Geochemical Characteristics of Graptolite Shale in the Pingliang Formation of the Ordos Basin, China: Implications for Organic Matter, Thermal Evolution, and Hydrocarbon Reservoir
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Samples
3.2. Methods
3.2.1. TOC and Rock-Eval
3.2.2. GRran
3.2.3. Major Elements
3.2.4. Sulfur Isotope Analysis of Pyrite
3.2.5. Microscopic Observation
4. Results
4.1. Biostratigraphic Characteristics
4.2. δ34Spy
4.3. Microstructural Characteristics of Graptolite Shale
4.4. Major Element Contents
4.5. Geochemical Characteristics of Graptolite Shale
5. Discussion
5.1. Origin of Organic Matter in Graptolite Shale
5.2. Indication of Graptolite Shale in Original Organic Matter Preservation
5.3. Indication of Graptolite Shale in Evolutionary Processes
5.4. Indication of Graptolite Shale in Hydrocarbon Reservoir Pore
6. Conclusions
- (1).
- Graptolite epidermis is the primary carbon source in graptolite-rich shale. The geochemical characteristics of graptolite shale show that the TOC of this section meets the standard of hydrocarbon source rock, and the kerogen is type II.
- (2).
- The types of graptolites, pyrite manifestations, and field observations all show that this area is a deep-water, quiet sea sedimentary environment conducive to preserving organic matter.
- (3).
- The presence of pyrite and tuff in the section indicates that TSR have occurred in this area. Under the influence of tectonic activity, the degree of evolution of this area is within the oil-generating window.
- (4).
- Different types of pores are found in graptolite-rich shale, and they provide storage space for the occurrence of hydrocarbons in the Pingliang Formation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montgomery, S.L.; Jarvie, D.M.; Bowker, K.A.; Pollastro, R.M. Mississippian Barnett shale, Fort Worth basin, north-central Texas: Gas-shale play with multi–trillion cubic foot potential. AAPG Bull. 2005, 89, 155–175. [Google Scholar] [CrossRef]
- Sun, C.X.; Nie, H.K.; Dang, W.; Chen, Q.; Zhang, G.R.; Li, W.P.; Lu, Z.Y. Shale gas exploration and development in China: Current status, geological challenges, and future directions. Energy Fuels 2021, 35, 6359–6379. [Google Scholar] [CrossRef]
- Dang, W.; Zhang, J.C.; Tang, X.; Wei, X.L.; Li, Z.M.; Wang, C.H.; Chen, Q.; Liu, C. Investigation of gas content of organic-rich shale: A case study from lower permian shale in southern north China basin, central China. Geosci. Front. 2018, 9, 559–575. [Google Scholar] [CrossRef]
- Yang, F.; Xu, S.; Hao, F.; Hu, B.Y.; Zhang, B.Q.; Shu, Z.G.; Long, S.Y. Petrophysical characteristics of shales with different lithofacies in Jiaoshiba area, Sichuan Basin, China: Implications for shale gas accumulation mechanism. Mar. Petrol. Geol. 2019, 109, 394–407. [Google Scholar] [CrossRef]
