OpΕnergy: An Intelligent System for Monitoring EU Energy Strategy Using EU Open Data
Abstract
:1. Introduction
- A good practice of open data use in the energy sector;
- Analysis and forecast of open energy data in order to help citizens and governments track their progress in achieving their EU energy targets.
2. Materials and Methods
2.1. Data
2.2. System Architecture
2.3. Time Series Modeling and Forecasting
3. Results and Discussion
3.1. OpEnergy Presentation
3.1.1. EU 2020 Energy Targets
3.1.2. Country Profiles
3.1.3. Energy Balance, Electricity Production, Transport Fuels, Heat Production, and Gas Emissions
3.1.4. Empirical Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vlachokostas, C. Closing the Loop Between Energy Production and Waste Management: A Conceptual Approach Towards Sustainable Development. Sustainability 2020, 12, 5995. [Google Scholar] [CrossRef]
- United Nations. The Sustainable Development Goals Report. 2019. Available online: https://unstats.un.org/sdgs/report/2021/The-Sustainable-Development-Goals-Report-2021.pdf (accessed on 22 February 2022).
- Doukas, H. On the appraisal of “Triple-A” energy efficiency investments. Energy Sources B Econ. Plan. Policy 2018, 13, 320–327. [Google Scholar] [CrossRef]
- Kolokotsa, D. Smart cooling systems for the urban environment. Using renewable technologies to face the urban climate change. Sol. Energy 2017, 154, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Michailidou, A.V.; Vlachokostas, C.; Achillas, C.; Maleka, D.; Moussiopoulos, N.; Feleki, E. Green Tourism Supply Chain Management based on life Cycle Impact Assessment. Eur. J. Environ. Sci. 2016, 6, 30–36. [Google Scholar] [CrossRef] [Green Version]
- European Parliament. Energy Policy: General Principles. Fact Sheets on the European Union. Available online: https://www.europarl.europa.eu/factsheets/en/sheet/68/energy-policy-general-principles (accessed on 22 February 2022).
- Moroni, S.; Antoniucci, V.; Bisello, A. Local Energy Communities and Distributed Generation: Contrasting Perspectives, and Inevitable Policy Trade-Offs, beyond the Apparent Global Consensus. Sustainability 2019, 11, 3493. [Google Scholar] [CrossRef] [Green Version]
- Vlachokostas, C.; Charisios, A.; Diamantis, V.; Michailidou, A.V.; Baginetas, K.; Aidonis, D. Supporting decision making to achieve circularity via a biodegradable waste-to-bioenergy and compost facility. J. Environ. Manag. 2021, 285, 112215. [Google Scholar] [CrossRef]
- EC. Official Website of the European Union, A European Green Deal, 2021. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 22 February 2022).
- Petrov, O.; Gurin, J.; Manley, L. Open Data for Sustainable Development. Connections; 2016-5; World Bank: Washington, DC, USA; Available online: https://openknowledge.worldbank.org/handle/10986/24017 (accessed on 2 August 2022).
- OKF. Open Definition 2.1. Open Knowledge Foundation. 2022. Available online: http://opendefinition.org/od/2.1/en/ (accessed on 11 March 2022).
- Poikola, A.; Villum, C.; Dietrich, D.; Gray, J.; Tait, J.; Rogers, K.; Wainwright, M. Open Data Handbook. 2010. Available online: http://opendatahandbook.org/ (accessed on 11 March 2022).
- Janssen, M.; Charalabidis, Y.; Zuiderwijk, A. Benefits, Adoption Barriers and Myths of Open Data and Open Government. Inf. Syst. Manag. 2012, 29, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Neves, F.T.; de Castro Neto, M.; Aparicio, M. The impacts of open data initiatives on smart cities: A framework for evaluation and monitoring. Cities 2020, 106, 102860. [Google Scholar] [CrossRef]
- The World Bank. Open Government Data Toolkit-Benefits of Open Data. 2019. Available online: http://opendatatoolkit.worldbank.org/en/starting.html (accessed on 11 March 2022).
- Ioannidis, L.; Bratsas, C.; Karabatakis, S.; Filippidis, P.; Bamidis, P. Rudolf: An HTTP API for exposing semantically represented fiscal OLAP cubes. In Proceedings of the 11th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), Thessaloniki, Greece, 20–21 October 2016; pp. 177–182. [Google Scholar] [CrossRef]
- Koupidis, K.; Bratsas, C.; Karampatakis, S.; Martzopoulou, A.; Antoniou, I. Fiscal Knowledge discovery in Municipalities of Athens and Thessaloniki via Linked Open Data. In Proceedings of the 11th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), Thessaloniki, Greece, 20–21 October 2016; pp. 171–176. [Google Scholar] [CrossRef]
- Filippidis, P.M.; Karampatakis, S.; Koupidis, K.; Ioannidis, L.; Bratsas, C. The code lists case: Identifying and linking the key parts of fiscal datasets. In Proceedings of the 11th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), Thessaloniki, Greece, 20–21 October 2016; pp. 165–170. [Google Scholar] [CrossRef]
- Bratsas, C.; Chondrokostas, E.; Koupidis, K.; Antoniou, I. The Use of National Strategic Reference Framework Data in Knowledge Graphs and Data Mining to Identify Red Flags. Data 2021, 6, 2. [Google Scholar] [CrossRef]
- Nastasi, B.; Manfren, M.; Noussan, M. Open Data and Energy Analytics. Energies 2020, 13, 2334. [Google Scholar] [CrossRef]
- Fremouw, M.; Bagaini, A.; De Pascali, P. Energy Potential Mapping: Open Data in Support of Urban Transition Planning. Energies 2020, 13, 1264. [Google Scholar] [CrossRef] [Green Version]
- Pezzutto, S.; Croce, S.; Zambotti, S.; Kranzl, L.; Novelli, A.; Zambelli, P. Assessment of the Space Heating and Domestic Hot Water Market in Europe—Open Data and Results. Energies 2019, 12, 1760. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Hummel, M.; Kranzl, L.; Fallahnejad, M.; Büchele, R. Open Source Data for Gross Floor Area and Heat Demand Density on the Hectare Level for EU 28. Energies 2019, 12, 4789. [Google Scholar] [CrossRef] [Green Version]
- De Kok, R.; Mauri, A.; Bozzon, A. Automatic Processing of User-Generated Content for the Description of Energy-Consuming Activities at Individual and Group Level. Energies 2019, 12, 15. [Google Scholar] [CrossRef] [Green Version]
- Vialetto, G.; Noro, M. Enhancement of a Short-Term Forecasting Method Based on Clustering and kNN: Application to an Industrial Facility Powered by a Cogenerator. Energies 2019, 12, 4407. [Google Scholar] [CrossRef] [Green Version]
- Pfenninger, S.; DeCarolis, J.; Hirth, L.; Quoilin, S.; Staffell, I. The importance of open data and software: Is energy research lagging behind? Energy Policy 2017, 101, 211–215. [Google Scholar] [CrossRef]
- Koupidis, K.; Bratsas, C. okgreece/OpEnergyAnalytics: OpEnergyAnalytics v0.1 (Openergyanalytics). 2018. Zenodo. Available online: https://doi.org/10.5281/zenodo.6449412 (accessed on 22 August 2022).
