Experimental Study of the Feasibility of In-Situ Hydrogen Generation from Gas Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Experimental Procedures
3. Thermodynamic Model
3.1. Chemical Reactions
3.2. Methods of Calculation
4. Results and Discussion
4.1. The Computed Results
4.2. Effect of Temperature
4.3. Effect of Reaction Time
4.4. Effect of Oxygen/Methane Ratio
4.5. Effect of Steam/Methane Ratio
5. Conclusions
- Below 400 °C, the oxidation rate of methane is excessively slow. In addition, methane combustion is the main mechanism of methane consumption below 600 °C, whereas it is POM at 600 °C.
- The hydrogen yield reaches a maximum at oxygen/methane ratio = 0.5 and increases with an oxygen/methane ratio close to 0.5.
- The hydrogen detected is higher than that which was computed, meaning that the rock cuttings may have a catalytic effect on hydrogen generation.
- A higher steam/methane ratio can obtain more hydrogen, which can be achieved by the alternating injection of water and gas.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
SMR | Steam methane reforming |
POM | Partial oxidation of methane |
ATR | Autothermal reforming |
WSGR | Water gas shift reaction |
O/C | Oxygen/methane ratio |
S/C | Steam/methane ratio |
Total Gibbs free energy of reaction system | |
Gibbs free energy of species i | |
Standard-state Gibbs free energy of species i | |
Partial fugacity of species i | |
Standard-state fugacity of species i | |
p | Pressure |
p0 | Standard-state pressure |
n | Numbers of moles of reaction system |
Moles of species i. | |
N | Numbers of compounds |
Number of gram-atoms of element j in a mole of molecule i. | |
Total number of atomic weights of element j | |
Lagrangian multipliers |
References
- Zou, C.N.; Zhang, F.D.; Zheng, D.W.; Sun, F.J.; Zhang, J.H.; Xue, H.Q.; Pan, S.Q.; Zhao, Q.; Zhao, Y.M.; Yang, Z. Strategic Role of the Synthetic Hydrogen Production and Industry in Energy Independence of China. Nat. Gas Ind. 2019, 39, 1–10. [Google Scholar]
- Balcombe, P.; Speirs, J.; Johnson, E.; Martin, J.; Brandon, N.; Hawkes, A. The carbon credentials of hydrogen gas networks and supply chains. Renew. Sustain. Energy Rev. 2018, 91, 1077–1088. [Google Scholar] [CrossRef]
- Al-Hamamre, Z.; De Vos, S.; Trimis, D. Hydrogen production by thermal partial oxidation of hydrocarbon fuels in porous media based reformer. Int. J. Hydrog. Energy 2009, 34, 827–832. [Google Scholar] [CrossRef]
- Aminu, M.D.; Nabavi, S.A.; Rochelle, C.A.; Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy 2017, 208, 1389–1419. [Google Scholar] [CrossRef] [Green Version]
- Cherif, A.; Nebbali, R.; Sen, F.; Sheffield, J.W.; Doner, N.; Nasseri, L. Modeling and simulation of steam methane reforming and methane combustion over continuous and segmented catalyst beds in autothermal reactor. Int. J. Hydrog. Energy 2022, 47, 9127–9138. [Google Scholar] [CrossRef]
- Penã, M.; Gómez, J.; Fierro, J. New catalytic routes for syngas and hydrogen production. Appl. Catal. A Gen. 1996, 144, 7–57. [Google Scholar] [CrossRef]
- Ewan, B.; Allen, R. A figure of merit assessment of the routes to hydrogen. Int. J. Hydrog. Energy 2005, 30, 809–819. [Google Scholar] [CrossRef]
- Cruz, P.L.; Navas-Anguita, Z.; Iribarren, D.; Dufour, J. Exergy analysis of hydrogen production via biogas dry reforming. Int. J. Hydrog. Energy 2018, 43, 11688–11695. [Google Scholar] [CrossRef]