- Xu, S.; Gou, Q.Y.; Hao, F.; Zhang, B.Q.; Shu, Z.J.; Wang, Y.Y. Multiscale faults and fractures characterization and their effects on shale gas accumulation in the Jiaoshiba area, Sichuan Basin, China. J. Pet. Sci. Eng. 2020, 189, 107026. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, J.; Pan, Z.; Hu, Q.; Yu, B.; Tan, Y.; Sun, L.; Bai, L.; Wu, C.; Blach, T.P.; et al. Pore characterization of shales: A review of small angle scattering technique. J. Nat. Gas Sci. Eng. 2020, 78, 103294. [Google Scholar] [CrossRef]
- Zou, C.N.; Zhu, R.K.; Chen, Z.Q.; Ogg, J.G.; Wu, S.T.; Dong, D.Z.; Qin, Z.; Wang, Y.M.; Wang, L.; Lin, S.H.; et al. Organic-matter-rich shales of China. Earth-Sci. Rev. 2018, 189, 51–78. [Google Scholar] [CrossRef]
- Chen, L.; Zuo, L.; Jiang, Z.X.; Jiang, S.; Liu, K.Y.; Tan, J.Q.; Zhang, L.C. Mechanisms of shale gas adsorption: Evidence from thermodynamics and kinetics study of methane adsorption on shale. Chem. Eng. J. 2019, 361, 559–570. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.X.; Liu, Q.X.; Jiang, S.; Liu, K.Y.; Tan, J.Q.; Gao, F.L. Mechanism of shale gas occurrence: Insights from comparative study on pore structures of marine and lacustrine shales. Mar. Pet. Geol. 2019, 104, 200–216. [Google Scholar] [CrossRef]
- Fan, J.X.; Michael, J.M.; Chen, X.; Wang, Y.; Zhang, Y.D.; Chen, Q.; Chi, Z.L.; Chen, F. Biostratigraphy of Black Graptolite Shales from the Ordovician-Silurian Longmaxi Formation in South China. Earth Sci. 2012, 42, 130–139. [Google Scholar] [CrossRef]
- Ma, S.M.; Zou, X.Y.; Zhu, Y.M.; Li, X.Q.; Zhao, P. Study on the relationship between graptolite and shale gas origin of Longmaxi Formation in southern Sichuan. Coal Sci. Technol. 2015, 43, 106–109. [Google Scholar] [CrossRef]
- Wang, Y.M.; Dong, D.Z.; Li, X.J.; Huang, J.L.; Wang, S.F.; Wu, W. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas. Nat. Gas Ind. B 2015, 2, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Fan, J.X.; Zhang, Y.D.; Wang, H.Y.; Chen, Q.; Wang, W.H.; Liang, F.; Guo, W.; Zhao, Q.; Nie, H.K.; et al. Division and delineation of Wufeng and Longmaxi Black shales in the Yangtze overlying area. J. Stratigr. 2015, 39, 351–358. [Google Scholar] [CrossRef]
- Zou, C.N.; Gong, J.M.; Wang, H.Y.; Shi, Z.S. Importance of graptolite evolution and biostratigraphic calibration on shale gas exploration. China Pet. Explor. 2019, 24, 1–6. [Google Scholar] [CrossRef]
- Mu, E.Z. A study of Graptolites in China. Acta Palaeontol. Sin. 1980, 84–92. [Google Scholar] [CrossRef]
- Wang, H.Y.; Guo, W.; Liang, F.; Zhao, Q. Biostratigraphy characteristics and scientific meaning of the Wufeng and Longmaxi Formation black shales at well Wei 202 of the Weiyuan shale gas field, Sichuan Basin. J. Stratigr. 2015, 39, 289–293. [Google Scholar] [CrossRef]
- Wang, H.Y.; Guo, W.; Liang, F.; Zhao, Q.; Liu, D.X.; Zhou, J.; Du, D.; Pi, S.H. Black shale biostratigraphic characteristics and stratigraphic correlation in the Wufeng and Longmaxi Fms of the Xuanhan–Wuxi areas. Nat. Gas Ind. 2017, 37, 27–33. [Google Scholar] [CrossRef]
