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Abstract: Renewable energy penetration in the global energy sector is in a state of steady growth. A
major criterion imposed by the regulatory boards in the wake of electronic-driven power systems
is frequency regulation capability. As more rooftop PV systems are under installation, the inertia
response of the power utility system is descending. The PV systems are not equipped inherently
with inertial or governor control for unseen frequency deviation scenarios. In the proposed method,
inertial and droop frequency control is implemented by creating the necessary power reserve by
the derated operation of the PV system. While, traditionally, PV systems operate in normal MPPT
mode, a derated PV system follows a flexible power point tracking (FPPT) algorithm for creating
virtual energy storage. The point of operation for the FPPT of the PV is determined by using a neural
network block set available in MATLAB. For the verification of the controller, it is applied to a PV
array in a modified IEEE-13 bus system modeled in the MATLAB/Simulink platform. The simulation
results prove that when the proposed control is applied to the test network with renewable energy
penetration, there is an improved system inertia response.

Keywords: renewable energy systems; inertia response; frequency response; photovoltaic systems;
derated PV systems; MPPT; FPPT; microgrid systems; neural network; IEEE-13 bus system

1. Introduction

Renewable energy systems (RESs) are alternate sources of energy that are forming
an integral part of the modern utility system with their increasing penetration levels. The
operation of these systems is meticulously scrutinized for possible causes of instability
conditions. This initiates the exploration of simple and robust control techniques that equip
the RES with a proactive operation. The control techniques are deployed to control system
parameters and safeguard the power system’s stability.

The inertia in a body of mass helps it to maintain its state of being; this is one of the
important system parameters that hold the key to synchronized system operation. The
inertia in the rotary synchronous generators inherently responds to frequency changes
that are a consequence of power imbalances in the network [1]. The RES is an inverter-
interfaced system that decouples any rotational energy that may be present, causing a
reduction in system inertia and invisibility to system frequency dynamics. Unprecedented
changes in generation or load require fast frequency recovery measures or inertia response.
An absence of inertia leads to violations of the statutory limits of the rate of change of
frequency (ROCOF) and defined frequency nadir [2]. To counteract the fast frequency
variations, inverters in the RES are controlled to dispatch power into the network based
on the measurement of frequency and its derivatives. The classic PID control inverters
accompanied by energy storage systems have evolved to predictive control based on the
system operative [3].

As a solution, the inertia response is synthesized and called the virtual inertia con-
trol. It is implemented to operate for short periods (1–5 s) through topologies that help
integrate and control the active power output of the RES into the grid [4]. The design of the
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control system is defined by the necessary system inertia requirement, speed of response,
frequency recovery response, active power response, and response to both rising and falling
frequencies [5].

Among various RESs, the most popularly installed photovoltaic systems have neither a
rotary segment nor in-built energy storage that could induce an inertia response. The effect
of reduced inertia on future power systems is a smaller energy buffer, larger frequency
deviations, and a high differential change in frequency [6]. However, a virtual inertia-
controlled PV system operates with the ability to reduce the frequency and active power
oscillations during disturbances and aids in distributed energy storage system control [7].
The result of the investigations conducted in [8] indicates that during major imbalances in
the system, the frequency response remains unaffected when the PV penetration is below
20%, while a penetration level greater than 50% could threaten system security. The modern
power system is made of hybrid energy components where the DFIG and PV generator
systems are the main contributors. In [9], a comparison of inertia control applied to PV
and wind systems was made. The study shows that the controller time constant is smaller
for PV systems when compared to wind systems. This implies that induced inertia in PV
systems is more fast-acting than the control applied to wind systems. The output of RES
generators is affected by moving clouds and has global and local implications. This affects
the spinning reserve in the system, hence constant energy storage schemes are a necessity
for inertia response in RESs [10]. Energy storage systems (ESSs) are used for up/down
frequency regulation in virtual inertia control by injecting/absorbing active power. Some of
the currently useful ESSs for frequency regulation systems are the Battery Energy Storage
System (BESS), Flywheel ESS (FESS), Supercapacitor ESS (SCESS), and Superconducting
Magnetic ESS (SCMESS). Additionally, a hybrid ESS may be used, which is a feasible
combination of one or more of the aforementioned ESSs [11].

