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Abstract: In this paper, the basic structure of an ICT platform of energy indicators, Openergy, is ana-
lytically presented, leveraging energy open data to help address the energy crisis more democratically.
More specifically, its applicability as a dynamic tool for the management of climate, environmental,
and socioeconomic information is described, and its efficiency in helping uncover insights for optimal
data-driven decisions is depicted. Openergy uses data from the official portal for European data and
the Eurostat site. Its database consists of data related to six energy categories, EU 2020 energy targets,
energy balance, electricity production, transport fuels, heat production, and gas emissions, and each
one includes its own indicators for EU countries. The platform includes visualizations of these data
as well as time series modeling and forecasting, and the results are depicted at Openergy platform.
The time series modeling provides forecasts with confidence intervals of each indicator until 2020 in
each energy category. Empirical validation, RMSE, and MAE values showed that in almost all cases
and estimations, the predicted values are in very good agreement with the observed values.

Keywords: open data; energy indicators; intelligent systems; energy system; data analysis; informed
governance

1. Introduction

Stable, adequate, and secure energy is vital for the sustainable development of hu-
manity. Sustainability presupposes economic development by ensuring climate change
mitigation and adaptation, environmental protection, and social cohesion, e.g., [1]. Towards
this direction, energy resources that are strongly related to economic development need to
be sustainably managed. The 7th Sustainable Development Goal (SDG) of the 2030 Agenda
for Sustainable Development supports ensuring access to modern, sustainable, reliable, and
affordable energy for all [2]. The EU demonstrates global leadership by considering energy
strategies and initiatives, especially under the threat of climate change. The important
pillars of EU’s energy policy are briefly (i) decarbonize towards a low-carbon economy,
(ii) promote clean energy technologies, (iii) improve energy efficiency, (iv) cut emissions,
(v) reduce dependence on energy import, (vi) ensure the functioning of a fully integrated
internal energy market, and (vii) diversify Europe’s sources of energy. All these pillars
need motives, objectives, and priorities in order to succeed in a “metamorphosis” of the
energy sector.

It goes without saying that energy consumption and the corresponding pressures on the
environment and climate are accompanied by many unsustainable practices that humanity
adopted in the past, which are still present in the energy system, e.g., [3–5]. Promoting
and realistically developing strategies and policies that aim to achieve an integrated energy
market, security of energy supply, and a sustainable energy sector is crucial and embedded
in the core of the EU’s energy policy [6]. Themes such as distributed generation energy
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systems and energy communities are acquiring an increasingly important role, both in
scientific literature and in the construction of scenarios and policies [7]. In addition, the
transformation of the EU’s energy sector should include ambitious national and EU measures
and alternatives for minimizing the consumption of fossil fuel related to industrial, transport,
agricultural, commercial services, tourism, and other economic sectors. Penetration of
renewables (hydro, solar, wind, tide), natural gas as a transition energy option, circular
economy, industrial symbiosis, and Waste-to-Bioenergy [8], the cogeneration of heat and
power, are included in the set of proposals in the European Green Deal [9].

Structural transformations in the energy sector require reliable information related
to all the aforementioned initiatives both at the EU and national levels. The use of Infor-
mation and Communication Technology (ICT) science constitutes an important tool for
assessing the progress achieved toward the transformation of the EUs’ energy system and,
in general, sustainable development. Measuring and reliably predicting energy indicators
such as energy consumption demand, sectoral analysis of energy demand, penetration of
alternative energy sources (e.g., biofuels or renewables), energy efficiency (e.g., heating
and cooling efficiency), energy intensity, or eco-efficiency of the energy sector is a major
challenge for energy managers and decision-makers in the EU.

Open data principles have become an important part of the data revolution and
have been identified worldwide as a key engine for achieving the 17 UN Sustainable
Development Goals (SDGs) [10].

Open data in the Open Definition published by the Open Knowledge Foundation
is defined as: “Open data is data that can be freely used, re-used and redistributed by
anyone—subject only, at most, to the requirement to attribute and share alike.” Additionally,
it must be available under an open license and provided in a modifiable form that is
machine-readable [11,12].

Open data result in open government, where government acts as an open system and
interacts with its environment. The data should not only be published but also actively
sought to learn how governance can be improved [13].

