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Abstract: The dynamic of droplet spreading on a free-slip surface was studied experimentally
and numerically, with particularly interest in the impacts under relatively small droplet inertias
(We ≤ 30). Our experimental results and numerical predictions of dimensionless droplet maximum
spreading diameter βmax agree well with those of Wildeman et al.’s widely-used model at We > 30.
The “1/2 rule” (i.e., approximately one half of the initial kinetic energy Ek0 finally transferred into
surface energy) was found to break down at small Weber numbers (We ≤ 30) and droplet height
is non-negligible when the energy conservation approach is employed to estimate βmax. As We
increases, surface energy and kinetic energy alternately dominates the energy budget. When the
initial kinetic energy is comparable to the initial surface energy, competition between surface energy
and kinetic energy finally results in the non-monotonic energy budget. In this case, gas viscous
dissipation contributes the majority of the dissipated energy under relatively large Reynolds numbers.
A practical model for estimating βmax under small Weber numbers (We ≤ 30) was proposed by
accounting for the influence of impact parameters on the energy budget and the droplet height. Good
agreement was found between our model predictions and previous experiments.

Keywords: fuel droplet spreading; small weber numbers; maximum spreading diameter; energy
dissipation; modeling

1. Introduction

Droplet impact on a solid surface is regularly observed in many nature and industrial
process, such as raindrops hitting soil [1,2], petrochemical processes [3,4], ice resisting [2,5],
painting [6], fog harvesting [7] and spray combustion in various engines [8–10]. As for
port-injection gasoline engines, hydrocarbon fuel droplet impacts on the intake port and
intake valves tend to form an oil film and therefore facilitate fuel evaporation; while for
direct-ignition engines, liquid fuel is more likely to impact the combustion chamber due to
the increasingly high fuel injection pressure [11]. It has been recognized that spray/wall
interaction characteristics substantially influence mixture formation and subsequent com-
bustion, and therefore influences engine efficiency and emission. One of the most important
issues of spray/wall interaction is the dynamic of a droplet impacting a solid surface, which
is usually adopted to estimate the wall film performance [12–15].

As a fundamental phenomenon in the investigation of spray/wall interactions, the
dynamic of a droplet impacting a solid surface has been studied for decades. Previous
investigations indicate that the impacting dynamic is controlled by the impact Weber
number We = ρl D0U2

0 /σl , and the Reynolds number Re = ρl D0U0/µl . In some cases, the
Reynolds number can be replaced by the Ohnesorge number Oh = µl/

√
ρlσl D0, since

Oh =
√

We/Re. Where D0 is the droplet initial diameter, U0 is the impact velocity, and ρl ,
µl , and σl , are the droplet density, viscosity and surface tension, respectively.

By employing dimensionless parameters, transitions between different impacting
outcomes such as spreading, bouncing and splashing can be quantified. For droplet
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spreading, one of the most important factors is the dimensionless droplet maximum
spreading diameter βmax, which is defined as the ratio of droplet maximum spreading
diameter Dm over its initial diameter D0, and which yields βmax = Dmax/D0. Quantifying
βmax is useful in many practical applications, such as estimating oil film characteristics [12].

A considerable number of models have been proposed for βmax quantifying, which
have been reviewed in some excellent literature [16–18]. Normally, the existing models
for predicting βmax possess three different categories, namely, scaling law [11,16,19–29]
momentum conservation [30–33] and energy conservation [17,34–41]. For viscous fluid
such as liquid hydrocarbon fuel, the contribution of viscous dissipation on energy conser-
vation is non-negligible therefore an energy conservation approach tends to predict more
accurate βmax. In this case, accurately predicting the viscous dissipation rate, and hence the
dissipated kinetic energy, is essential for predicting droplet dynamic characteristics.

To account for viscous dissipation during spreading, Wildeman et al. proposed the
“1/2 rule” which indicates that around one half of the kinetic energy finally transforms
into surface energy for droplet spreading on an ideal free-slip surface under relatively
large Weber numbers (We > 30) and Reynolds numbers. The “1/2 rule” allows a com-
plete theoretical solution for βmax prediction. The uniform droplet deformation under
relatively large We may be the main reason for uniform kinetic energy dissipation and
the asymptotically accurate “pizza-shaped” deformation for We > 30 indicates droplet
inertia dominates droplet internal flow, almost regardless of Re. In this case, liquid viscosity
slightly influences droplet spreading dynamic. In spite of these advances in understanding
droplet spreading dynamic under large Weber numbers (We > 30), it is surprising to find
that only a few works have been conducted for small Weber numbers (We ≤ 30).

It is recognized that, in the combustion chamber of modern energy conversion devices
such as an internal combustion engine, the increasingly higher ambient pressure together
with the complex air motion, substantially reduces the inertia of the fuel droplets and im-
plies that droplets are more likely to impact the chamber edge at small Weber numbers [42].
To investigate droplet spreading under relatively small We, Qin et al. [43] experimentally
studied the dynamic of a glycerol-water blend droplet impact on a near-smooth stain-
less steel surface. They observed the non-monotonic effect of liquid viscosity on βmax at
We = 13 and 30. Specifically, an increase of liquid viscosity promotes energy dissipation
under relatively small Re cases, however, viscosity plays an opposite role under relatively
large Re conditions. Subsequently, Zhang and Zhang [44] numerically simulated Qin et al.’s
experiments, numerically confirmed the non-monotonic tendency of βmax and attributed it
to the dual role of liquid viscosity under small Weber numbers (We ≤ 30), where droplet
deformation is non-uniform.

It has been recognized that droplet shapes at maximum deformation instant τmax
will change from “puddle-shaped” to “pizza-shaped” when droplet inertia increases from
We = 3 to We = 30. Most of the previous studies have focused on modeling βmax under
large We, where droplet deformation appears as uniform “pizza-shaped” styles and hence
energy dissipation is We-independent. In terms of the complex droplet deformation and
energy dissipation characteristics, modeling βmax under relatively small We has been
investigated insufficiently [45,46].

