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Abstract: Low-grade faults play an important role in controlling oil and gas accumulations, but their
fault throw is small and difficult to identify. Traditional low-grade fault recognition methods are time-
consuming and inaccurate. Therefore, this study proposes a combination of a simulated low-grade
fault sample set and a self-constructed convolutional neural network to recognize low-grade faults.
We used Wu’s method to generate 500 pairs of low-grade fault samples to provide the data for deep
learning. By combining the attention mechanism with UNet, an SE-UNet with efficient allocation
of limited attention resources was constructed, which can select the features that are more critical
to the current task objective from ample feature information, thus improving the expression ability
of the network. The network model is applied to real data, and the results show that the SE-UNet
model has better generalization ability and can better recognize low-grade and more continuous
faults. Compared with the original UNet model, the SE-UNet model is more accurate and has more
advantages in recognizing low-grade faults.

Keywords: seismic data interpretation; attention mechanism; SE-UNet; low-grade fault

1. Introduction

At the early stage of fault interpretation, experienced interpreters artificially draw
fault lines on the profile according to the discontinuity of the seismic event [1]; however,
this method is inefficient and unreliable in accuracy, and manual interpretation is more
difficult in areas where geological features are not obvious. With the continuous efforts
of geologists, algorithms to automatically recognize faults have been explored. Coherent
detection techniques [2,3] recognize faults using the continuity of seismic events. Vari-
ance [4] and edge detection techniques [5,6] for fault recognition using discontinuity of
seismic events are particularly sensitive to noise and stratigraphic characteristics, are prone
to misrecognition, and require extensive manual intervention for modification. Therefore,
a series of fault recognition methods such as ant tracking [7,8] and curvature analysis [9]
have emerged, which can automatically track faults, but are difficult to apply to different
seismic data and cannot be systematically learned and developed based on the experience
of interpreters.

The emergence of artificial intelligence has brought fault recognition to a climax. Us-
ing deep learning [10–14] for fault recognition overcomes the limitations of traditional
recognition methods, efficiently finds the mapping relationship between the input data
and target output, and dynamically learns features during the training process. Semantic
segmentation has achieved superior application results in the fields of autonomous driv-
ing [15–17], medical image segmentation [18–21], and iris recognition [22–24]. Semantic
segmentation has gradually been applied to seismic fault recognition in recent years. In
2019, Wu et al. [25] used a U-net network for intelligent fault recognition, which achieved
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end-to-end intelligent recognition of faults. In 2020, Wu et al. [26] used synthetic seismic
data to train a full convolutional neural (FCN) network, which, to some extent, avoids the
interference of human factors and has a better recognition effect on low-grade faults. In
2021, Liu et al. [27] proposed a 3DU-Net fully convolutional neural network to improve the
recognition of small faults in longitudinal profiles and deep noise immunity. Yang et al. [28]
and Chang et al. [29] combined a deep residual network with UNet and constructed a net-
work that can accurately recognize the fault location; the recognized faults have adequate
vertical continuity. In 2022, Feng et al. [30] proposed a high-resolution intelligent fault
identification method, which improved the resolving power of the network model and
could detect fault features more accurately.

Convolutional neural networks produce a certain bias in the results when processing
local information, so they are combined with attention mechanisms to be able to refer to
global information when processing local information. The combination of the attention
mechanism and convolutional networks is currently widely used for noise reduction and
multiple attenuations. Zhang et al. [31] proposed an attention mechanism-guided deep
convolutional self-coding network (AIDCAE), which has more effective noise reduction
than traditional methods, is more suitable for desert seismic random noise suppression than
mainstream deep learning algorithms, and is competitive in terms of training efficiency.
Yang et al. [32] proposed a deep convolutional neural network (GC-ADNet) combining
the global context and attention mechanism and suppressing the random noise of seismic
data with residual learning, which can effectively suppress random noise and retain more
local detailed information. Han et al. [33] fused traditional cyclic generative adversarial
networks with an attention mechanism, and the results demonstrated the feasibility of deep
learning methods for the processing and interpretation of seismic data. Zhang et al. [34]
attenuated multiples using a self-attentive convolutional self-encoder neural network
highly correlated with the global space–time of multiples, which proved to be an efficient
intelligent processing method for multiple attenuations of real seismic data.