Additionally, open data support public oversight of governments and help reduce
corruption by enabling greater transparency in various fields, such as health, education,
climate, energy, intelligent transport systems, and smart cities. Open data give the oppor-
tunity to monitor government activities, such as tracking public budget expenditures or
policy targets and impacts [14,15].

Within the European Union, more and more countries are developing policies to release
their data as Open Government Data. There are open data platforms that provide access to
open data from international, EU, national, regional, local, and geo data portals, such as
the official European Data Portal: https://data.europa.eu/en (accessed on 22 August 2022)
or the official national data portals, such as for Greece: https://www.data.gov.gr (accessed
on 22 August 2022).

There are also monitoring tools that help citizens track different aspects of openness;
for example, there are tools that assess the state of open data around the world, such as the
Open Data Index: http://global.survey.okfn.org (accessed on 22 August 2022), the Open
Data Barometer: https://opendatabarometer.org/ (accessed on 22 August 2022) and the
Open Data Monitor: https://opendatamonitor.eu (accessed on 22 August 2022).

Moreover, there are tools such as Open Budgets [16–18], which help citizens and other
stakeholders obtain an overview of public spending, or the Red Flags platform [19], which
identifies red flags during the implementation process for projects of the National Strategic
Reference Framework.

Additionally, in [20], some papers related to open data and energy analytics are
commented on. Specifically, [21] addresses the barriers to energy data acquisition as there
is a lack of open data in the energy sector. In [22,23], there is described the need for energy
mapping tools to support urban planners, energy agencies, and public administrations in
planning the heating and cooling supply at different scales. The first describes an approach
to collect and analyze market data related to space heating and domestic hot water systems

https://data.europa.eu/en
https://www.data.gov.gr
http://global.survey.okfn.org
https://opendatabarometer.org/
https://opendatamonitor.eu
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and their performance in Europe, and the latter compares country-level and municipal-
level building stock data for gross floor area and energy demand for space heating and
domestic hot water. In [24], the potential of data in supporting energy analyses is also
shown. They focus on the use of different energy-consuming activities from social media
to understand and improve the energy consumption behavior of individuals. In [25], the
authors present an application to industrial energy efficiency where they apply a clustering
modeling approach for the short-term forecasting of energy demand in industrial facilities.

However, openness in energy research lags behind other fields, according to [26],
where there is a list of projects that tried to make data and models more transparent. They
conclude that openness in energy research, sharing code and data, is the initial step to
conducting research and monitoring and engaging decision-makers with models and the
assumptions embedded within them.

OpEnergy is an application developed by Open Knowledge Foundation Greece (https:
//okfn.gr/ (accessed on 22 August 2022)) in the context of the first ‘EU Datathon’ that
took place in Brussels in November 2017 to monitor and promote the re-use of energy data
from the EU Open Data Portal. It was organized by the Publications Office of the European
Union together with the Estonian Presidency of the Council of the European Union, and
the main challenges were to create innovative applications for citizens to address specific
societal issues in line with three key priorities for the European Union: jobs, growth and
investment; the digital single market; and democratic change.

This work aims to (i) present the basic structure and components of an innovative methodol-
ogy to develop an ICT platform of energy indicators, (ii) depict its applicability and utilization as
a dynamic tool for the management of climate, environmental, social, and economic information,
and (iii) depict its efficiency in order to predict important aspects towards the transformation
of the EU energy sector. In this context, the rationale behind the platform’s development is
presented, and some indicative results for the EU are briefly discussed.

Tackling climate change and energy crisis best practices requires sharing knowledge
across geographic and economic boundaries, which is why we believe energy open data
is essential. The information should be available in such a form that it facilitates decision-
making by decision-makers and is also understandable by citizens.

Openergy is an application that achieves two innovative goals:

1. A good practice of open data use in the energy sector;
2. Analysis and forecast of open energy data in order to help citizens and governments

track their progress in achieving their EU energy targets.

2. Materials and Methods
2.1. Data

In this study, data from two EU portals were used. The first one is the official portal
that provides access to open data from international, EU, national, regional, local, and
geo data portals which is accessible at https://data.europa.eu/en (accessed on 22 August
2022). From this portal, the data that were used were data related to the energy balance,
EU 2020 energy target, country energy profiles, energy production, transport fuels, heat
production, and gas emissions.