Based on the discussion stated above, the present study aims to experimentally and
numerically investigate the impacting dynamics and model βmax under relatively small
Weber numbers (We ≤ 30). Following our previous numerical works [44,47,48], a well-
validated front tracking method (referred to as FTM hereinafter) was employed to conduct
the numerical simulations associated with our experiments. In the following text, we shall
first introduce our experimental and numerical approach in Section 2, followed by the
discussion of spreading dynamic, particularly for small Weber numbers. Subsequently, the
correlation between impact parameter and βmax will be discussed. Finally, the conclusion
will be presented in the last section.
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2. Experimental Setup and Numerical Methodology
2.1. Experimental Setup

Figure 1 shows the schematic of our experimental apparatus. A Gyger Smld 300 G
droplet generator (1) was mounted on the top side of the constant volume chamber
(2), which was filled with atmospheric pressure nitrogen. Nitrogen was initially stored
in the cylinder and entered into the chamber through the regulating valve (3). Liquid
fluid was deposited in the liquid tank (4) and driven by high pressure nitrogen to form
the droplet. The droplet impact on the solid surface (5) process was recorded by a
Photron Fastcam Nova S12 high-speed camera (6) with 100,000 fps, and an LED lamp
(7) was used for backlight. Specifically, the angle between camera and the solid surface
was set as 15◦ to better display the result and all measured quantities in the vertical
direction, such as height and speed, were conducted with a cosine correction of 15◦.
For the repeatability of the experiments, the sphericity of the droplet can be quantified
by S = min(DH/DV , DV/DH), where DH and DV are the droplet sizes measured in the
horizontal and vertical directions respectively (DH is the value after a cosine correction
of 15◦). S is 1.0± 0.05, indicating a satisfactory and reproducible droplet sphericity.
Meanwhile, a typical droplet initial diameter is 2.75 × 10−4 m and the typical Oh is
around 0.007. As for uncertainty estimation, the maximum error in the estimated droplet
diameter is approximately 1 pixel (equivalent to 6.16 µm). Therefore, the uncertainty
in D0 and U0 is less than 2.5%. As a result, the relative error of the Weber number
∆We/We = ∆D0/D0 + 2∆U0/U0 is less than 7.5%. The distance between the outlet of the
droplet generator to the solid surface is around 50 mm and this distance can vary to avoid
droplet vibration. The droplet has a non-zero and variable initial velocity at the outlet of
the droplet generator. A self-developed program based on video-image processing has
been used to realize droplet recognition, droplet diameter, velocity extraction and the
impact parameters calculation during the spreading dynamics. Before each experiment, a
smooth stainless-steel surface was cleaned carefully three times with anhydrous ethanol
until the surface was free of any stains and of any scratches on the surface. When
performing the experiment, the surface was placed directly below the outlet of the
droplet generator, high-speed camera trigger mode was set to end and droplet generator
‘peak-hold’ related parameters were set at the same time. The high-speed camera was
triggered manually to start recording images and the droplet generator was triggered to
produce droplets. The recording image was stopped as soon as any droplets impacted
the surface. The surface can be rotated to move the area that has not been impacted by
droplets underneath the outlet for the next experiment. When the surface was full of
water stains, the clean surface was replaced and the experiment was repeated.
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Figure 1. (a) Schematic diagram of the experimental setup for the droplet impact at elevated ambient
pressures and (b) sectional view of the pressure vessel where the experimental equipment or pipeline
corresponded to the serial number. (1) Droplet generator, (2) constant volume chamber, (3) regulating
valve, (4) liquid tank, (5) solid surface, (6) high-speed camera, and (7) LED lamp. In (a), the orange
arrow represents the injection of high-pressure compressed nitrogen into the chamber and the blue
arrow represents the liquid supply into droplet generator respectively. The blue solid line represents
the path for electrical signals and data.

2.2. Numerical Methodology

The present numerical study was conducted by adopting the FTM, which was origi-
nally developed by Unverdi et al. [49] and Tryggvason et al. [50] to simulate droplet impacts
on a free-slip surface for incompressible two-phase flow. A second-order centered differ-
ence scheme for the spatial variables and an explicit first order time integration method
was employed to solve the governing equations of both liquid and gas phases, given by

∇·U = 0 (1)

∂(ρU)

∂t
+∇·(ρUU) = −∇p +∇·µ

[
∇U + (∇U)T

]
− σ

∫
κnδ
(
x− xf

)
dA (2)

where U is the velocity vector, ρ is the density, p is the pressure, µ is the viscosity, σ is the
surface tension coefficient, κ is twice the mean curvature of local field, n is the unit vector
outwardly normal to the local front. The term δ is the constructed three-dimensional δ
function which represents the singular force, surface tension, over the phase interface, x is
the point at which the equation is evaluated, and xf is a point on the front.

The FTM solves a single set of conservation equations with appropriate interface
terms in the whole field with a Eulerian coordinate grid and tracks liquid–gas interfaces
using a Lagrangian approach. Figure 2 shows the computational domain of the current
numerical simulation. In the cylindrical coordinate, z-axis is structured by the droplet
initial velocity normal to the surface, while the r-axis is perpendicular to the droplet initial
velocity. Axisymmetric boundary condition is specified for the z-axis, while free-slip
boundary conditions are specified to all of the other boundaries including the impacting
solid surface.

The computational domain of width 10R0 and height 5R0 is discretized by a uniform
orthogonal mesh with 440 × 880 cells, which means each unit length contains 88 grid
points. Grid-dependence of the present numerical approach has been fully checked in
many previous works in which FTM is not sensitive to the grid size because the liquid–gas
interface is tracked by the Lagrangian particles rather than computational cell. Additionally,
the present cell size has been validated in one of the author’s previous publications, where
simulations with the same cell size have been proved to successfully and accurately solve
the droplet problems. It should be noted that the droplet impact problem is always involved
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in complex gas film problems. In order to simplify the present simulation, we only focus
on the limiting condition of droplet spread with a gas film throughout the whole process.
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Governing equations are nondimensionalized by the droplet radius R0 = D0/2, initial
velocity U0, and droplet density ρl . Time is normalized by using τ = t·U0/D0, where t is
the real time. In addition, several previous studies [44,47,48] have confirmed that gas-liquid
density ratio ρg/ρl and viscosity ratio µg/µl are two or three orders of magnitude smaller
than unity. Therefore, their effects on droplet deformation and viscous dissipation can
be neglected, where ρg and µg are gas density and viscosity, respectively. Meanwhile the
droplet initial kinetic energy is Ek0 = πρV2

0 D3
0/12 and the droplet initial surface energy is

Es0 = σπD2
0 .