Virtual storage for inertial response can be created within the PV system without
an ESS by operating it away from maximum power point tracking (MPPT). This is the
derated/de-loaded operation of PVs [12]. In far sight, operating below maximum capac-
ity may seem like a loss of energy and revenue. However, the cost–benefit analysis of
de-loaded PVs against the normal MPPT-operated PV system made in [13] suggests a
contradiction. The tariff for providing ancillary frequency regulation service is double the
energy price in the US and European networks. This compensates for the losses incurred as
a consequence of PV operation below the MPP. Therefore, offering a regulation-up opera-
tion can create revenue benefits for private PV operators and improve inertia response for
the utility system. A cost comparison of energy storage systems versus de-loaded operation
in [14] also suggests that curtailing PV power is more beneficial. If a PV system of 1 MW
provides 0.8 MW of reserve, then the cost is compared with a battery with a capacity of
0.8 MW. The cost–benefit reduces with the decrease in the size of the battery, i.e., for battery
capacities higher than 1 MW, reserving PV power is more advantageous. As PV generator
implementation is fast increasing, research attempts are made to optimally control the
extraction of power from the source and the injection into the grid to obtain an inertia
response similar to the traditional synchronous generator action.

Contribution

This work is a continuation of the research investigating the inertia response of
renewable-energy-penetrated systems. In this regard, the various frequency control ca-
pabilities in RESs were studied [15]. Furthermore, a study of the frequency response of
a standard test system with changes in system load and renewable energy penetration
proved that frequency control is a necessity in RESs to induce inertia response during
generation–load imbalance scenarios [16]. The reduction in inertia response with an in-
crease in renewable energy penetration is inevitable, owing to the fact that the power
electronic connection of the RES to the grid is inevitable. Therefore, a two-level inverter
system is necessary for frequency control in RESs to obtain optimum power extraction from
the source and controlled active power transmission to the grid [17].
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In this paper, the power output of PV systems is kept flexible and not rigid to create a
power reserve without an external ESS. PV systems normally operate at their maximum
rated power; however, when the power output is varied below MPP, it operates at flexible
power points, and this is called the derated mode of operation. The method helps create an
energy buffer that can be charged or discharged according to system inertia requirements.
Frequency control through the derated operation implemented in [14,18,19], and the control
proposed in this paper, is based on the basic equation

Pder = PMPPT − ∆P (1)

where Pder is the derated power, PMPPT is the maximum power of the PV array, and ∆P is
the power reserve necessary for frequency control. There are two power reserve modes of
operation: (i) Mode 1: ∆P is fixed and (ii) Mode 2: ∆P varies with a change in frequency
(∆f ). The PV array in [14] operates under both modes of operation, in [19] the ∆P is fixed,
and in [18] the power reserve operates in Mode 2 alone. In [14], to obtain the derated power
control, the operating voltage of the PV was calculated considering several parameters:
the MPPT voltage, the deload voltage corresponding to the change in frequency, and the
voltage considering the available reserve in the respective PV system. The operating voltage
estimation in [18] is based on the necessary power reserve calculated through the frequency
controller. However, the maximum power estimation involves complex calculations using
the short circuit current of the PV array. Several parameter estimations lead to errors in
the final output. In the proposed control, the maximum power available in the PV array is
obtained through direct relation using irradiance (G) and temperature (T) measurements.
The G and T values used in the training of the neural network are randomly generated and
are not associated with any location. The objectives of this paper are:

(i) To achieve flexible power point tracking (FPPT) in a PV array using neural network
training. Thus, the inputs to the PV array are simply G, T, and ∆P without complex
calculated values, as used in [14,18].

(ii) To operate the PV array on the left side of MPP as against the right-sided operation
in [14,18]. The advantages and disadvantages of the operational characteristics on
both sides of MPP are explained in Section 3.1.2.

In the next section, a summary of previous works using power reserve control is
discussed. The frequency controller, FPPT characteristics, and implemented power reserve
control, along with corresponding flowcharts, are elaborated on in the sub-sections of
Section 3. The simulation results of the test system and proposed controller modeled and
implemented in MATLAB/Simulink are explained in Section 4. The conclusions are stated
in Section 5.

2. Literature Review

Appropriate power reserve control in PV systems requires the determination of (i) the
maximum available power in the PV array and (ii) the amount of power reserve necessary
to maintain system stability.

