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Abstract: An optimal tilt-angle control based on artificial intelligence (AI control) for tracking bifacial
photovoltaic (BPV) systems is developed in this study, and its effectiveness and characteristics
are examined by simulating a virtual system over five years. Using deep reinforcement learning
(deep RL), the algorithm autonomously learns the control strategy in real time from when the system
starts to operate. Even with limited deep RL input variables, such as global horizontal irradiance,
time, tilt angle, and power, the proposed AI control successfully learns and achieves a 4.0–9.2%
higher electrical-energy yield in high-albedo cases (0.5 and 0.8) as compared to traditional sun-
tracking control; however, the energy yield of AI control is slightly lower in low-albedo cases (0.2).
AI control also demonstrates a superior performance when there are seasonal changes in albedo.
Moreover, AI control is robust against long-term system degradation by manipulating the database
used for reward setting.

Keywords: bifacial solar cell; bifacial photovoltaic module; deep reinforcement learning; tracking
photovoltaic system

1. Introduction

Recently, tracking bifacial photovoltaic (BPV) systems have become a mainstream PV
technology. In 2021, the market share of BPV cells was 50% and is expected to increase
to 85% by 2031 [1]. BPV systems can generate more power per unit module area than
monofacial photovoltaic (MPV) systems by generating power from solar radiation that is
incident on both the front and rear faces of BPV modules [2–4].

The mechanism and control of tracking MPV systems have been studied to generate
more power [5,6]. The simplest and most commonly used tracking system is an open-
loop system, in which the sun position (solar azimuth and zenith angle) is theoretically
calculated and then the system drives the MPV module to directly face the calculated
position. Another widely used tracking system is a feedback system, in which photosensors
detect the best angle that has the highest solar irradiation. The combination of these two
techniques has also been employed. However, few studies for tracking BPV systems have
been reported to date.

The modeling and simulation of fixed-installed BPV systems are being studied to
improve the energy yield [7–22]. For instance, Sun et al. investigated the effects of the instal-
lation height and ground albedo of BPV modules on the energy yield [15]. Chudinzow et al.
estimated the shading effect of adjacent BPV arrays and reported an average annual gain
of approximately 17% at a ground albedo of 0.4 [16]. Nussbaumer et al. compared the
estimated power by considering the tilt angle of BPV modules and scattered sunlight with
the actual measurements and reported that it can be predicted with an error of 2–10% [18].
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Rouholamini et al. reported that the power gain of BPV modules compared to MPV
modules exceeded 30% in an optimized installation configuration [19].

In addition to the aforementioned fixed-installed systems, BPV systems using single-
axis trackers have emerged as a recent development [23–27]. Shoukry et al. reported that
a single-axis (one-axis) tracking BPV system yielded approximately 1.4 times the annual
energy yield of a fixed MPV system in a region near the equator [23]. A simulation analysis
by Rodríguez-Gallegos et al. reported that a one-axis tracking BPV system reduces the
levelized cost of electricity (LCOE) by 16% compared to that of a fixed MPV system [25].
Conventional sun-tracking control directs the front surface of the PV module to the sun.
However, this may not always be the best control strategy for a tracking BPV system because
the output power of the BPV system depends on both the front and rear gains. To the best
of our knowledge, there are only a few detailed reports on optimal tilt-angle control for
tracking BPV systems [24,27]. Pelaez et al. reported an increase in bifacial gain with an off-sun
angle control similar to that used in conventional MPV systems [24]. Moreover, they reported
that the optimal tilt angle depends on albedo, latitude, and scattered light. McIntosh et al.
reported an optimal tilt-angle determination method using a detailed model-based study [27].
They obtained the irradiance of each solar cell in the modules comprising the array using
ray-tracing analysis and estimated the power by considering the current mismatch between
the solar cells in the module. Such a model-based approach is useful for BPV systems during
the system-design stage. Following the installation of the system, an intelligent tilt-angle
controller that autonomously learns the optimal angle may contribute to maximizing power
generation because there are many factors affecting the irradiance distribution on the front
and rear surfaces of BPV modules. These include the surrounding environment, albedo
(e.g., seasonal variations due to snow), angular spectral reflectance of the ground, weather,
and partial shadows caused by components and adjacent arrays. Furthermore, there are other
uncertain factors. The surrounding environment and system conditions are likely to change
during long-term operation. The model-based approach is limited in terms of considering
all such possibilities. To address this problem, a data-driven approach is expected to be
a solution for optimally controlling the tilt angle under real conditions by self-learning
during long-term operations. In this study, a tilt-angle determination algorithm using deep
reinforcement learning (deep RL), that is, artificial intelligence (AI) technology, is applied
to a one-axis tracking BPV system, and its characteristics and effectiveness were examined
during a 5-year simulation of a virtual system. The simulation results show that deep RL
autonomously learns the angle-control strategy to achieve a higher power generation than
simple sun-tracking. Furthermore, deep RL can respond to seasonal albedo changes and
system degradation that conventional tracking methods cannot consider. These results
provide a new window of possibilities for AI angle control in BPV systems.