- Koupidis, K.; Bratsas, C. okgreece/TimeSeries.OBeu v1.2.2 (v1.2.2). 2018. Zenodo. Available online: https://doi.org/10.5281/zenodo.1172102 (accessed on 22 August 2022).
- Mahla, S.K.; Parmar, K.S.; Singh, J.; Dhir, A.; Sandhu, S.S.; Chauhan, B.S. Trend and Time Series Analysis by ARIMA Model to Predict the Emissions and Performance Characteristics of Biogas Fueled Compression Ignition Engine. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 1–12. [Google Scholar] [CrossRef]
- Newbold, P. ARIMA Model Building and the Time Series Analysis Approach to Forecasting. J. Forecast. 1983, 2, 23–35. [Google Scholar] [CrossRef]
- Nelson, B.K. Time Series Analysis Using Autoregressive Integrated Moving Average (ARIMA) Models. Acad. Emerg. Med. 1998, 5, 739–744. [Google Scholar] [CrossRef]
- Yamak, P.T.; Yujian, L.; Gadosey, P.K. A Comparison between ARIMA, LSTM, and GRU for Time Series Forecasting. In Proceedings of the 2nd International Conference on Algorithms, Computing and Artificial Intelligence, New York, NY, USA, 20–22 December 2019; pp. 49–55. [Google Scholar] [CrossRef]
- Ho, S.L.; Xie, M.; Goh, T.N. A Comparative Study of Neural Network and Box-Jenkins ARIMA Modeling in Time Series Prediction. Comput. Ind. Eng. 2002, 42, 371–375. [Google Scholar] [CrossRef]
- Nury, A.H.; Hasan, K.; Alam, M.J.B. Comparative Study of Wavelet-ARIMA and Wavelet-ANN Models for Temperature Time Series Data in Northeastern Bangladesh. J. King Saud Univ.-Sci. 2017, 29, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1970. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis, Forecasting and Control, 3rd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Vlachokostas, C. Smart buildings need smart consumers: The meet-in-the middle approach towards sustainable management of energy sources. Int. J. Sustain. Energy 2020, 39, 648–658. [Google Scholar] [CrossRef]
Category of Prediction | Measure | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|
Final Energy Consumption | RMSE | 1.7 | 2.2 | 2.7 | 2.7 |
MAE | 0.9 | 1.2 | 1.3 | 1.3 | |
Greenhouse Gas Emissions | RMSE | 5.4 | 7.9 | 9.0 | 8.0 |
MAE | 3.2 | 4.2 | 5.1 | 4.5 | |
Gross Electricity Consumption | RMSE | 1.1 | 2.2 | 2.9 | 4.2 |
MAE | 1.1 | 1.8 | 2.5 | 3.6 | |
Heating and Cooling | RMSE | 2.9 | 3.0 | 4.6 | 5.1 |
MAE | 1.8 | 2.1 | 3.1 | 3.5 | |
Transport | RMSE | 2.2 | 2.1 | 2.6 | 3.7 |
MAE | 1.3 | 1.4 | 1.8 | 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koupidis, K.; Bratsas, C.; Vlachokostas, C. OpΕnergy: An Intelligent System for Monitoring EU Energy Strategy Using EU Open Data. Energies 2022, 15, 8294. https://doi.org/10.3390/en15218294
Koupidis K, Bratsas C, Vlachokostas C. OpΕnergy: An Intelligent System for Monitoring EU Energy Strategy Using EU Open Data. Energies. 2022; 15(21):8294. https://doi.org/10.3390/en15218294
Chicago/Turabian StyleKoupidis, Kleanthis, Charalampos Bratsas, and Christos Vlachokostas. 2022. "OpΕnergy: An Intelligent System for Monitoring EU Energy Strategy Using EU Open Data" Energies 15, no. 21: 8294. https://doi.org/10.3390/en15218294
APA StyleKoupidis, K., Bratsas, C., & Vlachokostas, C. (2022). OpΕnergy: An Intelligent System for Monitoring EU Energy Strategy Using EU Open Data. Energies, 15(21), 8294. https://doi.org/10.3390/en15218294