- Chen, X.; Fan, J.X.; Wang, W.H.; Wang, H.Y.; Nie, H.K.; Shi, X.W.; Wen, Z.D.; Chen, D.Y.; Li, W.J. Stage-progressive distribution pattern of the Longmaxi black graptolitic shales from Guizhou to Chongqing, Central China. Sci. China Earth Sci. 2017, 47, 720–732. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Q.; Zhen, Y.Y.; Wang, H.Y.; Zhang, L.N.; Zhang, J.P.; Wang, W.H.; Xiao, Z.H. Circumjacent distribution pattern of the Longmaxi graptolitic black shale (early Silurian) on the Yichang Uplift and its peripheral region. Sci. China Earth Sci. 2018, 48, 1198–1206. [Google Scholar] [CrossRef]
- Finney, S.C.; Berry, W.B.N. New perspectives on graptolite distributions and their use as indicators of platform margin dynamics. Geology 1997, 25, 919–922. [Google Scholar] [CrossRef]
- Machel, H.G. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights. Sediment. Geol. 2001, 140, 143–175. [Google Scholar] [CrossRef]
- Raiswell, R.; Berner, R.A. Pyrite formation in euxinic and semi-euxinic sediments. Am. J. Sci. 1985, 285, 710–724. [Google Scholar] [CrossRef]
- Riciputi, L.R.; Cole, D.R.; Machel, H.G. Sulfide formation in reservoir carbonates of the Devonian Nisku Formation, Alberta, Canada: An ion microprobe study. Geochim. Cosmochim. Acta 1996, 60, 325–336. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, H.D.; He, X.Q.; Yang, Y.; Chen, B.H. Sulfur isotopes of framboidal pyrite in the Permian-Triassic boundary clay at Meishan section. Acta Geol. Sin. 2011, 85, 694–701. [Google Scholar] [CrossRef]
- Machel, H.G. Some Aspects of Diagenetic Sulphate-Hydrocarbon Redox Reactions; Geological Society, Special Publications: London, UK, 1987; Volume 36, pp. 15–28. [Google Scholar] [CrossRef]
- Krouse, H.R.; Viau, C.A.; Eliuk, L.S.; Ueda, A.; Halas, S. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature 1988, 333, 415–419. [Google Scholar] [CrossRef]
- Gomes, M.L.; Fike, D.A.; Bergmann, K.D.; Jones, C.; Knoll, A.H. Environmental insights from high—Resolution (SIMS) sulfur isotope analyses of sulfides in Proterozoic microbialites with diverse mat textures. Geobiology 2018, 16, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Nie, H.K.; Jin, Z.J.; Sun, C.X.; He, Z.L.; Liu, G.X.; Liu, Q.Y. The organic matter types of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for the formation of organic matter pores. Energy Fuels 2019, 33, 8076–8100. [Google Scholar] [CrossRef]
- Chen, M.J.; Ning, N.; Hu, G.Y.; Li, J. The hydrocarbon source rocks of Pingliang Formation in western Ordos Basin and its influencing factors. Chin. Sci. Bull. 2007, S1, 78–85. [Google Scholar] [CrossRef]
- Sun, Y.P.; Wang, C.G.; Wang, Y.; Yang, W.L.; Xu, H.Z.; Liu, W.B.; Wu, T.H. Geochemical characteristics and exploration potential of Middle Ordovician Pingliang Formation in the Ordos Basin. Pet. Geol. Exp. 2008, 30, 162–168. [Google Scholar] [CrossRef]
- Wang, Z.W. Geological condition and Favorable Area of Middle-Upper Ordovician Shale Gas in Wuzhong Area. Master’s Thesis, Xi’an University of Petroleum, Shaanxi, China, 2020. [Google Scholar]
- Kong, Q.F.; Zhang, W.Z.; Li, J.F.; Wang, K.R. Evaluation of Hydrocarbon Generation Potential of Ordovician Source Rocks on the Western Margin of Ordos Basin. Nat. Gas Ind. 2007, 27, 62–64. Available online: http://trqgy.paperonce.org/#/digest?ArticleID=4524 (accessed on 3 November 2022).