The rest of this paper is organized as follows. Section 2 describes the virtual one-
axis tracking BPV array and deep RL angle controller. Furthermore, the methodology for
real-time power generation simulation is discussed. Subsequently, Section 3 presents the
simulation results and discussion.

2. Methodology
2.1. Virtual 1-Axis Tracking Bifacial PV Array

A virtual 1-axis tracking BPV array was constructed using PVLib in MATLAB version
R2019b [28] to verify the effectiveness of deep RL by simulations. Figure 1 illustrates a
model diagram of the virtual system. The installation height (H) from the ground surface
to the tracking axis was 5 m, BPV array length (L) was 5 m, and array width was infinitely
long and perpendicular to the paper. The tracking axis was along the north–south direction.
There were no adjacent BPV arrays.

Figure 2 displays the calculation flow of the output power of the BPV array. The solar-
radiation incident on the front and rear surfaces of the BPV array was calculated using the
solar-radiation calculation model, pvl_Purdue_bifacial_irradiance.m [15,29,30], with an ar-
ray tilt angle (θ), the number of days from 1 January (day of the year: DOY), time (t), albedo
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(ground surface reflectance against solar radiation), direct normal irradiance (DNI), and
diffuse horizontal irradiance (DHI). The code of the model was slightly modified to retain
a constant H regardless of θ. The total output power P was the sum of the front and rear
powers, which were calculated by multiplying the front and rear irradiance values (IFront,
IRear) with the corresponding conversion efficiency (ηFront, ηRear), as shown in Figure 2.
The conversion efficiencies of the front and rear surfaces were assumed to be constant
values of 19% and 13.3%, respectively, and the bifaciality coefficient = ηRear/ηFront = 0.7,
which was based on the specification of the commercial PV modules (Jinko Solar, Tiger
Pro 72HC-BDVP). To simplify the computation, temperature changes and other compli-
cated phenomena that could affect the conversion efficiency were ignored. The tilt angle
θ was determined at every time step using the deep RL angle controller described in the
subsequent section. This virtual array was simple and effective in achieving the objective
of the study.

Energies 2022, 15, x FOR PEER REVIEW 3 of 15 
 

 

 

Figure 1. Diagram of virtual 1-axis tracking bifacial photovoltaic (BPV) array. 

Figure 2 displays the calculation flow of the output power of the BPV array. The so-

lar-radiation incident on the front and rear surfaces of the BPV array was calculated using 

the solar-radiation calculation model, pvl_Purdue_bifacial_irradiance.m [15,29,30], with 

an array tilt angle (θ), the number of days from January 1 (day of the year: DOY), time (t), 

albedo (ground surface reflectance against solar radiation), direct normal irradiance 

(DNI), and diffuse horizontal irradiance (DHI). The code of the model was slightly modi-

fied to retain a constant H regardless of θ. The total output power P was the sum of the 

front and rear powers, which were calculated by multiplying the front and rear irradiance 

values (IFront, IRear) with the corresponding conversion efficiency (ηFront, ηRear), as shown in 

Figure 2. The conversion efficiencies of the front and rear surfaces were assumed to be 

constant values of 19% and 13.3%, respectively, and the bifaciality coefficient = ηRear/ηFront 

= 0.7, which was based on the specification of the commercial PV modules (Jinko Solar, 

Tiger Pro 72HC-BDVP). To simplify the computation, temperature changes and other 

complicated phenomena that could affect the conversion efficiency were ignored. The tilt 

angle θ was determined at every time step using the deep RL angle controller described 

in the subsequent section. This virtual array was simple and effective in achieving the 

objective of the study.  

 

Figure 2. Schematic of the output-power calculation in virtual 1-axis tracking BPV array. 