In order to solve the problem of difficult recognition of low-grade faults and low recog-
nition accuracy, this study combines UNet with the attention mechanism SE module [35] to
construct SE-UNet with efficient allocation of limited attention resources. In Section 2, we
introduce the principle of the SE module and the network structure and characteristics of
the self-constructed SE-UNet. This network allocates different learning weights to feature
maps through self-learning, which enhances the expression ability of the network and
improves the fault identification accuracy. In Section 3, the training workflow is described:
sample set construction, preprocessing, network hyperparameter selection, and network
model trial calculation. The method proposed by Wu et al. [36] is used to generate 500 pairs
of simulated data and corresponding fault labels. Section 4 describes the application of
the network model in real data, and further demonstrates the advantages of SE-UNet in
identifying low-grade faults by comparing with the results of classical UNet.

2. Methods and Principles
2.1. SE Block

A squeeze-and-excitation (SE) block is a new architectural unit proposed by previous
authors to better exploit inter-channel dependencies, and the structure is shown in Figure 1.
The channel characteristic response was adaptively recalibrated by explicitly modeling
the interdependencies between channels [35]. The SE block consists of two main parts: a
squeeze and an excitation. The first step was a squeeze operation to obtain the distribution
of the values of the feature maps, which was calculated using Equation (1).

zc = Fs(Uc) =
1

W × H ∑W
i=1 ∑H

j=1 Uc(i, j) (1)
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The Uc can be interpreted as a two-dimensional matrix of the Ch channel in the
feature maps. U, W and H represent the width and height of the feature map, respectively.
Equation (1) converts the H × W × C matrix into a 1 × 1 × C matrix. The second step
was the excitation operation, which learns the weights of each channel of the feature map
through the fully connected layer and the activation function, calculated using Equation (2):

S = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1 × z)) (2)

where z is the matrix calculated from Equation (1), W1 is the matrix of size 1 × 1 × (C ×
SERatio), W2 is the matrix of size 1 × 1 × C, σ, δ denotes the activation function, and SERatio
is the scaling factor with the purpose of reducing the number of parameters. Finally, the
scale operation was performed to multiply the U and S matrices obtained from Equation (2)
to obtain the matrix after updating the weights, which was calculated using Equation (3):

x̃c = Fscale(Uc, Sc) = sc·uc (3)

2.2. SE-UNet

UNet is an encoder–decoder structure with a simple and effective structure, where the
encoder is responsible for feature extraction and the decoder for up-sampling to recover
the original resolution, adding a skip connection between the encoder and decoder to
retain the information lost by down-sampling during encoding. Although various features
are extracted during encoding, the attention of the network is limited, and limited atten-
tion should be paid to the learning of effective features. Therefore, this study combines
the SE block with the UNet. The SE block obtains the importance of different channels
through self-learning and assigns corresponding weights to each channel according to the
learned importance, which makes the network focus on the target characteristics during
the learning process, obtains detailed information of the desired target, and suppresses
other useless information.

The network structure used in this study is shown in Figure 2, which preserves the
encoder and decoder of the UNet structure. The left side of the network is the encoder,
which includes three modules, each of which is composed of two convolutional layers and
one down-sampling layer. The right side is the decoder, which includes four modules:
the first is composed of two convolutional layers, and the remaining three modules are
composed of one up-sampling and two convolutional layers. The encoder part performs
global average pooling after two convolutions in the first module; that is, the squeeze
operation in the SE block. Next, the excitation operation is performed, which consists
of two fully connected layers and the activation function, and the SERatio is set to 0.7 to
reduce the number of parameters. The output of the fourth module in the decoder part
is multiplied by the output of the excitation operation to complete the assignment of the
feature map weights. The network only adds two fully connected layers, and the number
of parameters remains almost unchanged. This feature has suitable characteristics in terms
of the model and computational complexity, and the prediction effect of low-grade faults is
significantly improved.