3. Results and Discussion
3.1. Comparison between Experimental Results and Numerical Predictions

The FTM adopted in the present study has been sufficiently applied and validated in
many previous studies [44,47,48,51–58] on droplet dynamic problems. For a brief summary,
Pan et al. [54] and Zhang and Zhang [48] numerically simulated the binary droplet collision
dynamics using FTM, numerical predictions show good agreement with experimental
results. Subsequently, one of the authors compared their numerical result of droplet
spreading on a free-slip surface to Pan et al.’s experiment and very good agreement in
terms of instantaneous droplet shape was observed, which again demonstrates that the
present numerical method can be used to accurately predict the evolution of droplet
deformation during impacting. Additionally, the present numerical approach successfully
reproduced, albeit qualitatively, the experimental observation of Qin et al. [43] where βmax
varies non-monotonically with the liquid viscosity (characterized by the Oh).

To further validate the numerical calculation, ultra-pure water droplet impacts on
a smooth surface were achieved by our experimental system and numerical calculation,
respectively. For the mentioned characteristics of the surface used in the current experiment
in Table 1, the droplet corresponds to spreading on a partial slip boundary surface and
with an advancing contact angle between 90◦ and 180◦. For our current experimental
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work, our numerical calculation employs a simplified boundary condition where partial
slip boundary and a fixed contact angle 180◦ are used instead of advancing contact angles
between 90◦ and 180◦ as in the experiments.

Figure 3 shows the time sequences of droplet spreading process for both experimental
and numerical results under four different conditions. For spreading at We = 30 and
Re = 750, as shown in Figure 3a, τ = 0 indicates the time instant when the droplet just
contacts the surface. As time develops to τ = 0.224, a rim-shaped bulge is squeezed out
due to sufficiently large initial kinetic energy, which is 2.5-times the initial surface energy.
Subsequently, spreading begins and the rim moves outwardly then reaches its maximum
spreading at τ = 1.234, when the droplet deforms to a thin liquid film with a thicker annular
rim with a pizza-like shape. A similar phenomenon also can be seen for We = 21 and
Re = 612, where the initial kinetic energy is 1.75-times the initial surface energy, as shown
in Figure 3b. However, the rim thickness seems higher than that of the We = 30 case. With
impact, inertia degenerates to We = 10, where initial kinetic energy is weaker than that
of surface energy. Droplet at the maximum spread time instant of τ = 0.62 hardly keeps
its pizza-like shape, but tends to transfer into a donut-like shape, as shown in Figure 3c.
The donut-like shape droplet becomes more prominent in the case of the relatively smaller
Weber number, as shown in Figure 3d. When compared to the numerical predictions,
regardless of some discrepancies to be discussed later, good agreement can be observed
for the geometric features in which the spherical droplet turns concave and the rim is
squeezed out.
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in non-dimensional time τ under (a) We = 30 and Re = 750, (b) We = 21 and Re = 612, (c) We = 10
and Re = 421, (d) We = 5 and Re = 281 under atmospheric pressure for experimental and numerical
results. The red dash line denotes the impact horizontal line.
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More supporting evidence for validation is illustrated in Figure 4 where droplet
non-dimensional diameter D/D0 varied with non-dimensional time τ. Our numerical
predictions agree very well with the experimental results under the condition of We = 30
and Re = 750, as shown in Figure 4a, but some discrepancies in the earlier stage of our
numerical simulation tends to underestimate the non-dimensional diameter. The moderate
difference of the droplet shape in Figure 3b–d can be understood by recognizing that the
simplified boundary conditions for the numerical calculation cause the slight deviations
corresponding to the real physics for droplet spreading. Beyond this, numerical predictions
again coincide with the experimental results. Consequently, it is confirmed that the present
numerical approach can accurately predict the evolution of droplet spreading during
impacting a free-slip surface.
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3.2. Droplet Spreading under Relatively Large Weber Numbers (We > 30)

To further validate our numerical simulation, we first simulated droplet spread on the
free-slip surface under relatively large Weber numbers, the results were compared to the
widely-used model of Wildeman et al. [40] model, given by

βmax =

√
4

1− cos θ

(
We
24

+ 1
)

(3)
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which is estimated based on the energy conservation approach where the initial kinetic
energy Ek0 (Ek0 = πρV2

0 D3
0/12) is equal to the sum of dissipation energy Ed, left-over

kinetic energy Ek and surface energy increment ∆Es at max deformation instant τmax, yields

Ek0 = Ed + Ek + ∆Es (4)

Our numerical simulation considers the limiting condition to be droplet spread with
a gas film, which is progressively close to the contact angle θ = 180

◦
. Therefore, Figure 5

shows the comparison between our present experiments (denoted by the stars), numerical
simulations (denoted by the dots) and the prediction of Wildeman et al.’s model (denoted
by the solid lines) for βmax under relatively large Weber numbers (We ≥ 30). Moreover, the
experimental results of Tran et al. [27] are also plotted in this figure for a comparison. In
addition, the experimental data in current work and cited in predecessors are summarized
in Table 1.
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Figure 5. Comparison between the present experimental results (denoted by the stars), Tran et al.’s
experimental results (denoted by the pentagon symbols) [27] and numerical predictions (denoted
by the solid symbols) and the Wildeman et al.’s model (denoted by the solid line) for dimensionless
droplet maximum spreading diameter βmax under large Weber numbers (We ≥ 30 ).

Table 1. Summary of cited and current experiment data.

Cited from Impact Parameter Experimental Detail Surface Property and
Contact Angle θ

Tran et al. [27] We = 4.95 ∼ 29.2
Milli-Q water (1 atm air)

D0 = 1.7 and 2.2 mm
(typically)

Leidenfrost droplet
(Gentle film boiling)

θ = 180◦

Pan et al. [54] We = 2.25 and 2.27 Tetradecane (1 atm air)
D0 = 107.2 and 170.6 µm

head-on equivalent
binary droplet collision

θ = 180◦

Tang et al. [11] We = 1.04 ∼ 3.37 Tetradecane (1 atm air)
D0 = 120 µm (typically)

head-on equivalent
binary droplet collision

θ = 180◦

Current
experiment

We = 5, Re = 281
We = 10, Re = 421
We = 21, Re = 612
We = 30, Re = 750

Ultra-pure water (1 atm air)
density ρl = 998 kg/m3

viscosity µl = 1.005 mPa·s
surface tension

σ = 71.99 mN/m
D0 = 275 µm (typically)

Stainless-steel
Surface roughness

Ra = 0.1 µm
Static contact angle

θs = 50◦
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Very good agreement again appears between our numerical results and the predictions
of Wildeman et al. Our predictions show that βmax is generally Re-independent for relatively
large Reynolds numbers (Re ≥ 500), once again, consistent with the tendencies of previous
investigations [40,42].