−90° 90°

0°

θ

H

L

Direct normal

irradiance

Diffuse horizontal

irradiance

Reflected

irradiance

East West

IFront and IRear calculations

(PVLib)

P

θ DOY t albedo DNI DHI

IFront ηFront + IRear ηRear

IFront IRear

Figure 1. Diagram of virtual 1-axis tracking bifacial photovoltaic (BPV) array.

Energies 2022, 15, x FOR PEER REVIEW 3 of 15 
 

 

 

Figure 1. Diagram of virtual 1-axis tracking bifacial photovoltaic (BPV) array. 

Figure 2 displays the calculation flow of the output power of the BPV array. The so-

lar-radiation incident on the front and rear surfaces of the BPV array was calculated using 

the solar-radiation calculation model, pvl_Purdue_bifacial_irradiance.m [15,29,30], with 

an array tilt angle (θ), the number of days from January 1 (day of the year: DOY), time (t), 

albedo (ground surface reflectance against solar radiation), direct normal irradiance 

(DNI), and diffuse horizontal irradiance (DHI). The code of the model was slightly modi-

fied to retain a constant H regardless of θ. The total output power P was the sum of the 

front and rear powers, which were calculated by multiplying the front and rear irradiance 

values (IFront, IRear) with the corresponding conversion efficiency (ηFront, ηRear), as shown in 

Figure 2. The conversion efficiencies of the front and rear surfaces were assumed to be 

constant values of 19% and 13.3%, respectively, and the bifaciality coefficient = ηRear/ηFront 

= 0.7, which was based on the specification of the commercial PV modules (Jinko Solar, 

Tiger Pro 72HC-BDVP). To simplify the computation, temperature changes and other 

complicated phenomena that could affect the conversion efficiency were ignored. The tilt 

angle θ was determined at every time step using the deep RL angle controller described 

in the subsequent section. This virtual array was simple and effective in achieving the 

objective of the study.  

 

Figure 2. Schematic of the output-power calculation in virtual 1-axis tracking BPV array. 

−90° 90°

0°

θ

H

L

Direct normal

irradiance

Diffuse horizontal

irradiance

Reflected

irradiance

East West

IFront and IRear calculations

(PVLib)

P

θ DOY t albedo DNI DHI

IFront ηFront + IRear ηRear

IFront IRear
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2.2. Deep RL Angle Controller

Figure 3 illustrates the relationship between the deep RL angle controller and virtual
1-axis tracking BPV array. First, the action selection process described below was performed
in the deep RL angle controller based on the output power P at the present time step.
Second, the tilt angle θ and output power for the next time step in the virtual array was
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determined and calculated. To implement this process in a real system, the instantaneous
power must be measured by a power conditioner or sensors and transferred to the deep RL
controller. Self-learning starts when the virtual array starts the 5-year operation, i.e., deep
RL automatically and continuously learns the optimal action that yields more electrical
energy based on the experience of controlling the tilt angle and resultant power. The angle
controller maximizes the amount of power generation, even in more complicated actual
systems, such as those with a temperature change and partial shading modules. In other
words, this controller can continue operating regardless of complex factors that influence
the amount of power generation.
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A double deep Q-network (DDQN) [31], a type of deep Q-network [32,33], was em-
ployed for the deep RL algorithm. The DDQN solves the overestimation problem of the
action-value function when the function approximator of the DQN is utilized. It uses
double Q-learning to reduce overestimation by decomposing the target’s maximum action
into action selection and action evaluation. In particular, it consists of two Q-networks
called main and target. The greedy policy is evaluated according to the main network,
whereas the target network is used to estimate its value. The weights of the main network
are then replaced by that of the target network for the evaluation of the present greedy
policy. Therefore, it exhibits a greater performance than the original DQN and is widely
employed [34,35]. It should be noted that a simple feedforward artificial neural network
(ANN) based on supervised learning is unsuitable for the present problem because of the
difficulty of preparing the training data set. By contrast, RL does not need a training data
set and is suitable for the real-time decision of the action.

Table 1 and Figure 4 present the hyperparameters and a diagram of the deep neural
network used for the DDQN, respectively. The three input-status variables include global
horizontal irradiance (GHI), elapsed time t, and tilt angle θ. In this study, we minimized
the number of status variables to reduce the computation time and tuning time of the
hyperparameters, and the month and date were not used for the status variable. The set of
status variables was defined as s. The DDQN computed the action value Q (s, action) of
all possible actions, and the action with the highest Q value was selected. In the present
model, there were only two possible actions, θ + 1◦ or θ − 1◦, where θ denotes the tilt angle
of a time step. The action value Q was calculated at every time step based on the reward
settings in Table 2, while the neural network was simultaneously updated. Here, the values
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of reward were in the range from 0 to 1 according to the technique called reward clipping,
and they were determined by trial and error using the preliminary simulations.

