Facility for the ISS. In Proceedings of the 46th International Conference on Environmental Systems, Vienna, Austria, 10–14 July 2016. [Google Scholar]
- Ilieva, I.; Ivanova, T.; Naydenov, Y.; Dandolov, I.; Stefanov, D. Plant experiments with light-emitting diode module in Svet space greenhouse. Adv. Space Res. 2010, 46, 840–845. [Google Scholar] [CrossRef]
- Bian, Z.; Yang, Q.; Li, T.; Cheng, R.; Barnett, Y.; Lu, C. Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes. Physiol. Plant. 2018, 164, 226–240. [Google Scholar] [CrossRef]
- Globig, S.; Rosen, I.; Janes, H.W. Continuous Light Effects on Photosynthesis and Carbon Metabolism in Tomato. In III Inter-National Symposium on Artificial Lighting in Horticulture; 1994; Volume 418, pp. 141–152. Available online: https://www.actahort.org/books/418 (accessed on 25 September 2022).
- Demers, D.A.; Gosselin, A. Growing Greenhouse Tomato and Sweet Pepper under Supplemental Lighting: Optimal Photo-Period, Negative Effects of Long Photoperiod and Their Causes. In IV International ISHS Symposium on Artificial Lighting; 2000; Volume 580, pp. 83–88. Available online: https://www.actahort.org/books/580 (accessed on 25 September 2022).
Irradiation Variant | Photon Flux, µmol Photons m−2 s−1 | Percentage Composition of Light (B:G:R:FR) | |||||
---|---|---|---|---|---|---|---|
PFD (400 nm–800 nm) | Blue (400 nm–500 nm) | Green (500 nm–600 nm) | Red (600 nm–700 nm) | Far Red (700 nm–800 nm) | PPFD (400 nm–700 nm) | ||
Control | 120 ± 2.8 | 17.5 ± 0.3 | 38.5 ± 1.2 | 51.0 ± 1.5 | 13.0 ± 0.2 | 107.0 ± 2.7 | 15:32:42:11 |
180 ± 3.3 | 26.4 ± 0.6 | 58.0 ± 1.5 | 76.0 ± 1.9 | 19.6 ± 0.4 | 160.4 ± 3.2 | ||
V1 | 120 ± 2.3 | 14.2 ± 0.2 | 26.2 ± 1.1 | 73.2 ± 1.6 | 6.4 ± 0.1 | 113.6 ± 2.2 | 12:20:63:5 |
180 ± 3.1 | 21.4 ± 0.5 | 36.7 ± 1.3 | 112.9 ± 1.5 | 9.0 ± 0.3 | 171.0 ± 3.0 | ||
V2 | 120 ± 3.0 | 18.0 ± 0.2 | 36.0 ± 0.9 | 58.8 ± 0.9 | 7.2 ± 0.1 | 112.8 ± 2.8 | 15:30:49:6 |
180 ± 3.3 | 26.2 ± 0.7 | 53.9 ± 1.6 | 88.8 ± 1.1 | 11.3 ± 0.5 | 168.9 ± 3.1 | ||
V3 | 120 ± 1.5 | 36.5 ± 0.3 | 1.5 ± 0.1 | 81.0 ± 1.0 | 1.0 ± 0.1 | 119.0 ± 1.5 | 30:1:68:1 |
180 ± 3.8 | 54.5 ± 0.7 | 2.0 ± 0.2 | 122.0 ± 2.3 | 1.5 ± 0.1 | 178.5 ± 3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenova, N.A.; Smirnov, A.A.; Dorokhov, A.S.; Proshkin, Y.A.; Ivanitskikh, A.S.; Chilingaryan, N.O.; Dorokhov, A.A.; Yanykin, D.V.; Gudkov, S.V.; Izmailov, A.Y. Evaluation of the Effectiveness of Different LED Irradiators When Growing Red Mustard (Brassica juncea L.) in Indoor Farming. Energies 2022, 15, 8076. https://doi.org/10.3390/en15218076
Semenova NA, Smirnov AA, Dorokhov AS, Proshkin YA, Ivanitskikh AS, Chilingaryan NO, Dorokhov AA, Yanykin DV, Gudkov SV, Izmailov AY. Evaluation of the Effectiveness of Different LED Irradiators When Growing Red Mustard (Brassica juncea L.) in Indoor Farming. Energies. 2022; 15(21):8076. https://doi.org/10.3390/en15218076
Chicago/Turabian StyleSemenova, Natalya A., Alexandr A. Smirnov, Alexey S. Dorokhov, Yuri A. Proshkin, Alina S. Ivanitskikh, Narek O. Chilingaryan, Artem A. Dorokhov, Denis V. Yanykin, Sergey V. Gudkov, and Andrey Yu. Izmailov. 2022. "Evaluation of the Effectiveness of Different LED Irradiators When Growing Red Mustard (Brassica juncea L.) in Indoor Farming" Energies 15, no. 21: 8076. https://doi.org/10.3390/en15218076
APA StyleSemenova, N. A., Smirnov, A. A., Dorokhov, A. S., Proshkin, Y. A., Ivanitskikh, A. S., Chilingaryan, N. O., Dorokhov, A. A., Yanykin, D. V., Gudkov, S. V., & Izmailov, A. Y. (2022). Evaluation of the Effectiveness of Different LED Irradiators When Growing Red Mustard (Brassica juncea L.) in Indoor Farming. Energies, 15(21), 8076. https://doi.org/10.3390/en15218076