Since Wildeman et al.’s model is estimated according to the energy conservation ap-
proach associated with the “1/2 rule”, we subsequently show the energy budget in Figure 6,
in which all the energies were normalized by the initial kinetic energy Ek0 and therefore the
sum of Ek, Ed and ∆Es is the unity. To further investigate the viscous dissipation charac-
teristics, we counted the energy dissipation in both liquid phase (denoted by Edl) and gas
phase (denoted by Edg), and therefore Ed = Edl + Edg. The “1/2 rule” is also indicated in
each graph.
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Figure 6. Energy budget of droplet spread on the free-slip surface under We ≥ 30. The dash line
indicates the “1/2 rule”. (a) the evolution of four different energies during droplet spreading process
and (b) shows the energy budget at τmax for various droplet inertias and Reynolds numbers.

Figure 6a shows the evolution of four different energies during the droplet spreading
process, while Figure 6b shows the energy budget at τmax for various droplet inertias and
Reynolds numbers. In this case we defined τ = 0 as the time instant when the droplet
just contracts the surface. The initially non-zero Ed at τ = 0, shown in Figure 6a, can be
attributed to the slight deformation together with the droplet moving-induced gas motion,
and results in the viscous dissipation in either liquid or gas phases before droplet-wall
contracting. The pre-dissipated energy is around 3% of the initial kinetic energy Ek0 and
slightly influences the energy budget, so that it can therefore be ignored in the present study.
For energy budget shown in Figure 6b, all the predictions generally follow the “1/2 rule”.
Although viscous dissipation in the liquid phase contributes more to Ed, viscous dissipation
in the gas phase, i.e., Edg still cannot be ignored.

It is recognized that energy dissipation originates from the viscous dissipation during
droplet deformation, therefore droplet spread time scale plays a relatively considerable role
in influencing βmax. Wildeman et al. assumed that τmax is proportional to the βmax and sug-
gested τmax = βmax − 1 for droplet spread on both free- and no-slip surfaces. Consequently,
the correlation between βmax and τm for our predictions under large Weber numbers
is shown in Figure 7. It is obvious that τmax and βmax meet the quantitative relationship
(τmax = βmax− 1) quite well, and hence confirms the accuracy of our numerical simulation.



Energies 2022, 15, 8181 10 of 21
Energies 2022, 15, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 7. Spreading time 𝜏௫ versus maximum spreading diameter 𝛽௫ for simulations with 𝑊𝑒 ≥ 30. 

3.3. Droplet Spreading under Relatively Small Weber Numbers (𝑊𝑒 ≤ 30) 
Figure 8 shows the prediction of 𝛽௫  under small Weber numbers (𝑊𝑒 ≤ 30). 

Again, the solid line indicates Wildeman et al.’s model, while the experimental results of 
Pan et al., Tang et al., Tran et al. [27] and the present case are also shown in the figure for 
a comparison. 

 
Figure 8. Comparison between the present experimental results (denoted by the stars), Tang et al.’s 
experimental results (denoted by the pentagram symbols) [11], Tran et al.’s experimental results 
(denoted by the pentagon symbols) [27], Pan et al.’s experimental results (denoted by the hexagon 
symbols) [54], numerical predictions (denoted by the solid symbols) and the Wildeman et al.’s 
model [40] (denoted by the solid line) for dimensionless droplet maximum spreading diameter 𝛽௫ under small Weber numbers (𝑊𝑒 ≤ 30). 

It is seen for both experimental results and the numerical predictions that 𝛽௫ 
slightly deviates from Wildeman et al.’s model as droplet inertia decreases from 𝑊𝑒 = 30 
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Figure 7. Spreading time τmax versus maximum spreading diameter βmax for simulations with
We ≥ 30.

3.3. Droplet Spreading under Relatively Small Weber Numbers (We ≤ 30)

Figure 8 shows the prediction of βmax under small Weber numbers (We ≤ 30). Again,
the solid line indicates Wildeman et al.’s model, while the experimental results of Pan
et al., Tang et al., Tran et al. [27] and the present case are also shown in the figure for
a comparison.
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Figure 8. Comparison between the present experimental results (denoted by the stars), Tang et al.’s
experimental results (denoted by the pentagram symbols) [11], Tran et al.’s experimental results
(denoted by the pentagon symbols) [27], Pan et al.’s experimental results (denoted by the hexagon
symbols) [54], numerical predictions (denoted by the solid symbols) and the Wildeman et al.’s
model [40] (denoted by the solid line) for dimensionless droplet maximum spreading diameter βmax

under small Weber numbers (We ≤ 30).

It is seen for both experimental results and the numerical predictions that βmax slightly
deviates from Wildeman et al.’s model as droplet inertia decreases from We = 30 to
around We = 12, below which the predicted βmax substantially deviates from the model of
Wildeman et al. This deflection can be attributed to the breakdown of the “1/2 rule” and
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the dominant factor of energy budget transfer from kinetic energy to the surface energy,
to be elucidated in the following text. It should be noted that βmax is determined by the
energy conversion during droplet spreading. For Wildeman et al.’s model, there are two
important hypotheses i.e., around one half of the initial kinetic energy transfers into surface
energy and droplet shape at τm can be regarded as a “pizza-shaped” disk, whose thickness
can be ignored when compared to the spreading diameter.

To investigate the reason why droplet spreading under small Weber numbers deviates
from the model of Wildeman et al., we show the energy budget for We ≤ 30 in Figure 9.
It is clearly seen that the “1/2 rule” breaks down and ∆Es increases with Weber number
decreasing, indicating an We-dependent energy budget. Normally, dissipation energy (sum
of Edg and Edl) moderately decreases as We decreases. ∆Es that is generally larger than
1/2 indicates that surface energy may play a dominant role in droplet deformation during
droplet spreading [44].
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An interesting observation for different We cases is that ∆Es decreases monotonically
as Re increases when the We < 12; however, it changes non-monotonically when the
12 ≤We ≤ 30. This observation corresponds to the previous experimental observation of
Qin et al. and the numerical simulation of our previous investigation [44], in which they
attributed the non-monotonic trend as the dual role of liquid viscosity under intermediate
droplet inertias, however, the underlying physics have not been fully explained.