- Zhang, Y.Q.; Guo, Y.R.; Hou, W.; Zhao, Z.Y.; Gao, J.R. Geochemical characteristics and exploration potential of the Middle-Upper Ordovician source rocks on the western and southern margin of Ordos Basin. Nat. Gas Geosci. 2013, 24, 894–904. [Google Scholar] [CrossRef]
- Fu, S.T.; Fu, J.H.; Huang, Z.L. Geological characteristics of Ordovician marine shale gas in the Ordos Basin and its prospects. China Pet. Explor. 2021, 26, 33–44. [Google Scholar] [CrossRef]
- Xi, S.L.; Mo, W.L.; Liu, X.S.; Zhang, L.; Li, J.; Huang, Z.L.; Wang, M.; Zhang, C.L.; Zhu, Q.Y.; Yan, Y.; et al. Shale gas exploration potential of Ordovician Wulalike Formation in the western margin of Ordos Basin: Case study of Well Zhongping 1. Nat. Gas Geosci. 2021, 32, 1235–1246. [Google Scholar] [CrossRef]
- Wu, D.X.; Wu, X.N.; Li, C.S.; Yu, Z.; Li, W.L.; Cai, J.; Li, G.J. Sedimentary model and hydrocarbon-generation potential of source rock of the Ordovician Ulalik Formation in western Ordos Basin. Mar. Orig. Pet. Geol. 2021, 26, 123–130. [Google Scholar] [CrossRef]
- Zhang, C.G. Forming Evolution and Sediments Accumulation & Distribution Regularity of Central Paleouplift in Eopaleozoic, Ordos Basin. Ph.D. Thesis, Chengdu University of Technology, Sichuan, China, 2020. [Google Scholar]
- Goodarzi, F.; Eckstrand, O.R.; Snowdon, L.; Williamson, B.; Stasiuk, L.D. Thermal metamorphism of bitumen in Archean rocks by ultramafic volcanic flows. Int. J. Coal Geol. 1992, 20, 165–178. [Google Scholar] [CrossRef]
- Goodarzi, F.; Norford, B.S. Variation of graptolite reflectance with depth of burial. Int. J. Coal Geol. 1989, 11, 127–141. [Google Scholar] [CrossRef]
- Bertrand, R. Correlations among the reflectances of vitrinite, chitinozoans, graptolites and scolecodonts. Org. Geochem. 1990, 15, 565–574. [Google Scholar] [CrossRef]
- Fan, Y.P.; Liu, Y.; Wen, Z.G.; Wang, Z.X.; Zhang, Y.L.; Tang, P.H.; Xu, Y.H.; Tian, Y.J.; Chen, J.; Yan, G. Characteristics of Thermal Maturity of Graptolite-Bearing Shales in Wufeng-Longmaxi Formations on Northern Margin of Xuefeng Mountain. Earth Sci. 2019, 44, 3725–3735. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, N.S.; Yang, Y.F.; Rui, X.Q.; Zhou, Y.Y.; Fang, G.J.; Wu, H.; Shen, B.J.; Cheng, L.J. Thermal Maturity of Wufeng-Longmaxi Shale in Sichuan Basin. Earth Sci. 2019, 44, 953–971. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Hao, J.Y.; Skovsted, C.B.; Luo, P.; Khan, I.; Wu, J.; Zhong, N.N. The organic petrology of graptolites and maturity assessment of the Wufeng–Longmaxi Formations from Chongqing, China: Insights from reflectance cross-plot analysis. Int. J. Coal Geol. 2017, 183, 161–173. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Hao, J.Y.; Skovsted, C.B.; Xu, Y.H.; Liu, Y.; Jin, W.; Zhang, S.N.; Wang, W.L. Optical characteristics of graptolite-bearing sediments and its implication for thermal maturity assessment. Int. J. Coal Geol. 2018, 195, 386–401. [Google Scholar] [CrossRef]