An accurate estimation of the power available in the system is necessary to create
an optimum reserve for the inertia response capacity. The maximum power available
in a PV system can be estimated in real time by measuring the irradiance and PV cell
temperature [20]. The estimation of available active power without the use of temperature
and irradiance sensor measurements may be obtained by applying curve-fitting techniques
to the PV array parameters, as proposed in [21]. Neural network systems can be used
to predict day-ahead power generation by training the network using previous two-day
weather information [22]. In [23], the method suggests a combined estimation principle
using a neural network with temperature and irradiance measurements.

The power reserve estimation concerning inertia is related to how much active power
injection would be necessary for the corresponding frequency deviation. When there is a
load imbalance, PL, in a network with only traditional generators, the frequency nadir is
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limited to fnadir-trad. If the same network is modified to replace the traditional synchronous
machines with solar generation, then the frequency nadir is reduced to fnadir-RES < fnadir-trad.
A careful analysis helps estimate the power reserve necessary to maintain the frequency
response, as in the case of a conventional network for the same load disturbance, PL,
i.e., to achieve fnadir-RES = fnadir-trad. For the proposed estimation, in [24], a parabolic
approximation of the system frequency response was first made. Further, based on this
approximation, the power reserves necessary for different PV penetration levels were
calculated for a specified load change, PL. It is seen that as the frequency nadir decreases,
the amount of reserve power necessary also increases. For the particular system under
study, when there is a system inertia reduction of 20%, at an imbalance of 0.05 pu, the
required active power is limited to 3% of rated power.

In a network consisting of several PV systems with different ratings, the individual
contributions to power reserve are not equal. The deload in each of the PV systems is
different, and therefore, the extraction of power must be controlled, i.e., the PV array with a
higher deload percentage can provide more reserve while a lower deload percentage means
a smaller reserve contribution [25]. However, large-scale power system network areas
with high demand require higher power reserves. The virtual multi-slack droop control
implemented in [26] selects the proper power reserve from RESs in different regions of a
real Korean power system. A virtual slack bus along with the actual slack bus functions to
compensate for any imbalance of load. Each RES is required to maintain a power reserve
based on a power sensitivity analysis. Synchronized power control inverters used alongside
MPPT inverters also provide frequency regulation while maintaining the DC voltage within
safety limits [27]. The frequency overshoot, undershoot, and response time can be further
reduced by applying optimization techniques to the inverter control parameters [28].

3. Control Technique

From the above discussions, the two main factors that are necessary for the appropriate
control of derated PVs are (i) the power reserve necessary for frequency regulation and
(ii) the point of operation of the PVs. In the literature summary, it is seen that neural
networks have been used for the determination of maximum available power. However,
not much work has been conducted in the area of flexible power point tracking. In the
proposed control, the NN block gives the operating voltage point of the PV array. The
NN is trained using irradiance, temperature, and the necessary power reserve estimate.
The block diagram of the PV system with the proposed virtual inertia control is given in
Figure 1. In the figure, the PV system is a two-level inverter and the output from the PV
system is controlled through the boost converter. The PWM for the boost converter comes
from the virtual inertia power reserve control. The PWM signal is generated by optimizing
the voltage signal using a PI controller. The voltage from the NN block is compared with
the PV voltage and then given to the PI controller, which is tuned in the block to obtain
the corresponding duty ratio. The duty ratio is given to the PWM generator to generate
the gate pulses. The DC voltage available at the capacitor is monitored at the inverter
control, along with the system parameters, and generates pulses for the grid-side inverter.
The output from the inverter control block is given to the frequency regulation system to
generate a corresponding power reserve for any system frequency deviation. The power
reserve estimate is utilized to control the PV output voltage at the virtual inertia block. The
mathematical equations and the control algorithms used in the neural network block and
the frequency regulation are discussed in this section.
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3.1. Mathematical Formulation
3.1.1. Power Reserve for Frequency Regulation

Power reserve and inertia response are prerequisites for minimizing frequency devia-
tions and a tolerance of ±0.2 Hz from nominal frequency is fixed to avoid system instability,
generation loss, and load shedding, as defined in the network [29]. In traditional syn-
chronous machines, the rotary motion generates the inertia response necessary to balance a
change in load demand. The change in power to equalize the imbalance is:

∆P = Pm − Pe = 2H f
d f
dt

(2)