To further explore the dual role of liquid viscosity, we first counted the energy dissipa-
tion in both liquid (denoted by Edl) and gas phase (denoted by Edg). In case of the droplet
spreading under intermediate Weber numbers, such as We = 30, Edl first decreases then
moderately increases as Re increases. However, Edg tends to keep steady under relatively
large Reynolds numbers then increases substantially as Re further increases.

To unravel the underlying physics responsible for the observation state above, we
respectively calculated the local viscous dissipation rate in liquid and gas phases as

Φ = µ f
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where,
.
γ is the strain rate tensor, u is the velocity component in the r–direction, w the

velocity component in z–direction. Subsequently, the overall viscous dissipation rate (VDR)
was obtained by integrating the local viscous dissipation rate Φ over the computational
domain, while VDR in liquid phase and gas phase were calculated by integrating Φ over
the droplet and the ambient gas.
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Figure 10 shows the time-dependent viscous dissipation rate (VDR) for droplet impacts
under two different Weber numbers. For spreading with relatively small inertia (We = 9),
as shown in Figure 10a–c, the lowest Reynolds number (Re = 125) generally produces
highest overall VDR, most of which is contributed by the liquid viscous dissipation. As the
Reynolds number increases to Re = 750, overall VDR monotonically decreases because the
increase of Re actually decreases liquid viscosity (characterized by the Ohnesorge number
Oh =

√
We/Re). As Reynolds number further increases to Re = 1000, VDR in the earlier

stage decreases, however, it produces a substantial “bulge” as time develops, which results
in the VDR in turn being larger than smaller Re cases (Re = 375− 750) in an appropriate
time period. However, this reversion is insufficiently strong to influence the energy dissipa-
tion tendency. The “bulge” can be attributed to the dual role of liquid viscosity, which has
been primarily discussed in the previous investigations [42,44]. Although the majority of
the VDR is contributed by the liquid phase, the “bulge” can also be seen in the gas phases,
indicating that the dual role of liquid viscosity influences energy dissipation in both liquid
and gas phase.
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Figure 10. Figure 10. Viscous dissipation rate for droplet spread under different Re cases at (a–c)
We = 9 and (e–f) We = 30.

Figure 10d,e accounts for We = 30 that overall VDR decreases as Reynolds number
increases from Re = 125 to 500 because a decrease in liquid viscosity reduces viscous
dissipation. In this case viscous dissipation in the liquid phase contributes the majority of
the overall VDR. However, as Re continually increases to 750 and finally 1000, the dual
role of liquid viscosity is sufficiently strong to influence an energy dissipation tendency
in which overall VDR substantially increases. The contribution of gas viscous dissipation
gradually increases and in turn dominates the energy dissipation at Re = 1000, and
therefore produces a non-monotonic energy budget, as shown in Figure 9.
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To further show the flow motion and viscous dissipation characteristics in both liquid
and gas phases, we integrated the local viscous dissipation rate Φ as

VDR(r) =
h∫

0

Φdz (6)

where h is the computational domain height (as shown in Figure 2). Figure 11 compares
the VDR(r) (on the left Y-axis) and droplet shape (denoted by interface on the right Y-axis)
for We = 9 and 30 cases at the characteristic time instant τ1 (indicated in Figure 10).
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Figure 11. Comparison of VDR(r) for droplet spreading under three different Reynolds numbers for
(a) We = 9 and (b) We = 30.

For spreading at We = 9, shown in Figure 11a, all three VDR(r) curves increase
rapidly from droplet center to rim (with r increasing), the peak value, which decreases as
Re increases, appears around the droplet rim where a large stain rate can be found. This
can be attributed to the fact that, in the very earlier stage when the droplet just contacts
the surface, a rim is just squeezed out and therefore induces a relatively high strain rate.
Consequently, we show the local strain rate f

( .
γ
)

distribution in the near-rim area in
each graph for a better understanding. It seems that increasing the Re slightly influences
the f

( .
γ
)

in both liquid and gas phases, because in this case surface energy dominates
the energy budget and therefore produces a similar strain rate. Increasing peak VDR(r)
results from the increase of liquid viscosity, which dominates the viscous dissipation under
relatively small droplet inertia (We = 9). As Weber number increases to We = 30, shown
in Figure 11b, Re again slightly influences the f

( .
γ
)

in the liquid phase, therefore VDR(r)
increases as Re increases. However, relatively large Re produces substantially higher f

( .
γ
)

in the gas phase near the rim, which in turn dominates viscous dissipation and results
in a substantially high gas viscous dissipation. Consequently, the dissipation energy is
mainly powered by the viscous dissipation in the gas phase under high Re condictions.
These can be attributed to the reason that, for droplet spread under intermediate inertia
(12 ≤ We ≤ 30), the unconsumed kinetic energy transfer from liquid phase to the gas
therefore induced substantially high strain rate in the gas phase, hence substantial gas
viscous dissipation and Edg.

To understand the observation stated above, we first recognized that We = 12 indi-
cates that droplet initial kinetic energy (Ek0 = πρV2

0 D3
0/12) is equal to the initial surface

energy (Es0 = σπD2
0), therefore droplet surface energy dominates the energy budget for

We < 12 and produces similar strain rate Φ in both liquid and gas phases, and hence
viscosity dominates the energy dissipation, which decreases as Re increases (a.k.a., liquid
viscosity decreasing).
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For 12 ≤We ≤ 30 the energy transfer could be more complex. When Re is relatively
small, most of the droplet kinetic energy can be consumed in the very earlier stage and
therefore surface energy dominates the energy budget. In this case, surface force suppresses
droplet deformation and viscous dissipation is controlled by the liquid viscosity, so that
dissipated energy decreases as Re increases. However, for relatively large Re, initial
kinetic energy is unable to be consumed in a timely manner, which results in the kinetic
energy still dominating the energy budget and droplet deformation being improved as Re
increases. Therefore, energy dissipation is controlled by the strain rate which is promoted
by increasing Re, hence results in the increasing energy dissipation. Consequently, a
non-monotonic tendency can be observed under intermediate Weber numbers.