The second one is the portal of Eurostat (https://ec.europa.eu/eurostat) (accessed
on 22 August 2022), the official statistical office of the European Union, from which the
data used were data about the targets of each country, e.g., for primary or final energy
consumption or for greenhouse gas emissions. All data were transformed into the JSON
format to be used in our architecture, as described below.

2.2. System Architecture

The Openergy architecture shown in Figure 1 consists of five modules, the database
that stored data from the two EU portals described above, a REST API, an OpenCPU API,
the R libraries for time series modeling and forecasting, and the website http://openergy.
okfn.gr (accessed on 26 August 2022) that visualizes the results.

https://okfn.gr/
https://okfn.gr/
https://data.europa.eu/en
https://ec.europa.eu/eurostat
http://openergy.okfn.gr
http://openergy.okfn.gr
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Figure 1. Basic structure and components of the OpΕnergy tool and related architecture. Figure 1. Basic structure and components of the OpEnergy tool and related architecture.

The database consists of data related to six main energy categories distributed on six
pages at the Openergy tool, EU 2020 energy targets, energy balance, electricity production,
transport fuels, heat production, and gas emissions. Each includes its own indicators for
EU and EU countries.

The REST API was developed in Laravel and was used for HTTP requests to manage
the data from the database, enabling the exchange of data between two applications. This
API allows access to data and interacts with the OpenCPU server, which communicates
with the R libraries responsible for time series modeling and predictions (Figure 2).

Access to the six main energy categories data is provided by the REST API. For exam-
ple, when the user selects the energy balance page, he will access indicators represented
graphically with maps, bar or pie charts, time series/line charts that describe the produc-
tion, imports, exports, energy branch consumption, and final energy consumption by fuel
or sector for each EU country. There are also market indicators about natural gas, such as
entities bringing gas into a selected country, the main entities of cumulative market share,
the largest retailer of market share, etc., and electricity, such as producers, main producers,
main retailers, etc.

The country profiles page includes 27 indicators with their corresponding time se-
ries charts and their predicted values until 2020. These indicators are related to natural
gas, renewables, electricity, energy consumption, transformation/distribution losses, and
combined heat and power that form the general energy profile of a selected country.



Energies 2022, 15, 8294 5 of 15

Forecasts performed for each indicator in every energy category delivered by Rest API
as a product of communication by OpenCPU with the R libraries. These forecasts include
the predicted values with confidence intervals of the selected indicator until 2020.
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2.3. Time Series Modeling and Forecasting

Forecasts of the Openergy tool are implemented through the OpEnergyAnalytics
package [27], and they are not published by the European Commission. The OpEnergy-
Analytics package is mostly based on TimeSeries.OBeu package [28] for modeling and
predicting time series data, which was developed in the context of the Open Budgets project
(http://openbudgets.eu/) (accessed on 26 August 2022) funded from the European Union’s
H2020 EU research and innovation program.

In this package, first, stationary testing is performed through statistical hypothesis
tests of stationarity that are designed for determining whether differencing is required,
such as Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
tests. Stationarity is an important concept of time series analysis which practically means
that the statistical properties of a time series do not change over time.

Autoregressive integrated moving average (ARIMA) models are appropriate to forecast
time series data [29–31] and, according to [32–34], outperform some other methods. ARIMA
model is a statistical model used for forecasting time series data based on historical data.

http://openbudgets.eu/
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An ARIMA model consists of three components. The Autoregression (AR) component
refers to the model that shows that the time series is regressed with its previous values,
which order is denoted as p. The Integration (I) component refers to the order of differencing
d of the time series raw data to become stationary. The Moving Average (MA) component
indicates that the time series is regressed with the residuals of the past observations, in
which order is denoted as q. If non-stationary data occur, the next step is to differencing
the time series to conclude in stationary data. The equation of an ARIMA model for the
predicted value of y in period t has the following form:

yt = θ0 + ϕ1·yt−1 + ϕ2·yt−2 + . . . + ϕp−yt−p + εt−θ1·εt−1−θ2·εt−2− . . . −θq·εt−q, (1)

where yt and εt are the actual value and random error at time period t, respectively;
ϕi (i = 1, 2, . . . , p) and θj (j = 1, 2, ..., q) are AR and MA model parameters respectively.
p and q are integers and are often referred to as orders of the model. Box and Jenkins
established that the MA parameters should be written with a negative sign rather than a
positive sign. The general form of an ARIMA model is denoted as ARIMA (p, d, q) [35,36].