The same is conceptualized as virtual inertia in PV systems that do not have inherent
inertia response, as:

∆Pvi = 2Hvi
d f
dt

= ki
d f
dt

(3)

Additionally, traditional generators use governors to control the power whenever
there is a change in frequency. This change in power due to rotor governor action is
emulated in the PV system as droop control and is defined as:

∆Pd = − 1
R

∆ f = kd∆ f (4)

An initial power reserve of ∆P0 is pre-set, and the droop coefficient, kd, becomes:

kd =
∆P0

∆ f
=

∆P0

∆ fmax/ f0
(5)

Thus, the required power reserve will be:

∆P = ∆P0 + ∆Pvi + ∆Pd = ∆P0 + ki
d f
dt

+ kd∆ f (6)

Power reserve control functions to reduce power output from the PV array at the
frequency upper tolerance limit and provide maximum available power output when the
frequency falls to the lower limit. The frequency controller output generates the necessary
power reserve as shown in Figure 2.
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3.1.2. Point of Operation of PV Array

PV systems are controlled to operate close to MPP, using conventional hill climb-
ing techniques such as the Perturb and Observation (P&O) method and the Incremental
Conductance (INC) method. Both P&O and INC methods work on the relation of deriva-
tive power with voltage and have almost similar tracking efficiencies. However, the INC
method ignores the second-order term in the discrete differential equation of power and
can rightly be termed an implementation of the P&O algorithm [30]. Similarly, a specific
implementation of the INC method is proposed in [31], where a digital filter is used along
with the INC algorithm to change the duty cycle and adjust the operation to achieve MPP.
Although MPP operation is mandatory in most of the grid codes to achieve maximum
yield from solar PV systems, the injection of a large amount of intermittent power leads
to network overloading when there is a peak in the generation. Thus, a power reserve
can be created and used as a cheap alternative to energy buffers such as battery storage
systems and capacitors. The power reserve mode of operation is essentially a system
performance-enhancing strategy that can be implemented on the DC–DC side and DC–AC
side. The power reserve can be achieved through power, current, and P&O algorithm
control. In the proposed control, the power reserve is created by controlling the PV array
output at the DC–DC or the boost converter side. The control can be achieved through
power control, current limit control, and P&O power reserve control [32]. The control
proposed in [33,34] implements a closed-loop power control with fast dynamics and good
steady-state responses. The current control techniques discussed in [35,36] describe the
method as the simplest of all three methods. However, both methods can cause system
instability during fast changes in irradiance levels. The P&O algorithm power reserve
control is a robust method when system stability is the main criterion [37].

When PVs operate away from the fixed MPP, then the PVs are in the flexible PPT
mode, and there are two possible operative points for the PV array—Fpp1 at the left and
Fpp2 at the right of MPP in the PV curve, as shown in Figure 3. Operating the PV system on
the left side has the advantage of preventing the operating voltage from reaching the open
circuit voltage and will give stable operation even during high irradiance drops. On the
right-hand side, there is a wider power reserve area, faster response, and higher converter
efficiency [38].
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For power reserve control using the P&O algorithm, the set of equations in (7) and (8)
may be used for right-hand side and left-hand side operation, respectively:

v∗f pp =

{
vMPPT , Pderated ≤ PMPP

vpv2 + vstep, Pderated > PMPP
(7)

v∗f pp =

{
vMPPT , Pderated ≤ PMPP

vpv2 − vstep, Pderated > PMPP
(8)

where vstep is the perturbation step size used in the power reserve algorithm, vMPPT
is the voltage for maximum power operation, and v f pp is the regulated voltage output
from the derated PV. The step size, vstep, in Equations (6) and (7), power reserve, and PV
power output to the grid are also fixed. In order to enable frequency regulation using
power reserve control, the step size is varied according to frequency deviation. The control
algorithm is implemented using a neural network and is discussed in Section 3.2.