Energies 2022, 15, 8098 4 of 17

Energies 2022, 15, x FOR PEER REVIEW 4 of 17 
 

 

map weights. The network only adds two fully connected layers, and the number of pa-

rameters remains almost unchanged. This feature has suitable characteristics in terms of 

the model and computational complexity, and the prediction effect of low-grade faults is 

significantly improved. 

 

Figure 2. SE-UNet structure. 

3. Model Preparation and Trial Calculations 

3.1. Data Preparation 

The emergence of artificial intelligence has turned the conventional model-driven 

methods into data-driven; therefore, we conducted this research under the premise of big 

data. Low-grade faults are derived from high-grade faults, which are characterized by a 

fault throw of less than 10 m or an extension length of less than 100 m, and are highly 

concealed [37]. Owing to the difficulty in obtaining real seismic data, the amount of exist-

ing real seismic data is limited and requires manual marking, which is time-consuming 

and subjective, and is not suitable for use with artificial intelligence methods. This study 

generated a synthetic 3D seismic record that resembles actual seismic data by using Wu’s 

[36] method of generating simulated data. The specific steps are as follows. 

(1) Construction of a reflection coefficient model. To construct the fold and fault char-

acteristics, we first built the planar initial model with the values of the initial model ran-

domly chosen within [−3, 3]. 

(2) Adding folding. We simulated the fold structure in a real geological environment 

by vertically shearing the flat model. Shearing was determined by two shift fields, which 

are given by the following equations: 

𝑆1(𝑋, 𝑌, 𝑍) = 𝑎𝑋 + 𝑏𝑌 + 𝑐0, (4) 

𝑆2(𝑋, 𝑌, 𝑍) =
1.5

𝑍𝑚𝑎𝑥
𝑍 ∑ 𝑏𝑘𝑒

(𝑋−𝑐𝑘)2+(𝑌−𝑑𝑘)2

2𝜎𝑘
2𝑘=𝑁

𝑘=1   (5) 

The linear shift field of Equation (4) was used to create purely dipping structure, and 

the values of 𝑎, 𝑏, and 𝑐0 were chosen randomly. To avoid extremely dipping structures, 

𝑎 and 𝑏 were chosen randomly within [−0.2, 0.2]. Equation (5) consists of a linear scaling 

function and 𝑁 2D Gaussian functions, which were used to construct bending structures 

with different curvatures, where 𝑐, 𝑑, 𝑏, and 𝜎 were given randomly. To avoid generating 

sharp bending structures, the smaller the 𝜎 is, the smaller the 𝑏 should be. 

(3) Fault structures were added based on step (2). A reference point, strike, and dip 

were given first and used to determine the fault plane; then, a local coordinate system was 

Figure 2. SE-UNet structure.

3. Model Preparation and Trial Calculations
3.1. Data Preparation

The emergence of artificial intelligence has turned the conventional model-driven
methods into data-driven; therefore, we conducted this research under the premise of big
data. Low-grade faults are derived from high-grade faults, which are characterized by
a fault throw of less than 10 m or an extension length of less than 100 m, and are highly
concealed [37]. Owing to the difficulty in obtaining real seismic data, the amount of existing
real seismic data is limited and requires manual marking, which is time-consuming and
subjective, and is not suitable for use with artificial intelligence methods. This study gener-
ated a synthetic 3D seismic record that resembles actual seismic data by using Wu’s [36]
method of generating simulated data. The specific steps are as follows.

(1) Construction of a reflection coefficient model. To construct the fold and fault
characteristics, we first built the planar initial model with the values of the initial model
randomly chosen within [−3, 3].