3.4. Droplet Deformation Transitions

Another significant factor that should be considered is the non-negligible droplet
height under small Weber numbers (We ≤ 30). In this study we employed three different
heights to characterize droplet shape, namely, droplet center height hc, throat height ht and
rim height hr. Figure 12a illustrates the comparison of two impact morphologies during
droplet spreading for cases under large and small We with puddle- and pizza-shaped
droplet, respectively. Figure 12b shows the evolution of three heights with increasing
impact Weber number and the Reynolds number fixed at Re = 1000. Overall, all three
heights decrease as Weber number increases because increasing impact inertia promotes
droplet spreading outwardly and therefore results in an increasingly thinner liquid film.
However, droplet deformation shows a complex tendency and can be divided into three
distinct regimes as impact Weber number increases, namely, puddle-shaped regime (I),
transition regime (II) and pizza-shaped regime (III).

For relatively smaller Weber number (We < 12) in regime (I), it seems hc shows the
highest value among three heights while ht shows the lowest, indicating that a relatively
small impact inertia results in a droplet that appears like a puddle with a flattened top
and a rounded edge. As droplet inertia increases to regime (II), the initial kinetic energy
gradually dominates the energy transfer so that a rim can be squeezed out from the bottom
part of the droplet and a narrow neck throat is formed to connect the rim and the central
part of the droplet; the droplet shape is close to a pizza but with a thick height. As droplet
impact inertia continually increases and finally reaches beyond We = 30, i.e., regime (III),
we found hc approaches ht and its evolution becomes steady, indicating that the droplet
deformation has become more pronounced so that a thin lamella is bordered by a rim; the
droplet height can then be ignored when estimating the surface energy.

To further show the transition of droplet deformation, we quantitatively compared the
relationship between droplet center height hc and the rim height hr denoted as ∆h = hc − hr,
as shown in Figure 12c. When the droplet spreading is in regime (I), i.e., We < 12, initial
kinetic energy is insufficiently strong to overcome the constraints of surface tension, hence
∆h is generally larger than zero where cases under smaller Re are not taken into consid-
eration. As droplet inertia increases into regime (II), ∆h decreases linearly by We = 30,
beyond which droplet spread in the regime (III) and ∆h tends to become steady, indicating a
uniform droplet deformation. These again suggest why the model of Wildeman et al. works
well under We > 30 in regime (III), where droplet height is negligible when compared
to the spreading diameter and is associated with the “1/2 rule”, βmax can be accurately
estimated according to energy conservation. However, as We decreases to regime (II)
(12 ≤ We ≤ 30) although the “1/2 rule” breaks down, the pizza-shaped droplet is pre-
cariously maintained, therefore βmax only slightly deviates from Wildeman et al.’s model.
As We further decreases to We < 12, droplet deformation transitions into puddle-shape
regime (I), where droplet height is non-negligible when estimating βmax, and therefore
produces substantial deflection.
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Figure 12. Schematic of droplet deformation transition characterized by different heights. (a) Com-
parison of droplet morphology at τmax between droplet impact under small We (We = 2.76) and
large We (We = 47.53), (b) three different heights hc, ht and hr varying with We and (c) the difference
between hc and hr i.e., ∆h varying with We.

3.5. Modeling βmax under Small Weber Numbers

It has been recognized in the previous section that the “1/2 rule” breaks down when
the droplet impact inertia decreases to We ≤ 30, therefore βmax gradually deviates from
the model of Wildeman et al. The deviation could be more prominent when the We < 12,
where surface energy rather than kinetic energy dominates the energy budget, results in the
non-negligible height. Therefore, in this section, we first adopted a revised Weber number
Wer, which is defined as the droplet initial kinetic energy (Ek0 = πρV2

0 D3
0/12) over its

initial surface energy (Es0 = σπD2
0) hence Wer = We/12. The Wer has been employed by

Zhang and Zhang [44] to precisely measure the relative importance between droplet initial
kinetic energy and surface energy.
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To estimate βmax using an energy conservation approach, we first introduced the
droplet deformation ratio Rd as the rate of surface energy increment ∆Es to initial kinetic
energy Ek0, given by Rd = ∆Es/Ek0. Figure 13 is used to show the relationship between Rd
and droplet revised Weber number Wer. Regardless of droplet spreading under relatively
large Re cases for Wer > 1.0, to be discussed later, Rd seems independent of the Re and the
simulation results agree well with the fitted formula, given by

Rd = 0.7We−0.1
r (7)
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Moderate deviation under Wer > 1.0 for relatively large Re cases can be attributed
to the dual role of liquid viscosity in producing additional viscous dissipation which
as discussed in the previous Section 3.2. In this case, surface energy increment can be
express as ∆Es = Rd∆Ek0. Meanwhile, cases under smaller Re are not the emphasis of
the analysis in the current work and these data points are not used in the fitting for
energy ratio Rd in order to obtain a matching and suitable fitting result for the majority
of cases.

Since droplet height is non-negligible when estimating surface energy under small
Weber numbers (We ≤ 30), we safely move on to the investigation of the correlation
between droplet height and the surface area. As discussed in Figure 12, droplet deformation
and its transition can be characterized by three distinct heights, namely, the center height
hc, the throat height ht and the rim height hr. To simplify the quantification on surface
energy, droplet at τmax can be equivalent to a “column-shaped” cylinder with the identical
droplet maximum spreading diameter Dmax and surface energy. Therefore, droplet height
characterization can be simplified by using an equivalent surface energy height he, in this
case surface energy can be expressed as

Es(τm) = σπ

[
Dmhe +

D2
m(1− cos θ)

4

]
(8)

where θ is the contract angle and can be determined as 180
◦

in our simulations, as discussed
in Section 3.1. he can be further normalized by the Dmax as Re = he/Dmax, which measures
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the relative importance of droplet height when compared to the droplet spreading diameter,
and we found that Re is related to droplet impact inertia, as shown in Figure 14 that,

Re = 0.1We−0.4
r (9)

Consequently, βmax can be estimated by accounting for droplet surface energy incre-
ment at τmax, yields

βmax =

√
0.7We0.9

r + 0.1
0.1We−0.4

r + (1− cos θ)/4
(Free− slip, We ≤ 30) (10)