3.2. Neural Network-Based FPPT

The proposed method for power reserve through flexible power point tracking is
using the neural network. The flowchart for tracking the flexible power point is given in
Figure 4. The maximum power available in the PV array is calculated by measuring the
irradiance (G) and the temperature (T). The point of operation of the PV array depends on
the required reserve power ∆P, which is obtained from the frequency regulation control
block. The derated power output of the PV system is maximum power minus the necessary
reserve. In the proposed control, the solar PV array is operated on the left side of the MPP.
If derated power exceeds the MPP, the operating point will be limited at the MPP, and
operation on the right side of the PV characteristic is eliminated.
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The neural network NN-FPPT control is implemented in the MATLAB Simulink
platform using the neural network block set.
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Step 1: Define the problem: The inputs/predictors and the outputs/responses are
arranged as matrices. In this case, the predictors’ matrix is a [1000 × 3] double matrix and
the response matrix is a [1000 × 1] double matrix. The inputs are irradiance G, temperature
T, and the required power reserve ∆P. The output is the operating voltage, Vfpp, of the
PV array.

Step 2: Select data: The data are imported into the block for training. The data set in
this case is a randomly generated set of 1000 values for inputs and output. The network
is trained with a data set of inputs irradiance G, temperature T, the estimated power
reserve ∆P, and the operating voltage of PVs Vfpp as output. The data are split for training,
validation, and test sets into 70%, 15%, and 15% portions, respectively.

Step 3: Create network: The network is created with two functions, the sigmoid
function in the hidden layer and the linear function in the outer layer. There are three
inputs, using which the network plot is updated by the input data. The size of the hidden
layer defines the number of neurons and is, by default, 10. The architecture of the neural
network is a two-layered feedforward network, as shown in Figure 5.
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Step 4: Train the network: The neural net fitting application in MATLAB/Simulink
has three training algorithms, out of which, the Levenberg–Marquardt (LM) optimization is
used to update the weight and bias values in the neural network. The LM training algorithm
is used as it is the fastest among the three, although it requires more memory than other
techniques. It uses the ‘trainlm’ function in the application. The Jacobian jX of performance
specified by perf with respect to the weight and bias variables X is calculated using the
backpropagation method. The variables are adjusted according to Levenberg-Marquardt:

jj = jX ∗ jX (9)

je = jX ∗ E (10)

dX = −(jj + I ∗ mu)/je (11)

In the above equations, jj is the Jacobian matrix that contains the first derivatives of
the network errors with respect to the weights and biases, je is the Jacobian of the vector of
network errors, E is all errors in the network, and I is the identity matrix. The factor mu is
the adaptive value that is increased in increments as mu_inc until the change results in a
reduced performance value. The system is trained until one of the following conditions
is fulfilled:

• The specified number of repetitions/epochs have been completed.
• The time limit has been reached.
• The performance is minimized to the set goal
• The performance gradient falls below the minimum of min_grad.
• The value of mu exceeds its specified maximum value of mu_max.
• The performance of the validation process increases to more than the maximum

number of max_fail times.

Step 5: Analyze results: The data are analyzed by generating plots. The regression plot
displays the network prediction corresponding to the responses for training, validation,
and testing. From Figure 6, it is seen that the data fall perfectly in line with the 45-degree
line, proving that the network outputs are equal to the responses. In case of not obtaining
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a perfect fit the first time, the network can be retrained with different weights and biases
until an improved network is produced.
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Step 6: The network is exported as a Simulink model for application to PV array
control. The working of the designed NN block set is tested with a 250 W PV array. The
obtained operating voltage is used to generate the PWM for the boost converter, as shown
in the control diagram in Figure 1. The output of the case studies shows that the controller
is well-trained.

Case 1: Reserve ratio is varied while the irradiance and temperature are kept constant.
For the first case study, the G is fixed at 1000 W/m2, T at 25 ◦C, while ∆P is varied

from 50 W to 200 W. From the system output waveforms shown in Figure 7a–c, it is seen
that with an increase in ∆P, the output voltage and power of PV are derated.

Case 2: Reserve ratio is kept constant at 50 W and irradiance is varied.
The irradiance is varied in steps from 200 W/m2 to 1000 W/m2, as in Figure 8a, and

the maximum available power in the system reduces. As shown in Figure 8c, the power
output from the PV array reduces. However, as ∆P remains constant, the PV operating
voltage in Figure 8b remains almost constant.
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Figure 8. System output waveforms when ∆P is fixed at 50 W and irradiance is varied from 200 W/m2

to 1000 W/m2: (a) Irradiance; (b) PV output voltage; (c) PV output power.

Case 3: Irradiance and power reserve ratio are both varied.
When the irradiance and power reserve ratio are both varied randomly, as shown

in Figure 9a,b, respectively, it can be seen from Figure 9c that the PV operating voltage
varies according to changes in the power reserve ratio, while the derated power output in
Figure 9d varies according to irradiance and ∆P.