(2) Adding folding. We simulated the fold structure in a real geological environment
by vertically shearing the flat model. Shearing was determined by two shift fields, which
are given by the following equations:

S1(X, Y, Z) = aX + bY + c0, (4)

S2(X, Y, Z) =
1.5

Zmax
Z ∑k=N

k=1 bke
(X−ck)

2+(Y−dk)
2

2σ2
k (5)

The linear shift field of Equation (4) was used to create purely dipping structure, and
the values of a, b, and c0 were chosen randomly. To avoid extremely dipping structures,
a and b were chosen randomly within [−0.2, 0.2]. Equation (5) consists of a linear scaling
function and N 2D Gaussian functions, which were used to construct bending structures
with different curvatures, where c, d, b, and σ were given randomly. To avoid generating
sharp bending structures, the smaller the σ is, the smaller the b should be.

(3) Fault structures were added based on step (2). A reference point, strike, and dip
were given first and used to determine the fault plane; then, a local coordinate system
was established with the reference point as the origin and the direction where the fault is
located. The point above the fault was then moved, and the equation of the fault throw in
the dip direction is shown as follows:

t = a + bX + cY (6)
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Finally, the data were interpolated. The strike angle was chosen randomly within
[30◦, 320◦], the dip angle was chosen randomly within [35◦, 75◦], and a, b, and c were
given randomly.

(4) The model was convoluted with a wavelet, and noise was added. We convoluted
the model obtained in step (3) with the ricker wavelet to ensure the consistency of the
synthetic seismic data with the known structural characteristics, and added random noise
to the model to ensure the realism of the model data.

Following the above steps, we generated 500 pairs of synthetic seismic data with
dimensions of 128 × 128 × 128. The synthetic seismic data are shown in Figure 3. The
sample set contains multiple types of faults: (a) inverse, (b) parallel, (c) conjugate, and
(d) normal. (e), (f), (g), and (h) in Figure 3 show the labeled faults of (a), (b), (c), and (d).
Low-grade faults are shown in Figure 4 and contain three types of low-grade faults: (a)
disconnection, (b) dislocation, and (c) twist types, and (d), (e), and (f) are labels of figures
(a), (b), and (c), respectively.
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3.2. Data Processing

In this study, the data involved in training were processed by random cropping, which
crops the data to a random size and then expands them back to the original size. The
random cropping method involves reallocating the weight proportion of each feature in the
corresponding category, weakening the weight of the background, enhancing the stability
of the model, and expanding the dataset simultaneously. The random cropping process
allows the network to learn detailed information about the data and observe them over a
large sensory field. The data dimension size was 128 × 128 × 128, and the integer value
N was randomly taken within [64, 128]. The data were randomly cropped in the first
dimension according to the N × N size and subsequently expanded back to 128 × 128 by
bilinear interpolation. Figure 5a shows the seismic data, Figure 5b shows the expansion of
Figure 5a after cropping the data to 128 × 64 × 64 size, and Figure 5c shows the expansion
of Figure 5a after cropping the data to 128 × 96 × 96 size.

The data were normalized and processed using normalization algorithm S (Equation (7)),
which limits the values to a certain range, thus eliminating the undesirable effects caused
by odd sample data, speeding up the optimal solution of gradient descent, and improving
the accuracy. The S normalization formula is as follows:

S =
gx − mx

sx
(7)

where gx represents the value of a point, and mx and sx represent the mean and standard
deviation of the data, respectively.
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3.3. Network Hyperparameter Analysis and Selection

As the proportion of faults in the data was severely unbalanced, a balanced cross-
entropy loss function was chosen in this study to improve the sample imbalance problem.
The number of epochs was set to 100. The model was sensitive to changes in the learning
rate (lr) and batch size. The lr that affects the convergence degree of the model should be
adjusted carefully, so lr was set to 0.001 according to previous experience and fixed. Batch
size affects the generalization ability of the model; thus, to improve the generalization
capability of model, experiments were conducted using the control variables method to
select the optimal batch size, and the network model was evaluated qualitatively using the
model evaluation criteria and analyzed quantitatively using the prediction results.