- Nourbakhsh, H.; Shahrouzi, J.R.; Ebrahimi, H.; Zamaniyan, A. Experimental study of ultra-rich thermal partial oxidation of methane using a reticulated porous structure. Int. J. Hydrog. Energy 2020, 45, 12298–12307. [Google Scholar] [CrossRef]
- Surguchev, L.; Berenblyum, R. In-situ H2 Generation from Hydrocarbons and CO2 Storage in the Reservoir. In Proceedings of the Fourth EAGE CO2 Geological Storage Workshop, Stavanger, Norway, 22–24 April 2014. [Google Scholar] [CrossRef]
- Gates, I.D.; Wang, J. In-Situ Process to Produce Hydrogen from Underground Hydrocarbon Reservoirs. WO2017136924A1, 17 August 2017. [Google Scholar]
- Yuan, Q.; Jie, X.; Ren, B. High-Purity, CO2-Free Hydrogen Generation from Crude Oils in Crushed Rocks Using Microwave Heating. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, Arab, 21–23 September 2021. [Google Scholar] [CrossRef]
- Afanasev, P.; Popov, E.; Cheremisin, A.; Berenblyum, R.; Mikitin, E.; Sorokin, E.; Borisenko, A.; Darishchev, V.; Shchekoldin, K.; Slavkina, O. An Experimental Study of the Possibility of In Situ Hydrogen Generation within Gas Reservoirs. Energies 2021, 14, 5121. [Google Scholar] [CrossRef]
- Kapadia, P.R.; Kallos, M.; Gates, I. Potential for hydrogen generation from in situ combustion of Athabasca bitumen. Fuel 2011, 90, 2254–2265. [Google Scholar] [CrossRef]
- Kapadia, P.R.; Wang, J.; Kallos, M.S.; Gates, I.D. Practical process design for in situ gasification of bitumen. Appl. Energy 2013, 107, 281–296. [Google Scholar] [CrossRef]
- Kapadia, P.R.; Kallos, M.S.; Gates, I.D. A new kinetic model for pyrolysis of Athabasca bitumen. Can. J. Chem. Eng. 2012, 91, 889–901. [Google Scholar] [CrossRef]
- Kapadia, P.R.; Kallos, M.S.; Gates, I.D. A new reaction model for aquathermolysis of Athabasca bitumen. Can. J. Chem. Eng. 2012, 91, 475–482. [Google Scholar] [CrossRef]
- Jin, H.; Guo, L.; Guo, J.; Ge, Z.; Cao, C.; Lu, Y. Study on gasification kinetics of hydrogen production from lignite in supercritical water. Int. J. Hydrog. Energy 2015, 40, 7523–7529. [Google Scholar] [CrossRef]
- Dinh, D.K.; Kang, H.S.; Jo, S.; Lee, D.H.; Song, Y.-H. Partial oxidation of diesel fuel by plasma—Kinetic aspects of the reaction. Int. J. Hydrog. Energy 2017, 42, 22756–22764. [Google Scholar] [CrossRef]
- Hajdo, L.E.; Hallam, R.J.; Vorndran, L.D.L. Hydrogen Generation During in-Situ Combustion. In Proceedings of the SPE California Regional Meeting, Bakersfield, CA, USA, 27–29 March 1985. [Google Scholar]
- Loukou, A.; Mendes, M.; Frenzel, I.; Pereira, J.; Ray, S.; Trimis, D. Experimental and numerical investigation of methane thermal partial oxidation in a small-scale porous media reformer. Int. J. Hydrog. Energy 2017, 42, 652–663. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Hashemi, S.A. Flame stability analysis of the premixed methane-air combustion in a two-layer porous media burner by numerical simulation. Fuel 2017, 202, 56–65. [Google Scholar] [CrossRef]
- Green, D.W.; Southard, M.Z. Perry’s Chemical Engineers’ Handbook; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Wang, H.; Wang, X.; Li, M.; Li, S.; Wang, S.; Ma, X. Thermodynamic analysis of hydrogen production from glycerol autothermal reforming. Int. J. Hydrog. Energy 2009, 34, 5683–5690. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, H.; Shi, Y.; Cai, N. Methane partial oxidation in a two-layer porous media burner with Al2O3 pellets of different diameters. Fuel 2018, 217, 45–50. [Google Scholar] [CrossRef]