Figure 15 shows the comparison among the present model (i.e., equation 10, denoted
by the red line), the available numerical predictions and various experimental results.
Following Lastakowski et al. [59], the droplet spreading on the free-slip surface with a gas
film that existed throughout the whole spreading process can be regarded as a result of the
impacts of Leidenfrost droplet. We therefore employed Pan et al.’s experimental results [54]
of equal droplet collision, Tang et al.’s [11] experimental results of equal droplet collision
and Tran et al.’s experimental results of Leidenfrost droplet in this comparison to validate
the proposed model. Serval observations can be made in this figure as follows. Firstly, our
numerical predictions agree well with these experimental data, which again confirms the
accuracy of the present simulation. Secondly, the derived model for estimating βmax under
small Weber numbers (We ≤ 30) shows good agreement with both these experimental
results and our numerical predictions. Finally, the present model and Wildeman et al.’s
model shows fine continuity at We = 30. It is worth noting that the model proposed in the
current work is based on a contact angle of 180◦ for droplet spreading and there is also
a good agreement with the results of our experimental results with variable advancing
contact angle around 180◦.
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4. Conclusions

A comprehensive experimental and numerical study on droplet impacts on a free-slip
surface is presented in this study, with particular emphasis on the dynamics under small
Weber numbers (We ≤ 30) and different impacting parameters.

Our experimental and numerical results for large Weber numbers (We > 30) show
good agreement with the prediction of the widely-used model of Wildeman et al. wherein
the simulation successfully predicted the “1/2 rule” for the reliable dimensionless droplet
maximum spreading diameter βmax. Moreover, our numerical prediction of a relationship
between βmax and spreading time τmax agrees well with the previous investigation [40].
In terms of the spreading under relatively small Weber numbers (We ≤ 30), we found
βmax deviates from Wildeman et al.’s [40] model for the following two reasons. Firstly, as
droplet impact inertia decreases to We ≤ 30, where a We-dependent energy budget can be
found, the “1/2 rule” breaks down. Secondly, droplet progressively lost its thin pizza-like
shape and finally degenerated into puddle-like shape whose height is non-negligible when
estimating the surface energy.

Droplet spreading can be divided into three distinct regimes. The first regime (I) is
characterized by the puddle-shaped droplet at τmax, in this case initial kinetic energy is
insufficiently strong to overcome the surface tension force, hence droplet surface energy
dominates energy budget, restricts droplet deformation, and therefore produces a similar
strain rate. Consequently, viscous dissipation in regime (I) is controlled by the liquid
viscosity (denoted by Re) and decreases as Re increases. The second regime (II) is regarded
as the transition regime. In this case, initial kinetic energy is comparable to the surface
energy so that surface energy dominates the energy budget when the initial kinetic energy
can be consumed in a timely manner at the earlier stage, probably under relatively small
Re cases; while kinetic energy in turn dominates the energy budget under the condition of
relatively large Re cases, because the unconsumed kinetic energy is sufficiently strong to
overcome the surface tension force. The competition between surface energy and kinetic
energy finally results in the dual role of liquid viscosity and therefore a non-monotonic
energy budget. The third regime (III) is characterized by the uniform droplet deformation
(thin pizza-shaped), where initial kinetic energy is far stronger than the surface energy so
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that it dominates the energy budget, resulting in the “1/2 rule” being validated and droplet
height being negligible when compared to the spreading diameter.

Based on the understanding of droplet spreading under small Weber numbers (We ≤ 30),
the energy conservation approach was again employed to model the dimensionless droplet
maximum spreading diameter βmax by accounting for the influence of impact parameters
(such as We and Re) on the energy budget and the droplet height at τmax. A revised Weber
number Wer, which correctly reflects the orders of magnitude of various energies, was
adopted to replace the We in our modeling works. The proposed model was found to
correlate well with the numerical results and the experimental results of Pan et al. [54], Tang
et al., Tran et al. and our present experiment, it can therefore be expressed as a practical
model to estimate βmax under smaller Weber numbers (We ≤ 30).
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32. Roisman, I.V.; Berberović, E.; Tropea, C. Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys. Fluids

2009, 21, 052103. [CrossRef]
33. Roisman, I.V. Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous

film. Phys. Fluids 2009, 21, 052104. [CrossRef]
34. Chandra, S.; Avedisian, C.T. On the Collision of a Droplet with a Solid Surface. Proc. R. Soc. A-Math. Phys. Eng. Sci. 1998, 432,

13–41. [CrossRef]
35. Fukai, J.; Shiiba, Y.; Yamamoto, T.; Miyatake, O.; Poulikakos, D.; Megaridis, C.M.; Zhao, Z. Wetting effects on the spreading of a

liquid droplet colliding with a flat surface: Experiment and modeling. Phys. Fluids 1995, 7, 236–247. [CrossRef]
36. Pasandideh-Fard, M.; Qiao, Y.M.; Chandra, S.; Mostaghimi, J. Capillary effects during droplet impact on a solid surface. Phys.

Fluids 1996, 8, 650–659. [CrossRef]
37. Fukai, J.; Tanaka, M.; Miyatake, O. Maximum Spreading of Liquid Droplets Colliding with Flat Surfaces. J. Chem. Eng. Jpn. 2004,

31, 456–461. [CrossRef]
38. Attané, P.; Girard, F.; Morin, V. An energy balance approach of the dynamics of drop impact on a solid surface. Phys. Fluids 2007,

19, 012101. [CrossRef]
39. An, S.M.; Lee, S.Y. Maximum spreading of a shear-thinning liquid drop impacting on dry solid surfaces. Exp. Therm Fluid Sci.

2012, 38, 140–148. [CrossRef]
40. Wildeman, S.; Visser, C.W.; Sun, C.; Lohse, D. On the spreading of impacting drops. J. Fluid Mech. 2016, 805, 636–655. [CrossRef]
41. Gao, S.; Liao, Q.; Liu, W.; Liu, Z. Nanodroplets Impact on Rough Surfaces: A Simulation and Theoretical Study. Langmuir 2018,

34, 5910–5917. [CrossRef] [PubMed]
42. Park, S.W.; Lee, C.S. Macroscopic and microscopic characteristics of a fuel spray impinged on the wall. Exp. Fluids 2004, 37,

745–762. [CrossRef]
43. Qin, M.; Tang, C.; Tong, S.; Zhang, P.; Huang, Z. On the role of liquid viscosity in affecting droplet spreading on a smooth solid

surface. Int. J. Multiph. Flow 2019, 117, 53–63. [CrossRef]
44. Zhang, Z.; Zhang, P. Numerical Interpretation to the Roles of Liquid Viscosity in Droplet Spreading at Small Weber Numbers.