Fault recognition is ultimately a classification task, usually with four types of predic-
tion results (Table 1): true positive, true negative, false positive, and false negative. True
positive indicates that the point in the fault label is a breakpoint and predicts it as such;
true negative indicates that the point in the fault label is a non-breakpoint and predicts
it as such; false positive indicates that the point in the fault label is a non-breakpoint but
predicts that the point is a breakpoint; false negative indicates that the point in the fault
label is a breakpoint but predicts that the point is a non-breakpoint.

Table 1. Four prediction scenarios for fault recognition.

Evaluation Standards Meanings

True positives (TP) Predicted to be faulted, actual fault
True negatives (TN) Predicted to be non-fault, actual non-fault
False positives (FP) Predicted to be faulted, actually non-faulted
False negatives (FN) Predicted to be non-faulted, actually faulted
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Accuracy (Acc) and recall (R) can be used in semantic segmentation to verify the model.
The two evaluation criteria are defined as follows:

Acc indicates the ratio of correctly predicted samples to all samples, and is calculated
as shown in Equation (8).

Acc =
TP + TN

TP + TN + FN + FP
(8)

R represents the ratio of the number of samples that are true positives predicted to
be faults to the number of samples that are actually faults, and is calculated as shown in
Equation (9). Therefore, the larger the R value is, the better the model is, and the maximum
value of R was 1.

R =
TP

TP + FN
(9)

The goodness of fit of the generated models with different batch sizes was evaluated
using Acc. The accuracy variation curves of the different batch size generated models are
shown in Figure 6. Figure 6a–d represent the model accuracy variation curves when the
batch size was 1, 3, 5, and 6, respectively. Analyzed from the Acc perspective, the training
accuracy curves of Figure 6a–d changed smoothly, and the model converged stably. The
test accuracy of Figure 6c was higher than that of Figure 6a,b,d and the test accuracy curve
of Figure 6c was smooth and stable. From the perspective of model generalization ability,
the model prediction results are shown in Figure 7, in which (c), (d), (e), and (f) are the
prediction effect plots of the model generated with batch sizes of 1, 3, 5, and 6, respectively.
Figure 7 clearly shows that the model identified better fault continuity and low-grade level
faults when the batch size was 5. Because larger batch sizes require shorter training times
and make the computational gradient more stable, the preferred size of batch size was 5,
under the premise of ensuring the convergence stability of the network model.
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3.4. Model Trial Calculations

The network parameters (lr = 0.001, batch size = 5, balanced cross-entropy loss function,
and epoch = 100) trained SE-UNet and UNet using 500 pairs of simulated data, and tested
the model with 100 pairs of data with dimensions of 128 × 128 × 128 (simulated data not
involved in training). The models were evaluated using two evaluation criteria, Acc and R.
The comparison results are presented in Table 2. The training and testing accuracies and
recall of SE-UNet were higher than those of UNet. The curves of the two evaluation metrics
with epoch changes for the network and UNet are shown in Figures 8 and 9, respectively.
Comparing Figures 8 and 9, we found that the accuracy curve of the model generated by
the network changed smoothly, the model converged stably, the recall of the training set of
the model was nearly one, and the recall of the test set changed smoothly. The test accuracy
fluctuated severely in the accuracy curve of the model generated by the UNet network,
indicating that the model generalization ability was weaker than that of the SE-UNet model.

Table 2. Table of quantitative analysis of the UNet and SE-UNet networks.

Evaluation Metrics UNet SE-UNet

Train_acc (%) 95.61 97.52
Test_acc (%) 93.25 95.23

Train_recall (%) 98.19 98.25
Test_recall (%) 95.36 97.31



Energies 2022, 15, 8098 11 of 17

Energies 2022, 15, x FOR PEER REVIEW 11 of 17 
 

 

tested the model with 100 pairs of data with dimensions of 128 × 128 × 128 (simulated data 

not involved in training). The models were evaluated using two evaluation criteria, Acc 

and R. The comparison results are presented in Table 2. The training and testing accura-

cies and recall of SE-UNet were higher than those of UNet. The curves of the two evalua-

tion metrics with epoch changes for the network and UNet are shown in Figures 8 and 9, 

respectively. Comparing Figures 8 and 9, we found that the accuracy curve of the model 

generated by the network changed smoothly, the model converged stably, the recall of the 

training set of the model was nearly one, and the recall of the test set changed smoothly. 