Table 1. Configuration of deep neural network.

Setting Items Parameters

Activation function ReLU
Learning rate 0.0001
Loss function Huber function

Optimization algorithm Adam
Mini-batch size 32
Discount rate 0.99

Random action rate 0.1
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Table 2. Reward settings for deep reinforcement learning.

Condition Reward

θ < −90◦ or 90◦ < θ −0.50
PF ≥ PFmax 1.00
PF < PFmax −0.02

The power factor (PF) in the table is defined as the ratio of the output power per
unit array area to GHI. PFmax indicates the maximum value of PF stored in the database.
The database comprises a table with rows and columns for time (2880 bins, in 10-s incre-
ments from 8:00 to 16:00) and GHI (1000 bins in total, in 1 W/m2 increments from 0 to
1000 W/m2), respectively, and stores the corresponding PFmax. If the selected action re-
sulted in PF ≥ PFmax, the stored value was updated as PFmax = PF, and the highest reward
(1.00) was given for the action, whereas, in the other cases, a negative reward was given.

The deep RL angle controller was programmed using Python. The OpenAI Gym
python library was used to implement the DDQN. The simulations were executed using a
computer with Intel(R) Core(TM) i7-9700K and 16 GB RAM.
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2.3. Simulation Conditions

The simulation conditions are listed in Table 3. Hourly solar-radiation data of GHI,
DNI, and DHI for 20 years (1981–2000) in Nagaoka City, Japan (E 138◦85′, N 37◦45′) from
the extended AMeDAS [36] were used for the solar-radiation data. By randomly extracting
5 annual data points from the 20-year dataset and connecting them, 10 consecutive 5-year
datasets were created and termed RUN 1–10. The simulation started at 8:00 on 1 January.
The simulation time step was set to 10 s. The hourly solar-radiation data were converted
into 10-s intervals using linear interpolation. It was assumed that the tracking motor
required 10 s to change the tilt angle by 1◦. The starting tilt angle in the morning was set
to the solar zenith angle at 8:00. For comparison, the output power P with the traditional
sun-tracking control was also simulated, where the tilt angle was controlled such that
the front surface of the array directly faced the sun. Hereafter, this case is named the
“sun-tracking control”, while the angle control using deep RL is named “AI control”.
To evaluate the performance of these angle controls, the tilt angle that achieved the highest
P at each time step was pre-calculated by simulating P for every tilt angle at 1◦ intervals and
determining the tilt angle with the highest P. This case is named “ideal control”. The ratios
of the electrical energy yield (obtained by integrating P over a certain time interval) of AI
and sun-tracking controls to that of ideal control are defined as RAI and RSUN, respectively,
and collectively termed the energy-yield ratio (R).

Table 3. Simulation conditions.

City (Source Data) Nagaoka, Niigata
(Extended AMeDAS Data)

Simulation period [years] 5
Albedo 0.2, 0.5, 0.8

Starting time/end time 8:00–16:00
Time required for tilt-angle rotation [s/◦] 10

Daily starting tilt angle [◦] Solar zenith angle at 8:00

3. Simulation Results and Discussion
3.1. 5-Year Simulation

As representative results, Figure 5 illustrates the 5-year variation in daily R for RUNs
1 and 2. The RAI and RSUN are indicated by red and blue dots, respectively. For albedo = 0.2,
the AI control showed the same level of performance as the sun-tracking control, whereas
for albedo = 0.5, the AI control almost outperformed the sun-tracking control. The efficacy
of AI control is even greater for albedo = 0.8, that is, in the high-ground-reflection case.
The RSUN fluctuated cyclically and tended to decline during summer. This is because
the amount of solar radiation and ground-reflection component increases in summer;
however, the RSUN cannot efficiently collect the reflected sunlight at the rear of the array.
Comparatively, the RAI exhibited a greater value throughout the year, with some irregular
drops. Similar characteristics ere observed in RUNs 3–10, although they are not shown.