Energies 2022, 15, 8234 11 of 17Energies 2022, 15, x FOR PEER REVIEW 11 of 17 
 

 

 
 

(a) (b) 

  
(c) (d) 

Figure 9. System output waveforms when irradiance and power reserve ratio are both varied: (a) 
Irradiance; (b) power reserve ratio; (c) PV output voltage; (d) PV output power. 

4. Simulation Results  
In the previous section, the NN-FPPT operation with a single 250 W PV array was 

verified. In this section, the NN-FPPT block is implemented in the test system. The test 
system is a modified IEEE-13 bus test system. The test system has five power sources and 
eight loads, as seen in Figure 10. The sources are the synchronous generator G1 at 8 MVA 
rating, the wind generator WT at 4.5 MW rating, and three PV arrays PV1, PV2, and PV3 
at 2.6, 1.7, and 1.7 MW, respectively. Amongst the three PV systems, PV1 and PV2 operate 
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4. Simulation Results

In the previous section, the NN-FPPT operation with a single 250 W PV array was
verified. In this section, the NN-FPPT block is implemented in the test system. The test
system is a modified IEEE-13 bus test system. The test system has five power sources and
eight loads, as seen in Figure 10. The sources are the synchronous generator G1 at 8 MVA
rating, the wind generator WT at 4.5 MW rating, and three PV arrays PV1, PV2, and PV3 at
2.6, 1.7, and 1.7 MW, respectively. Amongst the three PV systems, PV1 and PV2 operate at
MPPT, while PV3 operates with the NN-FPPT control, with an initial power reserve of 20%.
The loads from L1–L8 are at 2.3 MW each. During the test conditions, the network remains
grid-connected to analyze the grid support capability of PV3. The test system and control
are modeled using the MATLAB/Simulink platform.
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Case 1: Load is decremented by 0.5 MW.
When the load L8 is decremented by 0.5 MW, the system frequency increases to about

50.7 Hz (blue plot), as seen in Figure 11a. With the proposed technique, the frequency
regulation block increases the power reserve ratio and passes it to the NN-FPPT block. The
operating point is shifted according to the charging/over-frequency region, as described in
Figure 3. The output of PV3 is initially at a reserve of 20% at 1.36 MW and the output is
further reduced by 20% to about 1 MW to reduce the frequency, as seen from the green plot
in Figure 11b. However, PV1 and PV2 continue operating in MPPT. The proposed control
of PV helps respond to load imbalance and the frequency is reduced to approximately
50.2 Hz, as seen in the red plot of Figure 11a. The output of the wind generation system
does not change, as it is not equipped with frequency regulation control.
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block reduces the power reserve and brings the PV array to MPPT by increasing the volt-
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1.6 MW. As seen in Figure 12b,c, the WT, PV1, and PV2 continue to operate at rated values, 
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Case 2: Load is incremented by 0.5 MW.
When the load L8 is incremented by 0.5 MW, the system frequency falls to 49.5 as

seen in (blue plot) Figure 12a. When the load is incremented, there is no sufficient active
power participation in the absence of the NN-FPPT control. When the control is applied,
the frequency increases to 49.8; see (red plot) Figure 12a. The frequency control regulation
block reduces the power reserve and brings the PV array to MPPT by increasing the voltage
to the discharge/under-frequency region from the initial reserve of 1.36 MW to about
1.6 MW. As seen in Figure 12b,c, the WT, PV1, and PV2 continue to operate at rated values,
while the synchronous machine shares in the frequency response along with PV2.
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Discussions

The main objective of the proposed control is to achieve frequency control with
optimized outputs and high system stability. To verify the control objectives, the results
are compared to the work done in [18,19]. For the proposed frequency control test, two
cases are considered, for a 0.5 MW load decrement and 0.5 MW load increment, and as
can be seen, the system frequency is maintained at 50.17 Hz and 49.85 Hz, respectively. In
the absence of the virtual inertia control for PVs, the frequency increases to 50.84 Hz when
the load is shed and the frequency reduces to 49.62 Hz when there is a generation load
imbalance. For the control in [18], the operation of the PV array is on the right-hand side
of the MPP to achieve almost similar frequency control. As discussed in earlier sections,
this leads to system instability during fast irradiance changes. In the proposed control, the
operation of PVs is restricted to the left side of the MPP so that the operating point will not
reach the open circuit voltage. The open circuit voltage of the PV array in which the NN is
tested is 37.5 V, as given in Table 1. From the waveform in Figure 13a, it is seen that the
operating voltage for left-sided operation does not reach Voc. However, for the right-sided
operation, the operating voltage crosses 37.3 V, subjecting the system to instability.