The test accuracy fluctuated severely in the accuracy curve of the model generated by the 

UNet network, indicating that the model generalization ability was weaker than that of 

the SE-UNet model. 

Table 2. Table of quantitative analysis of the UNet and SE-UNet networks. 

Evaluation Metrics UNet SE-UNet 

Train_acc (%) 95.61 97.52 

Test_acc (%) 93.25 95.23 

Train_recall (%) 98.19 98.25 

Test_recall (%) 95.36 97.31 

 

Figure 8. Acc and R evaluation index curves of SE-UNet. (a) Acc; (b) R. 

 

Figure 9. Acc and R evaluation index curves of UNet. (a) Acc; (b) R. 

Random Gaussian noise with various weights was added to the simulated data to 

verify the noise immunity of the SE-UNet model. The signal-to-noise ratio was calculated 

using Equation (10). Figure 10a shows the original seismic data and fault labels, and Fig-

ure 10b–f shows the seismic data and fault prediction results with signal-to-noise ratios of 

20 db, 10 db, 7 db, 6 db, and 5 db, respectively. When the signal-to-noise ratio was higher 

than 6, the prediction results of the network model were consistent with the fault labels, 

and there was no missed or incorrect recognition. When the signal-to-noise ratio was 

lower than 6, the noise slightly interfered with the network model trial calculation, and in 

the time slice direction, there was missed recognition and no wrong recognition. Overall, 

the network model in this study exhibited strong noise immunity. 

Figure 8. Acc and R evaluation index curves of SE-UNet. (a) Acc; (b) R.

Energies 2022, 15, x FOR PEER REVIEW 11 of 17 
 

 

tested the model with 100 pairs of data with dimensions of 128 × 128 × 128 (simulated data 

not involved in training). The models were evaluated using two evaluation criteria, Acc 

and R. The comparison results are presented in Table 2. The training and testing accura-

cies and recall of SE-UNet were higher than those of UNet. The curves of the two evalua-

tion metrics with epoch changes for the network and UNet are shown in Figures 8 and 9, 

respectively. Comparing Figures 8 and 9, we found that the accuracy curve of the model 

generated by the network changed smoothly, the model converged stably, the recall of the 

training set of the model was nearly one, and the recall of the test set changed smoothly. 

The test accuracy fluctuated severely in the accuracy curve of the model generated by the 

UNet network, indicating that the model generalization ability was weaker than that of 

the SE-UNet model. 

Table 2. Table of quantitative analysis of the UNet and SE-UNet networks. 

Evaluation Metrics UNet SE-UNet 

Train_acc (%) 95.61 97.52 

Test_acc (%) 93.25 95.23 

Train_recall (%) 98.19 98.25 

Test_recall (%) 95.36 97.31 

 

Figure 8. Acc and R evaluation index curves of SE-UNet. (a) Acc; (b) R. 

 

Figure 9. Acc and R evaluation index curves of UNet. (a) Acc; (b) R. 