Figure 6 shows the plots and moving averages of the daily RAIs for RUNs 1–5 in the
first 100 days from the start of the operation. Although there are deviations among RUNs,
albedo = 0.2 shows the fastest learning progress, exceeding RAI = 0.9 in approximately
20 days. Conversely, albedo = 0.5 and 0.8 tend to take a longer time to learn, that is,
50–60 days to exceed RAI = 0.9. This result indicates that high-ground-reflection cases
require a longer learning period in the first year of operation. Interestingly, albedo = 0.5
tends to require the longest period, implying that the difficulty of learning is not simply
proportional to the ground-surface reflection’s intensity.
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Figure 5. Variation of daily energy-yield ratio (R) in 5-year simulation (left: RUN 1, right: RUN 2).
RAI and RSUN depict the result by AI and sun-tracking controls, respectively.
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Figure 6. Variation of daily energy-yield ratio of AI control (RAI) over 100 learning days from the
start of the 5-year simulation (RUNs 1–5).
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Figure 7 shows a box plot of the daily R for all RUNs. The AI control clearly exhibits
a greater energy yield with less diversity than the sun-tracking control, and this trend is
more significant for the high-albedo cases, whereas the effectiveness of the AI control is
insignificant for the low-albedo case. Even with only three status variables (GHI, t, θ) and
output power, AI control shows promising results.
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Figure 7. Box plot of daily energy-yield ratio in 5-year simulation (RUNs 1–10).

Figure 8 shows the 5-year R averaged over all RUNs as a stacked bar graph depicting
the breakdown of the front and rear contributions. The AI control shows energy-yield rates
of 97.4%, 96.0%, and 94.2% for albedo = 0.2, 0.5, and 0.8, whereas the sun-tracking control
shows 98.2%, 92.0%, and 85.0%, respectively. For albedo = 0.2, the AI control is slightly
lower than the sun-tracking control; however, for albedo = 0.5 and 0.8, it is 4.0% and 9.2%
higher, respectively. The advantage of AI control for high-albedo cases can be attributed to
the increase in rear gain. Sun-tracking control cannot effectively utilize the rear gain for
high-albedo cases. The decrease in the absolute value of RAI for higher albedo implies that
the difficulty of learning increases when the ground-reflection component is high.
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The characteristics of the present AI control can be better understood by observing
changes in the tilt angle during the day. Figure 9 illustrates an example of the daily variation
in tilt angle and irradiance on a sunny day at the beginning of the operation (day 4) and on a
sunny day when learning had sufficiently progressed (day 78). The upper graph in Figure 9
shows a stacking chart of the irradiance on the front (IFRONT) and rear (IREAR) surfaces of
the array under AI control and the total irradiance (IIDEAL) on the front and rear surfaces of
the array under ideal control. The lower graph in Figure 9 shows the tilt angles under AI
(θAI) and ideal (θIDEAL) controls. These graphs present the error of AI control relative to
the ideal control. For albedo = 0.2, as shown in Figure 9a, θAI deviates from θIDEAL in the
afternoon on day 4, whereas the control nears θIDEAL on day 78; thus, the sum of IFRONT
and IREAR approaches IIDEAL. Similar learning progress was observed from days 4 to 78
for high-albedo cases, as shown in Figure 9b,c; however, θAI on day 78 tends to deviate
from θIDEAL around noon, and the sum of IFRONT and IREAR becomes lower than IIDEAL.
Around noon, a rapid rotation is required to maximize the power because the conversion
efficiency of the front is greater than that of the rear (bifaciality coefficient: 0.7); however,
AI control does not work well for such a sudden angle change because the tracking motor
takes time to rotate the array. If a slower motor is assumed, learning performance and
energy yield would be further decreased.

An example of a similar situation, in which AI control is inferior, is depicted in
Figure 10. On this day, it was cloudy in the morning and became sunny in the afternoon.
Hence, the ideal tilt angle rapidly changed from the negative to positive side close to noon;
however, AI control could not follow such a rapid change and maintained the tilt angle on
the negative side during the afternoon, resulting in lower irradiance than the ideal control.
This was because the present AI control selected the next action to be θ + 1◦ or θ − 1◦

and could not jump the tilt angle. Hence, a delay in rotation can result in recovery failure.
Overcoming this problem improves the performance of AI control, which may be solved
by incorporating solar-radiation forecasting into the AI algorithm.