- Petersen, H.I.; Schovsbo, N.H.; Nielsen, A.T. Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to vitrinite reflectance. Int. J. Coal Geol. 2013, 114, 1–18. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Hao, J.Y.; Li, K.W.; Dai, N.; Luan, J.H.; Cheng, L.J.; Zhang, Z.P.; Hu, K.; Zhong, N.N. The optical characteristics of the graptolites in the Wufeng-Longmaxi Formations and its application for the thermal maturity evaluation. Nat. Gas Geosci. 2017, 28, 1855–1863. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.D.; Daniel, G.; Stig, M.B.; Fan, J.X.; Wang, Z.H.; Stanley, C.F.; Chen, Q.; Ma, H. Darriwilian to Katian (Ordovician) Graptolites from Northwest China; Wu, X.F., Ed.; Zhejiang University Press: Hangzhou, China, 2018; pp. 83–293. [Google Scholar]
- Ma, Y.; Zhong, N.N.; Cheng, L.J.; Pan, Z.J.; Dai, N.; Zhang, Y.; Yang, L. Pore structure of the graptolite-derived OM in the Longmaxi Shale, southeastern Upper Yangtze Region, China. Mar. Pet. Geol. 2016, 72, 1–11. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Zhong, N.N.; Dai, N.; Zhang, W. Graptolite-derived organic matter in the wufeng-longmaxi Formations (upper Ordovician-lower Silurian) of southeastern Chongqing, China: Implications for gas shale evaluation. Int. J. Coal Geol. 2016, 153, 87–98. [Google Scholar] [CrossRef]
- Zhao, D.F. Quantitative Characterization of Pore Structure of Shale Reservoirs in the Lower Paleozoic Wufeng-Longmaxi Formation of the East Sichuan Area. Ph.D. Thesis, China University of Mining and Technology, Jiangsu, China, 2020. [Google Scholar]
- Zhao, H.G.; Liu, C.Y.; Wang, F.; Wang, J.Q. Structural division and characteristics in the western edge of Ordos Basin. Oil Gas Geol. 2016, 27, 173–179. [Google Scholar] [CrossRef]
- Li, W.H.; Chen, Q.; Li, Z.C.; Wang, R.G.; Wang, Y.; Ma, Y. Lithofacies Palaeogeography of Early Paleozoic in Ordos Area. J. Palaeogeogr. 2012, 14, 85–100+3. [Google Scholar]
- Zhao, Z.Y.; Sun, Y.S.; Li, C.S.; Zhang, Q. Stratigraphic Division and Correlation of Ordovician System in Ordos Basin. Spec. Oil Gas Reserv. 2015, 22, 9–17. [Google Scholar] [CrossRef]
- Ni, C.H.; Zhou, X.J.; Wang, G.S.; Yang, F.; Liu, Y.L. Characteristics and hydrocarbon generation evolution of Pingliang Formation source rocks, southern Ordos Basin. Pet. Geol. Exp. 2010, 32, 572–577. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Jin, Z.J.; Wang, Y.; Han, P.L.; Tao, Y.; Wang, Q.Z.; Ren, Z.L.; Li, W.H. Gas filling pattern in Paleozoic marine carbonate reservoir of Ordos Basin. Acta Petrol. Sin. 2012, 28, 847–858. Available online: http://www.ysxb.ac.cn/article/id/aps_20120313 (accessed on 3 November 2022).