3. Results and Discussion
3.1. OpEnergy Presentation
3.1.1. EU 2020 Energy Targets

On the OpEnergy tool, the monitoring process involves six energy categories: EU 2020
Energy Targets (https://www.eea.europa.eu/highlights/eu-achieves-20-20-20 (accessed on
10 October 2022)); Energy Balance (https://ec.europa.eu/eurostat/statistics-explained/index.
php?title=Energy_balance_-_new_methodology (accessed on 10 October 2022)); Electricity
Production (https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_
and_heat_statistics (accessed on 10 October 2022)); Transport Fuels (https://ec.europa.eu/
eurostat/statistics-explained/index.php?title=Transport_statistics_introduced (accessed on 10
October 2022)); Heat Production and Gas Emissions (https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=Greenhouse_gas_emission_statistics_-_air_emissions_accounts
(accessed on 10 October 2022)), along with the Country Profiles of the EU countries.

The starting page is the EU 2020 Energy Targets page, where there is information
related to the targets of EU countries and the EU as a whole entity. Specifically, there are
seven energy indicators, Gross Final Energy Consumption (https://ec.europa.eu/eurostat/
web/products-datasets/-/t2020_rd330 (accessed on 10 October 2022)), Gross Electricity
Consumption, Heating and Cooling, Transport, Final Energy Consumption (https://ec.
europa.eu/eurostat/web/products-datasets/-/sdg_07_11 (accessed on 10 October 2022)),
Greenhouse Gas Emissions (https://data.europa.eu/data/datasets/dat-170-en?locale=en
(accessed on 10 October 2022)), and Primary Energy Consumption (https://ec.europa.
eu/eurostat/web/products-datasets/-/sdg_07_10 (accessed on 10 October 2022)) that are
visualized on an EU heat map, a bar chart, and a line chart. Additionally, there is a sidebar
that includes the EU countries. In this way, there is the capability of performing comparisons
among EU countries by selecting at least two countries to visualize. In case of multiple
countries selection, the bar chart and the line chart will be adapted to the user selection.

The heat map shows the magnitude of the selected indicator for a selected country on
the EU map as color and can be used for comparisons when the EU is selected from the
sidebar (Figure 3).

https://www.eea.europa.eu/highlights/eu-achieves-20-20-20
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_balance_-_new_methodology
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_balance_-_new_methodology
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_and_heat_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_and_heat_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Transport_statistics_introduced
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Transport_statistics_introduced
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Greenhouse_gas_emission_statistics_-_air_emissions_accounts
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Greenhouse_gas_emission_statistics_-_air_emissions_accounts
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https://ec.europa.eu/eurostat/web/products-datasets/-/t2020_rd330
https://ec.europa.eu/eurostat/web/products-datasets/-/sdg_07_11
https://ec.europa.eu/eurostat/web/products-datasets/-/sdg_07_11
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The bar chart shows the value in 2015, the predicted value, and the target of the
selected indicator for a selected EU country (Figure 4).

Energies 2022, 15, 8294 8 of 16 
 

 

 
Figure 3. EU heat map of Gross Final Energy Consumption. 

The bar chart shows the value in 2015, the predicted value, and the target of the se-
lected indicator for a selected EU country (Figure 4). 

 
Figure 4. Comparison bar chart of Gross Final Energy Consumption of two EU countries. 

The line chart is a time series chart of a selected indicator for one or more EU coun-
tries. In this chart, there is the capability to show the predictions along with the confidence 
intervals until 2020 (Figure 5). 

Figure 4. Comparison bar chart of Gross Final Energy Consumption of two EU countries.

The line chart is a time series chart of a selected indicator for one or more EU countries.
In this chart, there is the capability to show the predictions along with the confidence
intervals until 2020 (Figure 5).
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At the bottom of this page, there is a semi-automated constructed report, where the user
can access some key points of the charts and a summary of whether a country or EU as a whole
is expected to achieve its 2020 target according to the desired energy indicator (Figure 6).
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3.1.2. Country Profiles

The Country Profiles page consists of 27 indicators that altogether formulate the
energy profile of an EU country. These indicators are related to natural gas, renewables,
electricity, energy consumption, transformation/distribution losses, and combined heat
and power that form the general energy profile of a selected country. On this page, there is
a dynamic table with the indicators, their 2015 value, and the sparkline from 1990 to 2015.
The sparkline shows trends for the 1990-2015 period, such as increases or decreases and
maximum and minimum values of a selected indicator. By clicking on a row, a time series
plot is shown with the forecast with the corresponding confidence intervals of the selected
indicator until 2020. (Figure 7).