Random Gaussian noise with various weights was added to the simulated data to 

verify the noise immunity of the SE-UNet model. The signal-to-noise ratio was calculated 

using Equation (10). Figure 10a shows the original seismic data and fault labels, and Fig-

ure 10b–f shows the seismic data and fault prediction results with signal-to-noise ratios of 

20 db, 10 db, 7 db, 6 db, and 5 db, respectively. When the signal-to-noise ratio was higher 

than 6, the prediction results of the network model were consistent with the fault labels, 

and there was no missed or incorrect recognition. When the signal-to-noise ratio was 

lower than 6, the noise slightly interfered with the network model trial calculation, and in 

the time slice direction, there was missed recognition and no wrong recognition. Overall, 

the network model in this study exhibited strong noise immunity. 
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Random Gaussian noise with various weights was added to the simulated data to
verify the noise immunity of the SE-UNet model. The signal-to-noise ratio was calculated
using Equation (10). Figure 10a shows the original seismic data and fault labels, and
Figure 10b–f shows the seismic data and fault prediction results with signal-to-noise ratios
of 20 db, 10 db, 7 db, 6 db, and 5 db, respectively. When the signal-to-noise ratio was higher
than 6, the prediction results of the network model were consistent with the fault labels,
and there was no missed or incorrect recognition. When the signal-to-noise ratio was lower
than 6, the noise slightly interfered with the network model trial calculation, and in the
time slice direction, there was missed recognition and no wrong recognition. Overall, the
network model in this study exhibited strong noise immunity.

SSNR =
n

yn − y
× Max(y)√

2 × 1
N × y

(10)

where SSNR is the signal-to-noise ratio, y is the seismic data without noise, yn is the seismic
data with random noise, n is the random noise data, and N is the sampling point for the
seismic data.
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Figure 10. Results of SE-UNet model predicting different SNR data. (a) Noise-free simulated seismic
data and fault labels; (b) simulated seismic data and fault prediction results with SNR of 20 db;
(c) simulated seismic data and fault prediction results with SNR of 10 db; (d) simulated seismic data
and fault prediction results with SNR of 7 db; (e) simulated seismic data and fault prediction results
with SNR of 6 db; (f) simulated seismic data and fault prediction results with SNR of 5 db.

4. Applications

We used the forward and migration methods to generate 200 × 400 × 128 simulated
data with low-grade faults. We applied the network model to the simulated data and
cleaned the predicted results. The value of fault probability was set higher than 0.7, and the
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prediction effect is shown in Figure 11. Figure 11a shows the profile of the simulated data
inline, where the crossline direction (0–200) had more fault disturbance factors, and the
stratigraphy was more blurred. Figure 11b shows the fault labels and Figure 11c,d shows
the prediction results of the UNet and SE-UNet models, respectively. The comparison
shows that both UNet and SE-UNet could accurately recognize fault locations, but the
continuity of the fault results recognized by SE-UNet was better at crossline 0–200.
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Figure 11. Prediction renderings of UNet model and SE-UNet model. (a) Seismic profile of Inline10;
(b) fault labels corresponding to the Inline10seismic profile; (c) UNet recognition; (d) SE-UNet recognition.

To validate the generalization ability of the SE-UNet model, the network model
obtained from the network training in this study was applied to publicly available Nether-
lands F3 3D seismic data acquired offshore in the North Sea, with well-developed regional
faults and large data volumes. Therefore, this study intercepted a part of the application:
the selected data crossline ranged from 100 to 611, inline ranged from 300 to 683, time
slice ranged from 1337 to 1848 ms, and the sampling interval was 4 ms. The prediction
results were data-cleaned, and the threshold value of the fault probability was set higher
than 0.7 for comparison with the UNet model. Figure 12a–d shows the 3D display of
the real data and the results of the manually interpreted faults, the UNet network model
recognizing the real data, and the network model recognizing the real data, respectively.
The locations marked in yellow in Figure 12b are large faults and the locations marked
in red are low-grade faults. Comparing Figure 12c,d shows that the SE-UNet model can
accurately recognize the location of high-grade and low-grade faults, that the recognized
faults were more continuous, and that more faults could be recognized in the inline. A
detailed comparison with UNet is given in Section 5.
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fault results; (c) UNet recognition; (d) SE-UNet recognition.