Langmuir 2019, 35, 16164–16171. [CrossRef] [PubMed]
45. Huang, H.-M.; Chen, X.-P. Energetic analysis of drop’s maximum spreading on solid surface with low impact speed. Phys. Fluids

2018, 30, 022106. [CrossRef]
46. Wang, F.; Yang, L.; Wang, L.; Zhu, Y.; Fang, T. Maximum Spread of Droplet Impacting onto Solid Surfaces with Different

Wettabilities: Adopting a Rim-Lamella Shape. Langmuir 2019, 35, 3204–3214. [CrossRef]

http://doi.org/10.1017/jfm.2021.313
http://doi.org/10.1007/BF00400880
http://doi.org/10.1615/AtomizSpr.v19.i8.60
http://doi.org/10.1016/j.cocis.2011.06.009
http://doi.org/10.1002/aic.690410602
http://doi.org/10.1063/1.868941
http://doi.org/10.1017/S002211209800411X
http://doi.org/10.1615/AtomizSpr.v11.i2.40
http://doi.org/10.1017/S0022112004000904
http://doi.org/10.1017/S0022112006000231
http://doi.org/10.1016/j.ijheatmasstransfer.2006.02.001
http://doi.org/10.1063/1.3432498
http://doi.org/10.1103/PhysRevLett.108.036101
http://doi.org/10.1103/PhysRevApplied.2.044018
http://doi.org/10.1016/j.expthermflusci.2014.10.019
http://doi.org/10.1016/S0009-2509(02)00266-X
http://doi.org/10.1098/rspa.2001.0923
http://doi.org/10.1063/1.3129282
http://doi.org/10.1063/1.3129283
http://doi.org/10.1063/1.4738846
http://doi.org/10.1063/1.868622
http://doi.org/10.1063/1.868850
http://doi.org/10.1252/jcej.31.456
http://doi.org/10.1063/1.2408495
http://doi.org/10.1016/j.expthermflusci.2011.12.003
http://doi.org/10.1017/jfm.2016.584
http://doi.org/10.1021/acs.langmuir.8b00480
http://www.ncbi.nlm.nih.gov/pubmed/29708343
http://doi.org/10.1007/s00348-004-0866-3
http://doi.org/10.1016/j.ijmultiphaseflow.2019.05.002
http://doi.org/10.1021/acs.langmuir.9b02736
http://www.ncbi.nlm.nih.gov/pubmed/31718189
http://doi.org/10.1063/1.5006439
http://doi.org/10.1021/acs.langmuir.8b03748


Energies 2022, 15, 8181 21 of 21

47. Zhang, Z.; Zhang, P. Kinetic energy recovery and interface hysteresis of bouncing droplets after inelastic head-on collision. Phys.
Fluids 2017, 29, 103306. [CrossRef]

48. Zhang, Z.; Zhang, P. Modeling Kinetic Energy Dissipation of Bouncing Droplets for Lagrangian Simulation of Impinging Sprays
Under High Ambient Pressures. Atom. Sprays 2018, 28, 673–694. [CrossRef]

49. Unverdi, S.O.; Tryggvason, G. A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 1992, 100,
25–37. [CrossRef]

50. Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.J. A Front-Tracking Method
for the Computations of Multiphase Flow. J. Comput. Phys. 2001, 169, 708–759. [CrossRef]

51. Nobari, M.R.H.; Jan, Y.J.; Tryggvason, G. Head-on collision of drops—A numerical investigation. Phys. Fluids 1993, 8, 29–42.
[CrossRef]

52. Qian, J.; Law, C.K. Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 1997, 331, 59–80. [CrossRef]
53. Singh, R.; Shyy, W. Three-dimensional adaptive Cartesian grid method with conservative interface restructuring and reconstruc-

tion. J. Comput. Phys. 2007, 224, 150–167. [CrossRef]
54. Pan, K.L.; Law, C.K.; Zhou, B. Experimental and mechanistic description of merging and bouncing in head-on binary droplet

collision. J. Appl. Phys. 2008, 103, 064901. [CrossRef]
55. Pan, K.L.; Yin, G.C. Parallel strategies of front-tracking method for simulation of multiphase flows. Compute. Fluids 2012, 67,

123–129. [CrossRef]
56. Kuan, C.K.; Pan, K.L.; Shyy, W. Study on high-Weber-number droplet collision by a parallel, adaptive interface-tracking method.

J. Fluid Mech. 2014, 759, 104–133. [CrossRef]
57. Zhang, P.; Law, C.K. An analysis of head-on droplet collision with large deformation in gaseous medium. Phys. Fluids 2011,

23, 042102. [CrossRef]
58. Pan, K.L.; Chou, P.C.; Tseng, Y.J. Binary droplet collision at high Weber number. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2009,

80, 036301. [CrossRef]
59. Lastakowski, H. Drop Impacts on air Cushions: Super-Hydrophobic, Hot or Moving Surfaces. Ph.D. Thesis, Institut Lumière

Matière, Villeurbanne, France, 2013.

http://doi.org/10.1063/1.5000547
http://doi.org/10.1615/AtomizSpr.2018025900
http://doi.org/10.1016/0021-9991(92)90307-K
http://doi.org/10.1006/jcph.2001.6726
http://doi.org/10.1063/1.868812
http://doi.org/10.1017/S0022112096003722
http://doi.org/10.1016/j.jcp.2006.12.026
http://doi.org/10.1063/1.2841055
http://doi.org/10.1016/j.compfluid.2012.07.010
http://doi.org/10.1017/jfm.2014.558
http://doi.org/10.1063/1.3580754
http://doi.org/10.1103/PhysRevE.80.036301

	Introduction 
	Experimental Setup and Numerical Methodology 
	Experimental Setup 
	Numerical Methodology 

	Results and Discussion 
	Comparison between Experimental Results and Numerical Predictions 
	Droplet Spreading under Relatively Large Weber Numbers (We > 30 ) 
	Droplet Spreading under Relatively Small Weber Numbers (We 30 ) 
	Droplet Deformation Transitions 
	Modeling max  under Small Weber Numbers 

	Conclusions 
	References