Energies 2022, 15, 8294 9 of 15Energies 2022, 15, 8294 10 of 16 
 

 

 
Figure 7. Energy Profile of an EU country along with the time series visualization on CO2 emissions 
until 2020. 

3.1.3. Energy Balance, Electricity Production, Transport Fuels, Heat Production, and Gas 
Emissions 

The Energy Balance page allows us to see the importance of the various fuels and 
their contribution to the economy. Specifically, the user can select information related to 
the production, imports, exports, energy branch consumption, the final energy consump-
tion by fuel/product and by sector, which are visualized on an EU heat map, bar chart or 
pie chart, an area chart and a tree map chart using a slide bar to select a year. The heat 
map is similar to the EU Energy Targets page, with the difference that there are different 
indicators in this category. The bar chart, which can be transformed into a pie chart, shows 
the percentages of subcategories of an indicator which is represented as the total (Figure 
8). 

Figure 7. Energy Profile of an EU country along with the time series visualization on CO2

emissions until 2020.

3.1.3. Energy Balance, Electricity Production, Transport Fuels, Heat Production, and
Gas Emissions

The Energy Balance page allows us to see the importance of the various fuels and their
contribution to the economy. Specifically, the user can select information related to the
production, imports, exports, energy branch consumption, the final energy consumption by
fuel/product and by sector, which are visualized on an EU heat map, bar chart or pie chart,
an area chart and a tree map chart using a slide bar to select a year. The heat map is similar
to the EU Energy Targets page, with the difference that there are different indicators in this
category. The bar chart, which can be transformed into a pie chart, shows the percentages
of subcategories of an indicator which is represented as the total (Figure 8).
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The area chart shows some market indicators related to natural gas and electricity. This
chart shows how a market indicator of one or more EU countries changes over time (Figure 9).
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Similar to the EU Energy Targets page, there is a time series chart of a selected country for a
selected indicator with the forecasts of the indicator’s values along with its confidence intervals.

The treemap is used to display data that is nested in a hierarchical structure and can
capture relative sizes of indicator subcategories, showing factors that are large contributors
to each category. Color can identify factors that are under- or over-performing compared to
other factors from the same category (Figure 10).
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3.1.4. Empirical Validation

Empirical validation is the comparison of model predictions with observations from the
real system, together with an assessment of whether the model is adequate for its purpose.
Figure 11 presents the annual variation comparisons for EU-27 countries between the final
energy consumption (observed) and the prediction by OpEnergy for the years 2016, 2017,
2018, and 2019. Figure 11 clearly depicts that the real-life energy consumption, in comparison
to the predicted values (from the ARIMA model) for all the years under consideration, shows
that the results of the model are in very good agreement with the predicted concentrations on
an annual basis. Germany is by far the country with the highest final energy consumption,
with an average of 202.40 Mteo for the time period 2016–2019. The corresponding average
prediction for the same time period is 211.45 Mteo, which gives approximately a 4% prediction
error. In general, the precision of the model predictions is more than acceptable, considering
the purpose of the OpEnergy model. Germany is followed by France (observed average
2016–2019: 141.54 Mteo, predicted average 2016–2019: 142.7 Mteo, accuracy 99.18%), Italy
(observed average 2016–2019: 113.15 Mteo, predicted average 2016–2019: 112,75 Mteo, accu-
racy 99.64%), Spain (observed average 2016–2019: 80.3 Mteo, predicted average 2016–2019:
80.72 Mteo, accuracy 99.47%), and Poland (observed average 2016–2019: 68.39 Mteo, predicted
average 2016–2019:62.05 Mteo, accuracy 91%). These countries are the top-5 energy consumers
and also the top-5 in GHG emissions in EU-27.
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In general, the OpEnergy model is in very good agreement with the observed values
for the categories under consideration, i.e., (i) Final energy consumption (mtoe), (ii) GHG
emissions, (iii) Gross electricity consumption, (iv) Gross final energy consumption, (v) Heat-
ing and cooling, (vi) Primary energy consumption, and (vii) Transport. Considering the
amount of data under consideration and for reasons of economies of space, Table 1 is
constructed. This is clearly depicted in Table 1, where the Root Mean Square Error (RMSE)
and the Mean Absolute Error (MEA) are estimated for the OpEnergy model for five signifi-
cant energy-intensive categories (EU-27, 2016-2019). These measures are maybe the most
frequently used to highlight the differences between values predicted by a model and the
values observed in the real system. The main conclusion is that in almost all cases and
estimations, real values are in very good agreement with the predicted values.