In [19], the PV is operated on the left side of the MPP, and delta power reserve control
limits the power output of the PV array by a fixed value ∆P for all operating conditions.
However, since the power reserve is constant, there is no frequency control, as is seen in
Figure 14. The blue plot is the PV output of the control in [19] acts as a constant power
generator. Thus, the stable left-hand-sided constant power generation in [19] is optimized
in the proposed control by varying the power reserve for frequency control during load
increment and decrement, as given by the red and yellow plots, respectively.

The advantages and limitations of the proposed method in comparison with control
techniques used in [18,19] is summarized in Table 2.
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Table 1. Parameters of PV array.

Parameter Value

Open circuit voltage under STC, VOC,STC 37.3 V
Short circuit current under STC, ISC,STC 8.6 A
Parallel resistance, Rsh 313.0553 ohms
Series resistance, Rs 0.3981 ohms
Open circuit voltage thermal correlation co-efficient, β 0.86998
Short circuit current thermal correlation co-efficient, α −0.6901
Diode ideal factor, A 0.98119
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Table 2. Comparative study of the proposed control method with work from the existing literature.

Ref No. Power Reserve Control Advantages Limitations

Proposed
Control

1. The maximum power available
is estimated using the
irradiance and temperature
measurements.

2. The trained neural network
generates the operating voltage
of PVs corresponding to the
necessary power reserve

1. The PV operating voltage
changes dynamically by the
trained NN control.

2. The PV operates on the left
side of the MPP, ensuring that
the operating voltage does not
reach open circuit voltage.

3. The frequency regulation acts
within 1 s.

The method requires
temperature and irradiance
sensors.

[18]

1. The maximum power available
is estimated by sampling PV
current and voltage.

2. The operating voltage is
estimated as a function of the
necessary power reserve.

It does not require irradiance and
temperature sensors.

1. The PV Operates on the
right-hand side of the
MPP, subjecting the
operating voltage of PVs
to open circuit voltage
that can cause system
instability.

2. Frequency regulation
within 5 s.

[19]

1. The master–slave maximum
power estimation system is
used where the power output of
the master is the available
maximum power.

2. The power reserve is the
maximum available power
minus the fixed reserve ∆P.

It does not require individual
irradiance and temperature sensors.

It does not change the power
reserve following frequency
deviations.
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5. Conclusions

In the absence of an energy reserve in the PV system, efficient active power control is
necessary for improved system inertia response, and virtual energy storage is created for
active power participation. This can be achieved through the flexible power point operation
of the PV array as opposed to traditional fixed-point MPPT operation. The required
power reserve is calculated by the frequency regulation controller, and the proposed
NN-FPPT control estimates the operating voltage. The NN-FPPT is implemented using
the MATLAB/Simulink NN block set system. The system is first tested with a 250 W
array by using an NN system trained from random data varying between the maximum
and minimum limits of irradiance, temperature, and power reserve. The controller is
then implemented in a grid-connected two-level inverter PV system. The simulation is
conducted on an IEEE-13 bus test system modeled in Simulink. The network has three
PV panel arrays, two of which contribute to the system generation by operating in MPPT,
and the third one provides inertia support through the proposed FPPT operation. The
test is simulated by the increment and decrement of loads at 0.5 MW each. During load
increment, the frequency drops, and the power reserve is discharged into the network
for active power injection and restricts the frequency drop to 49.8 Hz as compared to the
49.5 Hz system frequency when there is no power reserve control. In the case of load
increment, the frequency rises to about 50.8 Hz, and consequently, the reserve is increased
to restrict active power injection into the grid, and the frequency rise is limited to about
50.2 Hz. The simulation results in the study confirm the inertia support by the PV array for
up to 0.5 MW changes in load demand. Further improvement of the control system can be
achieved through NN-FPPT training with actual system data and real-time operation on
the utility grid.
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