- Deng, K.; Zhou, W.; Deng, H.C.; Chen, W.L. Geological conditions of shale gas enrichment in Pingliang Formation, Ordos Basin. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2013, 40, 595–602. [Google Scholar] [CrossRef]
- Wang, C.G.; Wang, Y.; Xu, H.Z.; Sun, Y.P.; Yang, W.L. Discussion on the evolution of source rocks in Lower Paleozoic of Ordos Basin. Acta Petrol Sin. 2009, 30, 38–45+50. [Google Scholar] [CrossRef]
- Zhang, T.B. The Transition of Tectonic-Sedimentary Framework and Its Geological Significance in the Late Early Paleozoic in the Southern Ordos Basin. MA Thesis, Northwest University, Shannxi, China, 2021. [Google Scholar]
- Goodarzi, F.; Norford, B.S. Optical Properties of Graptolite Epiderm a Review. Bull. Geol. Soc. Den. 1986, 35, 141–147. [Google Scholar] [CrossRef]
- Cao, C.Q.; Shang, Q.H.; Fang, Y.T. Explore the graptolite reflectivity of the Ordovician, Silurian hydrocarbon source rock maturity instructions. Acta Palaeontol. Sin. 2000, 39, 151–156. [Google Scholar] [CrossRef]
- Zhang, D.D.; Liu, W.H.; Wang, X.F.; Luo, H.Y.; Wang, Q.T.; Li, Y.N.; Li, F.J. Genetic types and characteristics of deep oil and gas plays. Oil Gas Geol. 2021, 42, 1169–1180. [Google Scholar] [CrossRef]
- Sun, M.Z.; Meng, Q.X.; Zheng, J.J.; Wang, G.C.; Fang, X.; Wang, Z.D. Analysis of organic acid salts of marine carbonate rocks in Tarim Basin. J. Cent. South Univ. Sci. Technol. 2013, 44, 216–222. [Google Scholar] [CrossRef]
- Wu, T.H.; Guan, P.; Liu, W.H. Organic acid salt as the possible hydrocarbon source matter in carbonate rocks. Nat. Gas Ind. 2005, 25, 11–13+17. [Google Scholar] [CrossRef]
- Liu, W.H.; Wang, J.; Tengre; Qin, J.Z.; Ran, D.; Tao, C.; Lu, L.F. Multiple hydrocarbon generation of marine strata and its tracer technique in China. Acta Pet. Sin. 2012, 33, 115–125. [Google Scholar] [CrossRef]
- Liu, P.; Wang, X.F.; Fang, X.; Zheng, J.J.; Li, X.F.; Meng, Q. A New Method to Measure the Value of Organic Abundance in Carbonate Rocks. Acta Sedimentol. Sin. 2016, 34, 200–206. [Google Scholar] [CrossRef]
- Liu, W.H.; Hu, G.; Tenger; Wang, J.; Lu, L.F.; Xie, X.M. Organism assemblages in the Paleozoic source rocks and their implications. Oil Gas Geol. 2016, 37, 617–626. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Zhang, H.; Kang, W.; Wang, Y.; Chen, S.B. Organic nanopores of Longmaxi and Qiongzhusi Formations in the Upper Yangtze: Biological precursor and pore network. Nat. Gas Geosci. 2015, 26, 1507–1515. [Google Scholar] [CrossRef]
- Borjigin, T.; Shen, B.J.; Yu, L.J.; Yang, Y.F.; Zhang, W.T.; Tao, C.; Xi, B.B.; Zhang, Q.Z.; Bao, F.; Qin, J.Z. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China. Pet. Explor. Dev. 2017, 44, 69–78. [Google Scholar] [CrossRef]
- Li, G.; Zhao, D.F.; Guo, Y.H. The relationship between graptolite of Longmaxi shale and sedimentary environment in southeastern Sichuan. Sci. Technol. Eng. 2018, 18, 16–23. [Google Scholar] [CrossRef]