- Fukada, S.; Nakamura, N.; Monden, J. Effects of temperature, oxygen-to-methane molar ratio and superficial gas velocity on partial oxidation of methane for hydrogen production. Int. J. Hydrog. Energy 2004, 29, 619–625. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, W.; Yang, L.; Wang, X.; Zhang, Q. Iron-containing heterogeneous catalysts for partial oxidation of methane and epoxidation of propylene. Catal. Today 2006, 117, 156–162. [Google Scholar] [CrossRef]
- Larimi, A.; Alavi, S. Ceria-Zirconia supported Ni catalysts for partial oxidation of methane to synthesis gas. Fuel 2012, 102, 366–371. [Google Scholar] [CrossRef]
- Özdemir, H.; Öksüzömer, M.F.; Gürkaynak, M.A. Effect of the calcination temperature on Ni/MgAl2O4 catalyst structure and catalytic properties for partial oxidation of methane. Fuel 2014, 116, 63–70. [Google Scholar] [CrossRef]
- Xu, J.; Froment, G.F. Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics. AIChE J. 1989, 35, 88–96. [Google Scholar] [CrossRef]
- Nieva, M.A.; Villaverde, M.M.; Monzon, A.; Garetto, T.F.; Marchi, A.J. Steam-methane reforming at low temperature on nickel-based catalysts. Chem. Eng. J. 2014, 235, 158–166. [Google Scholar] [CrossRef]
- Torimoto, M.; Ogo, S.; Hisai, Y.; Nakano, N.; Takahashi, A.; Ma, Q.; Gil Seo, J.; Tsuneki, H.; Norby, T.; Sekine, Y. Support effects on catalysis of low temperature methane steam reforming. RSC Adv. 2020, 10, 26418–26424. [Google Scholar] [CrossRef]
- Dai, H.; Zhao, Q.; Lin, B.; He, S.; Chen, X.; Zhang, Y.; Niu, Y.; Yin, S. Premixed combustion of low-concentration coal mine methane with water vapor addition in a two-section porous media burner. Fuel 2017, 213, 72–82. [Google Scholar] [CrossRef]
Elements | Composition (wt %) |
---|---|
C | 22.337 |
Na | 0.070 |
Mg | 15.715 |
Al | 2.131 |
Si | 4.854 |
P | 0.007 |
S | 0.546 |
Cl | 0.028 |
K | 0.391 |
Ca | 53.108 |
Ti | 0.126 |
Mn | 0.023 |
Fe | 0.618 |
Ni | 0.006 |
Cu | 0.004 |
Br | 0.002 |
Rb | 0.003 |
Component | Enthalpy ()
| Entropy ()
| Gibbs Free Energy ()
|
---|---|---|---|
CH4 (g) | −74.5 | +186.3 | −50.5 |
O2 (g) | 0 | +205.0 | 0 |
H2 (g) | 0 | +130.6 | 0 |
CO (g) | −110.5 | +197.6 | −137.2 |
H2O (g) | −241.8 | +188.7 | −228.6 |
CO2 (g) | −393.5 | +213.9 | −394.4 |
N2 (g) | 0 | +191.6 | 0 |
Reaction | Equation | Enthalpy ()
|
---|---|---|
Combustion | (R1) | −802.6 |
POM | (R2) | −36.0 |
SMR | (R3) | +205.8 |
WGSR | (R4) | −41.2 |
Methanation | (R5) | −205.8.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rui, Y.; Zhu, B.; Tang, Q.; Yang, C.; Wang, D.; Pu, W.; Tang, X. Experimental Study of the Feasibility of In-Situ Hydrogen Generation from Gas Reservoir. Energies 2022, 15, 8185. https://doi.org/10.3390/en15218185
Rui Y, Zhu B, Tang Q, Yang C, Wang D, Pu W, Tang X. Experimental Study of the Feasibility of In-Situ Hydrogen Generation from Gas Reservoir. Energies. 2022; 15(21):8185. https://doi.org/10.3390/en15218185
Chicago/Turabian StyleRui, Yiming, Bin Zhu, Qingsong Tang, Changcheng Yang, Dan Wang, Wanfen Pu, and Xiaodong Tang. 2022. "Experimental Study of the Feasibility of In-Situ Hydrogen Generation from Gas Reservoir" Energies 15, no. 21: 8185. https://doi.org/10.3390/en15218185
APA StyleRui, Y., Zhu, B., Tang, Q., Yang, C., Wang, D., Pu, W., & Tang, X. (2022). Experimental Study of the Feasibility of In-Situ Hydrogen Generation from Gas Reservoir. Energies, 15(21), 8185. https://doi.org/10.3390/en15218185