Table 1. Root mean square error and mean absolute error estimated for the OpEnergy model for five
significant energy-intensive categories (EU-27, 2016-2019).

Category of Prediction Measure 2016 2017 2018 2019

Final Energy Consumption RMSE 1.7 2.2 2.7 2.7
MAE 0.9 1.2 1.3 1.3

Greenhouse Gas Emissions
RMSE 5.4 7.9 9.0 8.0
MAE 3.2 4.2 5.1 4.5

Gross Electricity Consumption RMSE 1.1 2.2 2.9 4.2
MAE 1.1 1.8 2.5 3.6

Heating and Cooling RMSE 2.9 3.0 4.6 5.1
MAE 1.8 2.1 3.1 3.5

Transport RMSE 2.2 2.1 2.6 3.7
MAE 1.3 1.4 1.8 2.4

4. Conclusions

The EU, especially in this era of questioning energy sources and security, needs to
demonstrate intense leadership at the global level, considering the transformation of the
energy system via efficient and sustainable strategies and initiatives, especially under the
threat of carbon emissions and climate change. Smart energy systems need smart tools
that will support the transformation of the energy system in the main energy consumption
categories [37]. As the main conclusion of this work, the Openergy platform, through
its described architecture and modules, can be considered a useful tool that manages
energy information and indicators via the umbrella of open data use in the energy sector.
The material presented demonstrates that the platform efficiently adopts open databases,
analyses them, and provides both reliable and valuable predictions in order to assist citizens
and governments track their progress in achieving their EU energy targets.

The COVID-19 pandemic has shown that research data when shared and opened in
times of global crisis, help both in transparency and in the search for optimal solutions
to address crises that threaten the security and sustainability of society. Correspondingly,
open data is also necessary for dealing with the climate and energy crisis, which is an
extremely complex phenomenon and the solutions require the efforts of many sectors and
actors. However, for knowledge to reach people and be effective open data needs data
visualization and data analysis applications such as Openergy, which will help in climate
and energy justice. Energy open data is not a future goal but a present necessity.

Based on the above presentation and analysis, Openergy is essentially a data analysis
tool that collects and analyzes open data related to the energy system and can be very
useful (i) in improving energy-intensive processes and sectors, (ii) help uncover insights
to make optimal data-driven decisions, and (iii) optimize modeling and monitoring at
the European and national levels. The Openergy application highlights a path on how
open data, as a horizontal policy of the European Union, can be of crucial importance
in order to create smart energy data management systems. Such online tools can be the
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basis for putting forward strategies and policies in the EU related to sustainable and
renewable energy sources, enhancing transparency and control while improving informed
government decisions.

Predicting the value of crucial energy indicators by using the ARIMA proceeds proved
reliable. Apart from the accuracy that is apparent in the analysis presented, the process
is characterized by simplicity as well as the flexibility it offers, adequately fulfilling the
forecasting needs of the current study. This is particularly helpful because it allows handy
estimation of the levels and annual trends of energy consumption (primary, final, and
gross), CO2 and GHG emissions, electricity consumption, heating and cooling, and the
transport sector. The model adopted in the Openergy analysis is successfully validated
on an independent set of observations and real-life values. Considering the different
characteristics of EU countries, the model may not be expected to perform similarly.

The Openergy platform could be used with more data and more prediction algorithms
(e.g., neural networks), semantically describe the datasets, and link them with other sources
following the linked open data principals (e.g., climatic data, hazard data). The expectation
of the Openergy platform would be to become an application that combines data from
other sources and other domains that would visualize it and provide predictions with
various algorithms in a form that is understandable to the public and as a monitoring tool
for decision-makers. Although generally, there are gaps and uncertainties in data analysis,
the tool presented is simple, objective, and quantitative and can be useful for the user.
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