3.2. Effect of Seasonal Change in Albedo

In the abovementioned simulations, throughout the year, constant values were set
for the albedo. However, albedo may vary seasonally, for example, when snow covers the
ground or when the ground is covered with artificial high-reflectance sheets for a season
when high irradiation is expected. To evaluate the robustness of the AI control against
such seasonal changes in albedo, 5-year simulations were performed using the albedo = 0.8
setting between 1 July and 31 August, and albedo = 0.5 for the other periods with three solar
radiation datasets RUNs 1–3. The albedo was intentionally set as high during summer when
solar radiation is higher to emphasize the effect of albedo change. Figure 11 shows the daily
R for RUN 1 as a representative result because the other RUNs exhibit a similar trend. The AI
control almost outperforms the sun-tracking control. In particular, during the summer,
AI control exhibits a greater energy yield than the sun-tracking control. Figure 12 illustrates
the 5-year R averaged over RUNs 1–3. The AI control energy yield is 4.5 percentage points
higher than that of the sun-tracking control. This result indicates that AI control is robust
to seasonal changes in albedo.
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Figure 9. Comparison of time variation of irradiance and array tilt angle for AI and ideal controls on
days 4 and 78. Both days were sunny (RUN 1).
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Figure 10. Time variation on day 411. Cloudy in the morning and sunny in the late afternoon,
when AI control works less well (albedo = 0.5, RUN 1).
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Figure 11. Variation of daily energy-yield ratio in the case of seasonal albedo changes (albedo = 0.8
from 1 July to 31 August, albedo = 0.5 for the other months, RUN 1).
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Figure 12. Five-year energy-yield ratio average over RUNs 1–3 corresponding to Figure 11 (albedo = 0.5).

3.3. Effects of Degradation on Conversion Efficiency

The abovementioned simulations did not consider the degradation of the power-
generation performance of the system. However, the conversion efficiency of the actual
system deteriorated annually. Considering that it is impossible to stop such deterioration,
it would be interesting to determine whether AI control is robust against such long-term-
performance degradation. Figure 13 presents the simulation results of daily R when
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applying a degradation rate of −10%/year for RUN 1 at every time step. The extreme
degradation rate was intentionally set, as this was a sensitivity analysis. The actual degra-
dation rate of real PV systems is generally much lower than this value. The graph clearly
shows that degradation negatively affects the learning performance of AI control. This prob-
lem was primarily caused by the database used in the reward setting. As explained in
Section 3, the rewards for the selected action were determined based on whether the
PFmax recorded in the database was exceeded by the PF contributed by the selected action.
Indeed, this procedure does not work correctly when the PF gradually declines owing to
degradation because PFmax is never exceeded by the new actions’ PF and is never updated.
A solution to this problem is to manipulate PFmax in the database to decrease the value by
a similar degradation rate.
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Figure 13. Variation of daily energy-yield ratio when applying a conversion efficiency degradation
rate of −10%/year (albedo = 0.5, RUN 1).

Figure 14 presents the simulation results when database manipulations are applied to
the simulation described in Figure 13. In this simulation, the degradation rate (−10%/year)
was applied to the conversion efficiency, and as a countermeasure for this degradation,
all PFmax values recorded in the database were manipulated to decrease by ratios of (a)
−5%/year and (b) −15%/year at every time step. The results reveal that the database
manipulation of −15%/year successfully solved the problem, i.e., the 5-year RAI recovered
to 94.3% from 78.9% (Figure 13); however, manipulating the database by −5%/year was
insufficient. These results indicate that an effective solution is to apply a greater decrease
rate for the PFmax value in the database than the actual degradation rate of the system’s
power-generation performance.
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4. Conclusions

In this study, the effectiveness of deep RL for optimally controlling the tilt angle of a
one-axis tracking bifacial PV array was verified through a 5-year simulation of a virtual
system. Even with a minimal number of the status variable inputs to the deep neural
network, AI control with deep RL resulted in greater power and electrical energy yields
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for high-albedo cases (albedo = 0.5 and 0.8) compared to a simple sun-tracking control.
AI control was also robust to seasonal albedo changes and the long-term degradation of the
system. It is expected that the effectiveness of deep RL will be more promising in complex
real-world systems (e.g., systems with multiple arrays) than existing simple virtual system
because deep RL automatically learns the optimal angle regardless of the complex factors
influencing power generation in real time. Conversely, the deep RL challenges yet to be
tackled are to accelerate learning from when the system starts operating, to respond better
to the demands of rapid rotation, and to suppress the chattering behavior of the motor
operating the array angle. Modifying the deep neural network with more status variables
and incorporating solar-radiation forecasting may provide solutions. Explorations of the
best algorithms are also necessary through comparative studies to clarify the superiority of
AI control. In addition to the simulations, experimental studies are essential to develop a
better algorithm and verify its practical performance.
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