5. Discussion

The main contribution of this study is that we constructed the SE-UNet structure
that can efficiently allocate attention resources based on the codec network structure. In
Section 3.4, we quantitatively analyzed the SE-UNet and UNet networks according to the
evaluation criteria, and concluded that the SE-UNet network has more advantages. In this
section, we discuss the identification results of SE-UNet and UNet, comparing the applica-
tion effects of the two models on real data in three directions, as shown in Figures 13–15.
Figure 13a shows the seismic profile of the Inline200 with obvious characteristics of high-
grade and low-grade faults. Figure 13b,c shows the recognition effects of the UNet and
SE-UNet models, respectively. The locations indicated by the red arrows in Figure 13b,c
are invisibility low-grade faults, in which the UNet model failed to recognize the results
and they appeared to be missed, but the network model in this study was able to correctly
recognize them. The positions indicated by green arrows in Figure 13b are continuous in the
seismic event, and the UNet model misrecognized them as faults. The faults at the positions
of the blue boxes in Figure 13b,c had obvious characteristics, and the prediction results of
the network model in this study had better continuity compared with the UNet. Figure 14a
shows the profile of the Crossline400, and Figure 14b,c shows the prediction results of the
UNet and network models in this study, respectively. The location is indicated by the green
arrow in Figure 14b, where the UNet model misrecognized and predicted non-faults as
faults. The section tendency of the upper part of the position indicated by the red arrow
in Figure 14b does not match the overall section tendency, the UNet model appeared to
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be confusingly recognized, and the section tendency of this position in Figure 14c was
correctly predicted. Comparing the positions of the blue boxes in Figure 14b, c, the fault
results predicted by the network model in this study had better continuity. Figure 15 shows
the plan view of the time slice of 1437 ms and the prediction results of the two models. In
the time slice direction, the prediction results of the two network models were similar, and
both had suitable continuity. Overall, compared with UNet, SE-UNet could reduce the phe-
nomenon of fault misprediction and missed prediction, the continuity of fault prediction
results was better, and the recognition of low-grade faults was more advantageous.
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Figure 13. Inline200 profile fault prediction results. (a) Seismic profile of Inline200; (b) prediction
results of Unlet model; (c) prediction results of SE-UNet model.
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Figure 14. Fault prediction results of Crossline400 longitudinal survey line. (a) Seismic profile of
Crossline400; (b) prediction results of UNet model; (c) prediction results of SE-UNet model.
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Figure 15. The 1437 ms time slice fault prediction results. (a) Time slice; (b) prediction results of
UNet model; (c) prediction results of SE-UNet model.
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6. Conclusions

Traditional low-grade recognition methods are time-consuming and inaccurate. To
solve these problems, we constructed an SE-UNet, which consists of four parts: an encoder,
decoder, skip connection, and SE module. The encoder extracts the feature information
of the training data, the skip connection preserves the information lost in the data during
down-sampling, the decoder serves to recover the resolution of the data, and the SE module
can select the more vital features from ample feature information through self-learning
and assign higher weights to them, which improves the expressiveness of the network.
The 500 pairs of simulated seismic data and the corresponding fault labels were generated
by Wu’s method, and the network model was trained, validated, and trialed. Finally, the
network model was applied to the real data with high recognition results. The following
insights were gleaned in this work.

(1) Fault recognition with SE-UNet network can effectively achieve the recognition of
low-grade faults. The test accuracy of the network model was improved to 95.23% and the
recall of the test data was improved to 97.31%. The recognition efficiency was also signifi-
cantly improved, as it took only 20 s to recognize data with dimensions of 128 × 384 × 512.
Compared with UNet, SE-UNet can recognize faults more accurately and effectively, and
the fault continuity is higher, particularly in the recognition of low-grade faults.

(2) The sample set in this paper is the simulated data, and there are some differences
from the real data. In future research, real data and labels can be added to the sample
library to improve the authenticity and diversity of the sample set.

(3) In the application of real working area, the real data contain some features that the
network has not learned, which leads to misrecognition or missing recognition. In future
research, unsupervised transfer learning can be used to input the real data into the network
as the target domain to achieve more accurate prediction of the real data.
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