- Berry, W.; Boucot, A.J. Glacio-Eustatic Control of Late Ordovician-Early Silurian Platform Sedimentation and Faunal Changes. GSA Bull. 1973, 84, 275–284. [Google Scholar] [CrossRef]
- Chen, X. Graptolite Depth Zonation. Acta Palaeontol. Sin. 1990, 5, 507–526. [Google Scholar] [CrossRef]
- Boucot, A.J.; Chen, X. Fossil Plankton Depth Zones. Palaeoworld 2009, 18, 213–234. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Zhang, S.C.; Liang, Y.B.; Dai, J.X.; Li., J. Isotopic Evidence of TSR Origin of High H2S Bearing Natural Gas in Feixianguan Formation in Northeast Sichuan. Sci. China Ser. D Earth Sci. 2005, 1037–1046. [Google Scholar] [CrossRef]
- Shao, D.B.; Bao, H.P.; Wei, L.B.; Cai, Z.H.; Wu, C.Y.; Zhou, L.X.; Cao, Y.G. Tectonic palaeogeography evolution and sedimentary filling characteristics of the Ordovician in the Ordos area. J. Palaeogr. 2019, 21, 537–556. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, G.J.; Li, C.S.; Song, X.J.; Luo, C.; Wu, X.N.; Wu, D.X.; Hu, Z. Tectonic-lithofacies paleogeographic characteristics of Ordovician Kelimoli and Wulalike stages in the western edge of Ordos Basin. Nat. Gas Geosci. 2021, 32, 816–825. [Google Scholar] [CrossRef]
System | Series | Stage | South of Western Margin | North of Western Margin |
---|---|---|---|---|
Ordovician | Upper | Hirnantian | - | - |
Katian | Beiguoshan Formatiom | - | ||
Sandbian | Pingliang Formation | Gongwusu Formation | ||
Lashizhong Formation | ||||
Wulalike Formation | ||||
Middle | Darriwilian | Majiagou Formation | Kelimoli Formation | |
Dapingian | Zhuozishan Formation |
Sample | Depth(m) | SiO2 (%) | TiO2 (%) | Al2O3 (%) | TFe2O3 (%) | MnO (%) | MgO (%) | CaO (%) | Na2O (%) | K2O (%) | P2O5 (%) | LOI (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
YT2-1 | 3861.63 | 56.47 | 0.35 | 8.21 | 3.80 | 0.05 | 3.82 | 11.00 | 0.58 | 2.03 | 0.06 | 13.63 |
YT2-2 | 3862.21 | 59.99 | 0.45 | 12.02 | 4.39 | 0.03 | 3.08 | 6.55 | 0.71 | 3.14 | 0.09 | 9.55 |
YT2-3 | 3863.08 | 64.71 | 0.53 | 12.49 | 4.84 | 0.03 | 3.44 | 2.35 | 0.81 | 3.28 | 0.06 | 7.46 |
YT2-4 | 3864.41 | 51.27 | 0.44 | 12.77 | 4.51 | 0.04 | 4.83 | 8.73 | 0.70 | 3.36 | 0.06 | 13.29 |
YT2-5 | 3865.19 | 55.59 | 0.43 | 11.45 | 4.64 | 0.04 | 4.08 | 8.05 | 0.70 | 2.97 | 0.06 | 11.99 |
YT2-6 | 3868.93 | 62.65 | 0.49 | 11.95 | 4.54 | 0.03 | 3.15 | 4.60 | 0.80 | 3.14 | 0.07 | 8.58 |
YT2-7 | 3871.20 | 63.73 | 0.50 | 11.60 | 4.87 | 0.03 | 3.27 | 4.05 | 0.73 | 2.95 | 0.06 | 8.21 |
Sample | Depth (m) | TOC (%) | S1 | S2 | S3 | PI | Tmax (°C) | HI | OI | Type |
---|---|---|---|---|---|---|---|---|---|---|
(mg HC/g Rock) | (mg HC/g TOC) | |||||||||
YT2-1 | 3861.63 | 0.58 | / | / | / | / | / | / | / | / |
YT2-2 | 3862.21 | 0.31 | / | / | / | / | / | / | / | / |
YT2-3 | 3863.08 | 0.65 | / | / | / | / | / | / | / | / |
YT2-4 | 3864.41 | 0.53 | / | / | / | / | / | / | / | / |
YT2-5 | 3865.19 | 0.93 | 0.50 | 1.12 | 0.33 | 0.31 | 456 | 121 | 36 | II |
YT2-6 | 3868.93 | 0.76 | 0.36 | 0.99 | 0.28 | 0.27 | 456 | 131 | 37 | II |
YT2-7 | 3871.20 | 0.86 | 0.49 | 1.14 | 0.40 | 0.30 | 459 | 155 | 54 | II |
Sample | Slice Direction | Depth(m) | GRran (%) | Number of Measuring Points | EqVRo* 1 | EqVRo** 2 |
---|---|---|---|---|---|---|
YT2-1-1// | // | 3871.2 | 0.74 | 65 | 0.73 | 0.883 |
YT2-1-2// | // | 3871.2 | 1.04 | 40 | 1.05 | 1.07 |
YT2-1-3// | // | 3871.2 | 1.07 | 67 | 1.08 | 1.09 |
YT2-2-1// | // | 3868.93 | 1.21 | 60 | 1.23 | 1.17 |
YT2-2-2// | // | 3868.93 | 1.22 | 60 | 1.23 | 1.17 |
YT2-3-1// | // | 3865.19 | 1.22 | 60 | 1.23 | 1.17 |
YT2-1-1⊥ | ⊥ | 3871.2 | 1.01 | 60 | 1.01 | 1.06 |
YT2-1-2⊥ | ⊥ | 3871.2 | 1.14 | 60 | 1.14 | 1.13 |
YT2-1-3⊥ | ⊥ | 3871.2 | 1.01 | 60 | 1.01 | 1.06 |
YT2-2-1⊥ | ⊥ | 3868.93 | 1.33 | 60 | 1.35 | 1.24 |
YT2-2-2⊥ | ⊥ | 3868.93 | 1.44 | 60 | 1.46 | 1.29 |
YT2-2-3⊥ | ⊥ | 3868.93 | 1.49 | 60 | 1.52 | 1.32 |
YT2-3-1⊥ | ⊥ | 3865.19 | 1.13 | 60 | 1.14 | 1.13 |
YT2-3-2⊥ | ⊥ | 3865.19 | 0.90 | 60 | 0.89 | 0.99 |
YT2-3-3⊥ | ⊥ | 3865.19 | 0.95 | 60 | 0.95 | 1.02 |
YT2-1 | Random | 3871.2 | 1.09 | 38 | 1.09 | 1.10 |
YT2-2 | Random | 3868.93 | 1.201 | 32 | 1.21 | 1.17 |
YT2-3 | Random | 3865.19 | 0.85 | 36 | 0.84 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Huang, Z.; Wang, X.; Liu, X.; Liu, W.; Cai, Z.; Luo, H.; Wang, Q.; Zhang, D. Geochemical Characteristics of Graptolite Shale in the Pingliang Formation of the Ordos Basin, China: Implications for Organic Matter, Thermal Evolution, and Hydrocarbon Reservoir. Energies 2022, 15, 8238. https://doi.org/10.3390/en15218238
Li F, Huang Z, Wang X, Liu X, Liu W, Cai Z, Luo H, Wang Q, Zhang D. Geochemical Characteristics of Graptolite Shale in the Pingliang Formation of the Ordos Basin, China: Implications for Organic Matter, Thermal Evolution, and Hydrocarbon Reservoir. Energies. 2022; 15(21):8238. https://doi.org/10.3390/en15218238
Chicago/Turabian StyleLi, Fengjiao, Zhengliang Huang, Xiaofeng Wang, Xiaofeng Liu, Wenhui Liu, Zhenghong Cai, Houyong Luo, Qingtao Wang, and Dongdong Zhang. 2022. "Geochemical Characteristics of Graptolite Shale in the Pingliang Formation of the Ordos Basin, China: Implications for Organic Matter, Thermal Evolution, and Hydrocarbon Reservoir" Energies 15, no. 21: 8238. https://doi.org/10.3390/en15218238
APA StyleLi, F., Huang, Z., Wang, X., Liu, X., Liu, W., Cai, Z., Luo, H., Wang, Q., & Zhang, D. (2022). Geochemical Characteristics of Graptolite Shale in the Pingliang Formation of the Ordos Basin, China: Implications for Organic Matter, Thermal Evolution, and Hydrocarbon Reservoir. Energies, 15(21), 8238. https://doi.org/10.3390/en15218238